# iscte

INSTITUTO UNIVERSITÁRIO DE LISBOA

# Emotion Recognition and $\beta\mbox{-Band}$ Analysis based on Simulated Flights

Válber César Cavalcanti Roza

PhD in Information Science and Technology

Supervisor: Dr. Octavian Adrian Postolache, Full Professor, ISCTE – Instituto Universitário de Lisboa

April, 2024



Department of Information Science and Technology

# Emotion Recognition and $\beta\mbox{-Band}$ Analysis based on Simulated Flights

Válber César Cavalcanti Roza

PhD in Information Science and Technology

Jury: Prof. Dr. João Carlo Ferreira, Assistant Professor (with Aggregation) (President) ISCTE – Instituto Universitário de Lisboa

Prof. Dr. Nuno Guimarães, Full Professor, ISCTE – Instituto Universitário de Lisboa

Prof. Dr. Rui Neves Madeira, Assistant Professor, IPS – Instituto Politécnico de Setúbal

Prof. Dr. Prof. Dr. Francisco Martin, Full Professor, Universidad de Oviedo

Prof. Dr. Octavian Adrian Postolache, Full Professor, ISCTE – Instituto Universitário de Lisboa

April, 2024

I would like to dedicate all my effort, all my work, to Jesus Christ, my savior.

#### Acknowledgement

I would like to thank to God, to Jesus Christ who stood me up when I felt disappointed. Besides I would thank to my dear Professor and adviser, Octavian Postolache who believed me and guided me in doing this project, providing me invaluable advices and helping me in difficult periods. His motivation and help, contributed tremendously to the successful completion of present work.

I'd like also, to thank my mother Miriam, father Zé Wilson (in memory), my grandmother Letícia Higino (in memory), my wife and daughter, all family and friends around the world for their support. Without that support, I couldn't have succeeded in completing this project.

At last but not in least, I'd like to thank everyone who helped and motivated me to work on this project such as, experiments' volunteers, professors of UFRN and ISCTE-IUL, secretaries and assistants of the PhD Department of ISCTE-IUL and IT-IUL.

#### Abstract

Several safety-related improvements are applied every year to try to minimize the number of civil aviation accidents. Fortunately, these improvements work well, reducing the number of accident occurrences. However, while the number of accidents due to mechanical failures has decreased, the number of accidents due to human errors seems to grow. Based on that and to try to minimize these unwanted situations, the present work developed a sensing architecture and a set of experiments bringing two different solutions focused on the pilot of the aircraft through of simulated flights and volunteers having different expertise on flight procedures. The flight simulations were executed by the Microsoft Flight Simulator–Steam Edition (FSX-SE). The two proposed solutions are based on: emotion recognition and  $\beta$ -band analysis of pilots' brain in flight. Volunteers was invited to acted like pilots in simulated flights along seven flight moments: takeoff, climb, cruise flight, descent, approach, final approach and landing. Regarding to  $\beta$ -band analysis, Electroencephalography (EEG) was considered and also several spectrogram and statistical measurements of each volunteer were carried out. The results of this analysis shown that the takeoff, approach and landing corresponded to the highest brain signal amplitudes, i.e., close to 37.06%--67.33% higher than the brain activity of other flight tasks. When some accidents were about to occur, the amplitudes of the brain activities were similar to those of the final approach task. Considered the volunteers' expertise and their confidence on the proposed flight simulation, it shown that the highest brain amplitudes and oscillations observed of more experienced and confident volunteers were on average close to 68.44% less, compared to less experienced and less confident volunteers in the same tasks. Moreover, in general, more experienced and confident volunteers, presented different patterns of brain activities compared to volunteers with less expertise or less familiarity with fight simulations and/or electronic games. Regarding to emotion recognition, the present work shown that it is possible to recognize emotions of different pilots in flight, combining their actual and previous emotions felt in flight. Three biosignals were considered: Galvanic Skin Response (GSR), cardiac system based on Heart Rate (HR) through PPG sensor, and EEG. The reference to produce the emotion recognition model was based on the intensities of emotions detected of the volunteers' faces by the software Face Reader. These biosignals were used to extract the emotions patterns along the flights. Five main emotions were considered: happy, sad, angry, surprise and scared. The emotion recognition was based on Deep Neural Networks (DNN) techniques. The Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) were the main methods used to measure the quality of the multi-outputted regression models. The tests of the produced multi-output models shown that the lowest recognition errors were reached when all biosignals were considered or when the GSR datasets were omitted of the model training. It also showed that the emotion surprised was the easiest to recognize, having a mean RMSE of 0.13 and mean MAE of 0.01; while the emotion sad was the hardest to recognize, having a mean RMSE of 0.82 and mean MAE of 0.08. When only the major emotion values along the time were considered, the mean of the best classification accuracies was close of 76.42%.

#### Resumo

Várias melhorias são aplicadas todos os anos para minimizarem o número de acidentes na aviação civil. Felizmente, estas melhorias têm funcionado bem, reduzindo a quantidade de ocorrências de acidentes. No entanto, enquanto o número de acidentes aéreos causados por falhas mecânicas tem diminuido, o número de acidentes causados por falhas humanas parece ter aumentado. Baseado nisto e para tentar minimizar tais indesejadas situações, o presente trabalho desenvolveu uma arquitetura sensorial e um conjunto de experimentos, trazendo duas diferentes perspectivas focadas no piloto da aeronave através de voos simulados e voluntários possuindo diferentes níveis de conhecimento em procedimentos de voo simulado. Os voos simulados foram executados com o software Flight Simulator-Steam Edition (FSX-SE). As duas soluções propostas são baseadas em: reconhecimento de emoções e análises de ondas beta dos cérebros dos pilotos em voo. Os voluntários do experimento, foram convidados a atuaram como pilotos nos voos simulados ao longo de sete momentos ou tarefas de voo, definidas como: decolagem, subida, voo de cruzeiro, descida, aproximação, aproximação final e pouso. Sobre as análises das ondas beta, dados de Eletroencefalografia (EEG) foram considerados e também diversos espectrogramas e medições estatísticas para cada voluntário foram executadas. Os resultados desta análise mostraram que as tarefas de decolagem, aproximação e pouso, corresponderam aos momentos com sinais cerebrais de maiores amplitudes sendo, 37.06%–67.33% maiores que as atividades cerebrais das demais tarefas. Quando algum acidente estava prestes a acontecer, as amplitudes cerebrais foram similares a tarefa de aproximação final. Considerando a experiência e autoconfiança dos voluntários em executar os voos simulados propostos, isto mostrou que as mais altas amplitudes cerebrais observadas em voluntários mais experientes e confiantes foram em média 68.44% menor, comparadas a voluntárions menos experientes e menos confiantes para executas as mesmas tarefas. Além disso, em geral, voluntários mais experientes e confiantes no experimento, apresentaram diferentes padrões de atividades cerebrais comparadas a voluntários menos experientes ou com menor familiaridade com simuladores de voo e/ou jogos eletrônicos. Sobre o reconhecimento de emoções, o presente trabalho mostrou que é possível reconhecer emoções de diferentes pilotos em voo, combinando suas emoções sentidas durante o voo e anteriormente. Para isso, três biosinais foram considerados, EEG, Resistência Galvânica da Pele (RGP) e um sistema cardíaco baseado em Ritmo Cardíaco (RC). A referência para produzir o modelo de reconhecimento de emoções, foi baseada nas intensidades de emoções detectadas das faces dos voluntários pelo software Face Reader. Todos os biosinais foram usados para extrair padroões de emoções ao longo dos voos. Cinco emoções principais foram consideradas: alegria, tristeza, raiva, surpresa e medo. O reconhecimento das emoções foi baseado em técnicas de Redes Neurais Artificiais Profundas (RNAP). O Erro Quadrático Médio (EQM) e o Erro Médio Absoluto (EMA) foram os métodos principais usados para medir a qualidade dos múltiplos modelos de regressão criados. Os testes dos múltiplos modelos criados mostraram que os menores erros de reconhecimento de emoções foram alcançados quando todos os biosinais foram consideredos ou quando os dados de RGP foram omitidos do processo de treinamento. Também mostrou que a emoção surpresa foi a mais fácil de reconhecer, tendo o EQM de 0.13 e EMA médio de 0.01; enquanto que a emoção tristeza foi a mais difícil de ser reconhecida, apresentando um EQM de 0.82 e EMA médio de 0.08. Quando apenas as emoções faciais com maiores intensidades ao longo do tempo foram consideradas, a média das melhores classificações foi de aproximadamente 76.42%.

# List of Figures

| 1.1 Boeing statistical summary about fatal accident rate per million departures                                                                   | 9  |
|---------------------------------------------------------------------------------------------------------------------------------------------------|----|
| between 1959 through 2022 (Boeing, 2023).                                                                                                         | 3  |
| 1.2 Work scope diagram – practical contribution regarding to the on-flight phase.                                                                 | 7  |
| 1.3 Circumplex model of emotion-related categories (Plutchik and Kellerman, 2013).                                                                | 11 |
| 2.1 General architecture of a FER system.                                                                                                         | 16 |
| 2.2 General architecture of a speech-based system to recognize emotions.                                                                          | 18 |
| 2.3 General architecture of a biosignal-based system to recognize emotions.                                                                       | 20 |
| 2.4 Comparison between the number of selected publications (2015 to 2019).                                                                        | 22 |
| 2.5 Venn diagram over the most common techniques used to recognize emotions based on face, speech and biosignal (2015 to 2019).                   | 27 |
| 2.6 Recognition techniques found on emotion-related researches (2015 to 2019).                                                                    | 28 |
| 3.1 Diagram with some examples of application based on the developed multimodal system proposed in this work.                                     | 30 |
| 3.2 Execution steps of the proposed multimodal sensing system.                                                                                    | 31 |
| 3.3 Setups of the PoCs. First PoC approach using pilot and co-pilots (right); second<br>PoC using only a pilot and supervisor as co-pilot (left). | 33 |
| 3.4 Flight simulation experiment during the second PoC using previous setup, a small environment and basic volunteer screen.                      | 34 |
| 3.5 Airplane Extra 300S used during the training.                                                                                                 | 35 |
| 3.6 Setup used on the main experiment.                                                                                                            | 37 |
| 3.7 Experiment environment. Volunteer side (left); supervisor side (right).                                                                       | 38 |
| 3.8 Experiment checklists executed by the supervisor.                                                                                             | 40 |
| 3.9 Airplane Cessna 172SP used during the main experiment.                                                                                        | 41 |
| 3.10Flight route (red line) of the experiment (Lisbon to Alverca).                                                                                | 41 |
| 3.1 Lateral view of the proposed flight task chart, route and tasks.                                                                              | 42 |
| 3.12EEG's accelerometer output of the double head shaking movement.                                                                               | 44 |
| 3.1 Electrodes placement. EEG and HR, placed on the scalp and ear (left); and GSR, placed on the indicator and middle fingers (right).            | 45 |

ix

| 3.14 Emosense RT software, to acquire HR and GSR data (top) and Enobio-N8 to                                                                                                                     | 4 🖂 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| acquire EEG data (bottom).                                                                                                                                                                       | 47  |
| 3.1 EEG raw (noisy) 8 channels dataset referent to CR1 experiment.                                                                                                                               | 48  |
| 3.16Acquisition devices: Enobio-N8 (left); Shimmer GSR (middle-left); Shimmer for ECG/HR (middle-right) and MedLab P100 (right).                                                                 | 49  |
| 3.17 Face Reader software used to detect emotions from face.                                                                                                                                     | 50  |
| 3.18 Face recording of some volunteers during experiment.                                                                                                                                        | 51  |
| 3.19Questionnaire with 22 emotions, used before and after the experiment.                                                                                                                        | 52  |
| 3.2Œ motions selected on questionnaires and the resumed emotions.                                                                                                                                | 53  |
| 3.2 Distribution of fatal accidents by civil aviation (Boeing report) and general accidents (proposed experiment) (adapted from Boeing, 2017).                                                   | 55  |
| $3.2\mathbb{R}$ aw datasets correlation, based on HR and GSR input data.                                                                                                                         | 58  |
| 3.2 Raw datasets correlation, based on HR and GSR input data.                                                                                                                                    | 59  |
| 3.24 Classes of emotions detected by Face Reader software for each flight dataset.                                                                                                               | 60  |
| 4.1 Reference line function and modes along any dataset preprocessing.                                                                                                                           | 62  |
| 4.2 GFFM on abrupt signal correction. Gravity force functions in shared mode (top); gravity force application (middle); final data (bottom).                                                     | 62  |
| 4.3 Gravity force functions and modes along any dataset preprocessing.                                                                                                                           | 63  |
| 4.4 GFFM test using a dataset with 150 samples. Reference line on static mode based on median, and gravity force function as independent mode, linear and coefficients $g_t=1.0$ and $g_b=0.7$ . | 64  |
| 4.5 GFFM test using a dataset with 150 samples. Reference line on static mode based on mean, and gravity force function as shared mode, linear and coefficients $g_t=0.8$ and $g_b=1.0$ .        | 64  |
| 4.6 GFFM test using a dataset with 1000 samples. Reference line on static mode based on mean, and gravity force function as shared mode, linear and coefficients $g_t=0.9$ and $g_b=1.0$ .       | 65  |
| 4.7 GFFM test using a dataset with 2000 samples. Reference line on static mode based on min-max, and gravity force function as shared mode, linear and coefficients $g_t=0.9$ and $g_b=1.0$ .    | 65  |
| 4.8 GSR dataset correction referent to the flight dataset CL3.                                                                                                                                   | 67  |
| 4.9 GSR dataset correction referent to the flight dataset RC1 and RC3.                                                                                                                           | 68  |
| 4.10GSR dataset correction referent to the flight datasets GC1 and LS2.                                                                                                                          | 69  |
| 4.11GSR dataset correction referent to the flight datasets VC1 and CLX.                                                                                                                          | 70  |
| 4.12HR dataset correction referent to the flight datasets CL3 and VC1.                                                                                                                           | 71  |
| 4.13HR dataset correction referent to the flight datasets RC1 and GC3.                                                                                                                           | 72  |
| X                                                                                                                                                                                                |     |

| 4.14Outliers detected in some dataset.                                                                                                                                                                                                          | 73  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 4.1 Raw face emotion dataset with smoothing and resampling.                                                                                                                                                                                     | 76  |
| 4.16A set of raw HR and GSR data with N=10e+3 samples) preprocessing result.<br>Raw dataset before preprocessing (left); raw dataset after (right).                                                                                             | 77  |
| 5.1 Detailed stages from recorded data until feature extraction.                                                                                                                                                                                | 79  |
| 5.2 Result of the drift removal from a raw EEG dataset having $t = 9.78$ min.                                                                                                                                                                   | 80  |
| 5.3 Filtering output over EEG data regarding to $\beta$ -band.                                                                                                                                                                                  | 82  |
| 5.4 Some dataset spectrograms, showing the flight parts with high amplitude.                                                                                                                                                                    | 83  |
| 5.5 Processed EEG (8 channels) dataset referent to CR1 experiment.                                                                                                                                                                              | 84  |
| 6.1 Feature extraction and sampling demonstration using the feature $\mu$ for all detected emotions from the face.                                                                                                                              | 85  |
| 6.2 Wavelet shifts along of a sine wave with different frequencies, where $a_i \neq a_j$ and $b_i \neq b_j$ .                                                                                                                                   | 88  |
| 6.3 Peaks detections and counting over $3600$ samples (DS-RC1).                                                                                                                                                                                 | 89  |
| 6.4 Poincaré plot demonstration over the flight dataset RC2.                                                                                                                                                                                    | 89  |
| 6.5 Poincaré plot for raw dataset and processed dataset (CL3).                                                                                                                                                                                  | 90  |
| 6.6 Poincaré plots for raw datasets and processed datasets (RC1 to GC1).                                                                                                                                                                        | 91  |
| 6.7 Poincaré plots for raw datasets and processed datasets (GC3 to VC1).                                                                                                                                                                        | 92  |
| 6.8 Poincaré plots for raw datasets and processed datasets (VC2 to CLX).                                                                                                                                                                        | 93  |
| 6.9 Columns centering over feature vectors, before (left) and after (right).                                                                                                                                                                    | 94  |
| 6.10Scatter plot for some extracted features.                                                                                                                                                                                                   | 95  |
| 7.1 Perceptron model.                                                                                                                                                                                                                           | 98  |
| 7.2 Learning rate $\eta(n)$ analysis by test errors $\varepsilon(n)$ for each iteration n from RC1 to CL3 (left); learning rate by correct matches (right).                                                                                     | 100 |
| 7.3 Descend errors and divergence descend close to 1,100 iterations.                                                                                                                                                                            | 101 |
| 7.4 Cross validation applied to test the models. It trains using volunteers datasets, to detect emotions of one single volunteer $k$ .                                                                                                          | 102 |
| 7.5 ANN using RTOR methodology over the output neurons $y_{1\to n}$ .                                                                                                                                                                           | 102 |
| 7.6 RTOR being applied on a neuron output. Note the corrected output $y_k^*$ (blue) and the raw output $y_k$ having outliers (green).                                                                                                           | 103 |
| 8.1 Spectrogram of the flight dataset RC1-frontal left lobe (Fp1). (a) Processed<br>12-40Hz data; (b) Raw data spectrogram; (c) Spectrogram of the processed<br>12-40Hz data; (d) Processed data on delimited Y-axis; (e) Grayscale spectrogram | 1   |
| with tasks delimitation.                                                                                                                                                                                                                        | 106 |

| 8.2 Spectrogram of the flight dataset RC1 - temporal right lobe (T8).                                                                                                                                                                          | 107   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 8.3 Mean values of spectrogram magnitudes of the flight dataset RC1 - temporal left                                                                                                                                                            | 107   |
| and right lobes (17 and 18).                                                                                                                                                                                                                   | 107   |
| 8.4 Spectrogram of the flight dataset CR1-frontal left lobe (F3). (a) Processed<br>12-40Hz data; (b) Spectrogram of the processed 12-40Hz data; (c) Grayscale<br>spectrogram with tasks delimitation: (d) Mean values of spectrogram energies. | 108   |
| 8.5 Spectrogram of the flight dataset CB3-temporal left lobe $(T7)$ (a) Processed                                                                                                                                                              |       |
| 12-40Hz data; (b) Spectrogram of the processed 12-40Hz data; (c) Grayscale spectrogram with tasks delimitation; (d) Mean values of spectrogram energies.                                                                                       | 109   |
| $8.6\ {\rm Mean}$ values of spectrogram magnitudes of the flight dataset CR1 and LS2 -                                                                                                                                                         |       |
| frontal left lobe (F3).                                                                                                                                                                                                                        | 110   |
| 8.7 Normalized mean values of the brain activities for all datasets and the volunteers'                                                                                                                                                        | ,     |
| expertise (left lobe).                                                                                                                                                                                                                         | 111   |
| 8.8 Normalized mean values of the brain activities for all datasets and the volunteers'                                                                                                                                                        | ,     |
| expertise (right lobe).                                                                                                                                                                                                                        | 112   |
| 8.9 Normalized mean values of brain activities for all datasets over each task according to volunteers' expertise.                                                                                                                             | 112   |
| 8 10 Mean values of brain magnitudes by tasks of the flight dataset CB1 - frontal left                                                                                                                                                         | -     |
| lobe (Fp1), considering a total of 13 volunteers' datasets.                                                                                                                                                                                    | 113   |
| 8.1 Mean of magnitudes by tasks of the flight dataset CB1 - frontal left lobe (Fp1)                                                                                                                                                            | 114   |
|                                                                                                                                                                                                                                                |       |
| 9.1 Preprocessing executed before the processing, feature extraction and tests.                                                                                                                                                                | 124   |
| 9.2 Processing executed before the feature extraction.                                                                                                                                                                                         | 124   |
| 9.3 Errors results (RMSE+MAE) from tests 3 to 6 (with feature extraction).                                                                                                                                                                     | 127   |
| 9.4 Errors results (RMSE) comparison from tests 3 to 34 (with feature extraction).                                                                                                                                                             | 128   |
| $9.5\ {\rm Errors}\ {\rm results}\ ({\rm MAE})\ {\rm comparison}\ {\rm from}\ {\rm tests}\ 3\ {\rm to}\ 34\ ({\rm with}\ {\rm feature}\ {\rm extraction}).$                                                                                    | 129   |
| $9.6\ {\rm Errors}$ results comparison between RMSE and MAE from tests 1 to 34 (with                                                                                                                                                           |       |
| feature extraction).                                                                                                                                                                                                                           | 130   |
| 9.7 Major emotion accuracies from the tests 3 to 6 (with feature extraction).                                                                                                                                                                  | 131   |
| 9.8 All major emotion accuracies from the tests 1 to 34. All accuracies (left); mean of all accuracies (right).                                                                                                                                | 132   |
| 9.9 Traditional learning versus deep learning (DP). Improvement applied in this work, regarding to the major value emotions when applying the traditional learning and                                                                         | ,<br> |
| deep learning (no feature extraction).                                                                                                                                                                                                         | 133   |
| A.1Flow diagram of the pictures selection process from the IAPS dataset.                                                                                                                                                                       | 178   |
| A.2Electrode positions for EEG (up); main and auxiliary electrodes for emotion detection (up-right); ECG, GSR and SpO2 (bottom).                                                                                                               | 178   |
| xii                                                                                                                                                                                                                                            |       |

| A.3ANN result comparison and ANN squared errors during the training.                                                                                        | 179      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| A.4ANN outputs during the training.                                                                                                                         | 179      |
| A.5Smart phone application screens: questionnaire and the main screen.                                                                                      | 180      |
| A.6Publication regarding to the emotional relation between city places and citizens' emotions (Roza and Postolache, 2016).                                  | 181      |
| A.7Publication regarding to the design of a multimodal interface based on emotion (Roza and Postolache, 2017).                                              | 182      |
| A.8Publication regarding to the design of an ANN to detect arrhythmias from ECG data (Roza, Almeida, and Postolache, 2017).                                 | 183      |
| A.9Publication regarding to the design of a multimodal architecture based on<br>emotion and flight simulator (Roza and Postolache, 2018).                   | 184      |
| A.1Publication regarding to the performance analysis of ANN and SVM on arrhythmia identification (Roza et al., 2018).                                       | 185      |
| A.1Publication regarding to the emotional assessment on simulated flight experiments (Roza et al., 2019).                                                   | 5<br>186 |
| A.1Publication regarding to the multisensing approach to identify emotions based or simulated flight experiments (Roza and Postolache, 2019).               | 1<br>187 |
| A.1 <b>P</b> ublication regarding to the $\beta$ -band analysis (Roza and Postolache, 2021).                                                                | 188      |
| A.1₽ublication regarding to the inverse kinematic applied to orthosis walking tests (Roza et al., 2017).                                                    | 189      |
| A.1Publication regarding to the development of a multisensing platform to give support to children with cerebral palsy (Roza, Souza, and Postolache, 2017). | 190      |
| A.1 Publication regarding to the improvement of a probabilistic method over path planning tasks (L. Bruno P. Nascimento et al., 2018).                      | 191      |
| B.1Mean of magnitudes by tasks and lobes, of the flight dataset CL3 (beginner level volunteer).                                                             | l<br>194 |
| B.2Mean of magnitudes by tasks and lobes, of the flight dataset CR1 (beginner leve volunteer).                                                              | l<br>195 |
| B.3Mean of magnitudes by tasks and lobes, of the flight dataset CR3 (beginner leve volunteer).                                                              | l<br>196 |
| B.4Mean of magnitudes by tasks and lobes, of the flight dataset GC3 (mid-level volunteer).                                                                  | 197      |
| B.5Mean of magnitudes by tasks and lobes, of the flight dataset LS1 (mid-level volunteer).                                                                  | 198      |
| B.6Mean of magnitudes by tasks and lobes, of the flight dataset VC1 (experienced                                                                            |          |
| level volunteer).                                                                                                                                           | 199      |
|                                                                                                                                                             | XIII     |

| B.7Mean of magnitudes by tasks and lobes, of the flight dataset VC2 (experienced    |     |
|-------------------------------------------------------------------------------------|-----|
| level volunteer).                                                                   | 200 |
| C.1Configuration panel.                                                             | 201 |
| C.2Three main panel: RT acquisition panel, aviation experiment panel and electrodes | 3   |
| setup panel.                                                                        | 202 |
| C.3Log storage and nomenclature.                                                    | 203 |
| C.4Emosense Offline software.                                                       | 203 |

### List of Tables

| 1.1 Some accidents on commercial aviation, caused mainly by human failure. The victime situation was defined as fatal (E) and injured (I) | 4   |
|-------------------------------------------------------------------------------------------------------------------------------------------|-----|
| victims situation was defined as fatal (1) and injured (1).                                                                               | 4   |
| 2.1 Some techniques regarding to face emotion recognition since 2015.                                                                     | 22  |
| 2.2 Some techniques regarding to speech based on emotion recognition since 2015.                                                          | 23  |
| 2.3 Some techniques regarding to biosignal based on emotion recognition since 2015.                                                       | 26  |
| 3.1 Resources applied on each PoC and in the main experiment.                                                                             | 39  |
| 3.2 Pilot and co-pilot checklists used during the main flight simulations.                                                                | 43  |
| 3.3 Devices and its application in the main experiment.                                                                                   | 49  |
| 3.4 Dataset description according to the flight experiment tasks.                                                                         | 54  |
| 3.5 Raw valid dataset description according to number of samples and time.                                                                | 56  |
| 3.6 Reduced datasets according to amount of samples, emotions and time.                                                                   | 57  |
| 4.1 Corrections of abrupt data changes using ACCM, over the experiment datasets<br>BC1 to CL3                                             | 67  |
| 4.2 Outliers detection and removal using 7 Score and modified 7 Score                                                                     | 72  |
| 4.2 Outliers detection and removal using $\Sigma$ -score and modified $\Sigma$ -score.                                                    | 10  |
| 6.1 Extracted features for HR, GSR, EEG and Face datasets.                                                                                | 86  |
| 8.1 $\mu_0$ , $\sigma_0$ and $\sigma_0^2$ of $\beta$ -band, 31-39Hz and 40Hz of the flight dataset CR1 (beginner level volunteer).        | 115 |
| 8.2 $\mu_0$ , $\sigma_0$ and $\sigma_0^2$ of $\beta$ -band, 31-39Hz and 40Hz of the flight dataset RC1 (mid-level volunteer).             | 115 |
| 8.3 $\mu_0$ , $\sigma_0$ and $\sigma_0^2$ of $\beta$ -band, 31-39Hz and 40Hz of the flight dataset RC2 (mid-level volunteer).             | 116 |
| 8.4 $\mu_0$ , $\sigma_0$ and $\sigma_0^2$ of $\beta$ -band, 31-39Hz and 40Hz of the flight dataset RC3 (mid-level volunteer).             | 116 |
| 8.5 $\mu_0$ , $\sigma_0$ and $\sigma_0^2$ of $\beta$ -band, 31-39Hz and 40Hz of the flight dataset GC1 (mid-level volunteer).             | 117 |
| 8.6 $\mu_0$ , $\sigma_0$ and $\sigma_0^2$ of $\beta$ -band, 31-39Hz and 40Hz of the flight dataset GC3 (mid-level volunteer).             | 117 |
| 8.7 $\mu_0$ , $\sigma_0$ and $\sigma_0^2$ of $\beta$ -band, 31-39Hz and 40Hz of the flight dataset LS1 (mid-level volunteer).             | 118 |

| 8.8 $\mu_0$ , $\sigma_0$ and $\sigma_0^2$ of $\beta$ -band, 31-39Hz and 40Hz of the flight dataset LS2 (mid-level volunteer).             | 118      |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 8.9 $\mu_0$ , $\sigma_0$ and $\sigma_0^2$ of $\beta$ -band, 31-39Hz and 40Hz of the flight dataset VC1 (experienced level volunteer).     | l<br>119 |
| 8.1 $\mu_0$ , $\sigma_0$ and $\sigma_0^2$ of $\beta$ -band, 31-39Hz and 40Hz of the flight dataset VC2 (experienced level volunteer).     | l<br>119 |
| 8.1 $\mu_0$ , $\sigma_0$ and $\sigma_0^2$ of $\beta$ -band, 31-39Hz and 40Hz of the flight dataset CR3 (beginner level volunteer).        | 120      |
| 8.12µ <sub>0</sub> , $\sigma_0$ and $\sigma_0^2$ of $\beta$ -band, 31-39Hz and 40Hz of the flight dataset CLX (beginner level volunteer). | 120      |
| 8.13 $\mu_0$ , $\sigma_0$ and $\sigma_0^2$ of $\beta$ -band, 31-39Hz and 40Hz of the flight dataset CL3 (beginner level volunteer).       | 121      |
| 9.1 Description of each execution test according to preprocessing, processing and feature extraction.                                     | 125      |
| 9.2 Description of each execution test according to preprocessing, processing and feature selection.                                      | 126      |
| 9.3 Emotion recognition results tests 1 and 2. ANN with $6 \times 10^3$ train epochs and raw data (no features).                          | 135      |
| 9.4 Emotion recognition results tests 3 and 4. ANN with $6 \times 10^3$ train epochs and input data with feature extraction.              | 136      |
| 9.5 Emotion recognition results tests 5 and 6. ANN with $6 \times 10^3$ train epochs and input data with feature extraction.              | 137      |
| 9.6 Emotion recognition results tests 7 and 8. ANN with $6 \times 10^3$ train epochs and input data with feature extraction.              | 138      |
| 9.7 Emotion recognition results tests 9 and 10. ANN with $6 \times 10^3$ train epochs and input data with feature extraction.             | 139      |
| 9.8 Emotion recognition results tests 11 and 12. ANN with $6 \times 10^3$ train epochs and input data with feature extraction.            | 140      |
| 9.9 Emotion recognition results tests 13 and 14. ANN with $6 \times 10^3$ train epochs and input data with feature extraction.            | 141      |
| 9.1) Emotion recognition results tests 15 and 16. ANN with $6 \times 10^3$ train epochs and input data with feature extraction.           | 142      |
| 9.1<br>Emotion recognition results tests 17 and 18. ANN with<br>$6\times10^3$ train epochs and input data with feature extraction.        | 143      |
| 9.1 $\times$ motion recognition results tests 19 and 20. ANN with $6 \times 10^3$ train epochs and input data with feature extraction.    | 144      |
| xvi                                                                                                                                       |          |

| 9.1)<br>Emotion recognition results tests 21 and 22. ANN with<br>$6\times10^3$ train epochs and |     |
|-------------------------------------------------------------------------------------------------|-----|
| input data with feature extraction.                                                             | 145 |
| 9.14<br>Emotion recognition results tests 23 and 24. ANN with<br>$6\times10^3$ train epochs and |     |
| input data with feature extraction.                                                             | 146 |
| 9.1<br>Emotion recognition results tests 25 and 26. ANN with<br>$6\times10^3$ train epochs and  |     |
| input data with feature extraction.                                                             | 147 |
| 9.1<br>Æmotion recognition results tests 27 and 28. ANN with<br>$6\times10^3$ train epochs and  |     |
| input data with feature extraction.                                                             | 148 |
| 9.17<br>Emotion recognition results tests 29 and 30. ANN with<br>$6\times10^3$ train epochs and |     |
| input data with feature extraction.                                                             | 149 |
| 9.1<br>Æmotion recognition results tests 31 and 32. ANN with<br>$6\times10^3$ train epochs and  |     |
| input data with feature extraction.                                                             | 150 |
| 9.1<br>Æmotion recognition results tests 33 and 34. ANN with<br>$6\times10^3$ train epochs and  |     |
| input data with feature extraction.                                                             | 151 |
| A.1Publications developed during the studies of the present PhD.                                | 177 |

## Outline

| Acknowledgement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iii                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Abstract                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | v                                                                                                                                 |
| Resumo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vii                                                                                                                               |
| List of Figures                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ix                                                                                                                                |
| List of Tables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | XV                                                                                                                                |
| <ul> <li>Chapter 1. Introduction</li> <li>1.1. Main Motivation and Practical Contribution</li> <li>1.1.1. Human Factors and Aviation Accidents</li> <li>1.1.2. Looking for Real Pilots' Feedback Regarding to the Research Application</li> <li>1.1.3. Contribution</li> <li>1.2. Challenges</li> <li>1.3. Going Deep on Emotion Researches</li> <li>1.4. Thesis Content</li> </ul>                                                                                                                                                                                                                         | $     \begin{array}{c}       1 \\       2 \\       4 \\       5 \\       7 \\       8 \\       9 \\       12 \\     \end{array} $ |
| <ul> <li>Chapter 2. Literature Review – Techniques on Emotion Sensing and Recognition</li> <li>2.0.1. Emotion Recognition Techniques based on Facial Expressions</li> <li>2.0.2. Emotion Recognition Techniques based on Human Speech</li> <li>2.0.3. Emotion Recognition Techniques based on Physiological Parameters</li> <li>2.0.4. Techniques Comparisons</li> <li>2.0.5. Recognition Techniques Comparisons</li> </ul>                                                                                                                                                                                 | 15<br>16<br>17<br>19<br>21<br>27                                                                                                  |
| <ul> <li>Chapter 3. Multimodal Sensing System and Data Acquisition</li> <li>3.1. Multimodal Architecture Description</li> <li>3.2. Proof of Concept (PoC) of the Experiment</li> <li>3.3. Training Flight - Cognition versus Emotion</li> <li>3.3.1. Cognitive Reappraisal and Acceptance</li> <li>3.4. Main Flight Experiment</li> <li>3.4.1. Computers Configuration</li> <li>3.4.2. Execution Checklist - Listing the Steps of the Experiment</li> <li>3.4.3. Execution of the Simulated Flight</li> <li>3.4.4. Flight Plan - Route of the Simulation</li> <li>3.4.5. Tasks of the Experiment</li> </ul> | 29<br>30<br>32<br>34<br>35<br>36<br>39<br>39<br>41<br>41<br>42<br>42                                                              |
| 3.4.6. Volunteers and Flight Checklists                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 42<br>xix                                                                                                                         |

| 3.4.7. Head Shaking Indicator - Beginning and End of Experiment               | 43 |
|-------------------------------------------------------------------------------|----|
| 3.4.8. Physiological Sensing                                                  | 44 |
| 3.4.9. Facial Emotion Sensing                                                 | 50 |
| 3.4.10. Emotion Questionnaires                                                | 50 |
| 3.4.11. Flight Analysis                                                       | 54 |
| 3.4.12. Dataset Description                                                   | 55 |
| Chapter 4. Data Preprocessing                                                 | 61 |
| 4.1. Gravity Force-Fit Method (GFFM) - First Detrend                          | 61 |
| 4.2. Abrupt Change Correction Method (ACCM)                                   | 66 |
| 4.2.1. Abrupt Change Correction for GSR Data                                  | 67 |
| 4.2.2. Abrupt Change Correction for HR Data                                   | 71 |
| 4.3. Outliers Detection and Correction                                        | 73 |
| 4.3.1. Z-Score                                                                | 74 |
| 4.3.2. Modified Z-Score                                                       | 74 |
| 4.4. Data Normalization                                                       | 75 |
| 4.5. Face Dataset - Smoothing Abrupt Oscillations                             | 75 |
| 4.6. Preprocessing Output                                                     | 77 |
| Chapter 5. Data Processing                                                    | 79 |
| 5.1. Drift Removal                                                            | 79 |
| 5.2. Auto Regressive Exogenous - Motion Artefact Removal                      | 80 |
| 5.3. Filtering - Bandpass and Lowpass Combination                             | 81 |
| 5.3.1. Spectrogram View                                                       | 82 |
| 5.4. Discrete Fourier Transform Analysis                                      | 83 |
| Chapter 6. Feature Extraction                                                 | 85 |
| 6.1. Features Description                                                     | 86 |
| 6.1.1. Mean Features (FEAT_MN)                                                | 86 |
| 6.1.2. Median Features - Correcting Mean's Discrepancies (FEAT_MD)            | 86 |
| 6.1.3. Standard Deviation and Variance Features (FEAT_STD, FEAT_VAR)          | 87 |
| 6.1.4. Continuous Entropy Features (FEAT_ENT)                                 | 87 |
| 6.1.5. Wavelets Features (FEAT_WAC, FEAT_WDC)                                 | 87 |
| 6.1.6. Peaks Counting Features (FEAT_PEK)                                     | 88 |
| 6.1.7. Poincaré Plots Features (FEAT_SD1, FEAT_SD2, FEAT_SCT, FEAT_SAR)       | 89 |
| 6.1.8. Sample Absolute Interval Range Features (FEAT_RNG)                     | 93 |
| 6.2. Singular Value Decomposition - Features Selection                        | 94 |
| 6.3. Features Columns Centering                                               | 94 |
| 6.4. Features Correlation                                                     | 95 |
| 6.4.1. Pearson Correlation Coefficient - Evaluating the Features Correlations | 95 |
| Chapter 7. Emotion Recognition                                                | 97 |
| 7.1. Artificial Neural Network                                                | 97 |

| 7.1.1. McCulloch-Pitts Neuron Model                                           | 97  |
|-------------------------------------------------------------------------------|-----|
| 7.1.2. ANN Development and Modeling                                           | 98  |
| 7.1.3. Learning Rate Analysis                                                 | 99  |
| 7.1.4. Finding an Optimal Hidden Neurons                                      | 100 |
| 7.1.5. Finding an Optimal Train Iterations                                    | 101 |
| 7.2. Cross Validation - Testing Recognition Models                            | 101 |
| 7.3. Realtime Outliers Removal - RTOR                                         | 102 |
| 7.4. Evaluation Metrics for Emotion Output - Regression Models                | 103 |
| 7.4.1. Mean Absolute Relative Difference (MARD)                               | 103 |
| 7.4.2. R-Squared Value $(R^2)$                                                | 103 |
| 7.4.3. Root Mean Squared Error (RMSE)                                         | 104 |
| 7.4.4. Mean Absolute Error (MAE)                                              | 104 |
| Chapter 8. Result on $\beta$ -Band Analysis from Simulated Flight Experiments | 105 |
| 8.1. $\beta$ -Band Spectrogram Analysis                                       | 105 |
| 8.1.1. Situations of Imminent Accident or Loss of Control                     | 108 |
| 8.1.2. Volunteer's Expertise and Brain Activity                               | 110 |
| 8.2. $\beta$ -Band Analysis for Flight Tasks                                  | 113 |
| Chapter 9. Result Analysis on Emotion Recognition                             | 123 |
| 9.1. What Has Been Done So Far                                                | 123 |
| 9.2. Description of the Recognition Tests                                     | 125 |
| 9.2.1. Emotion Recognition Tests based on Raw Data - Test 1 and Test 2 $$     | 126 |
| 9.2.2. Emotion Recognition Tests based on Feature Extraction - Test 3 to $34$ | 126 |
| 9.3. Emotion Recognition Analysis                                             | 127 |
| 9.3.1. Improvements Coming from the Feature Extraction                        | 129 |
| 9.3.2. Considering the Higher Emotion Intensities                             | 130 |
| 9.3.3. Results Improvements                                                   | 132 |
| Chapter 10. Findings, Limitations and Conclusions                             | 153 |
| 10.1. Findings                                                                | 153 |
| 10.2. Limitations                                                             | 154 |
| 10.3. Final Remarks and Future Works                                          | 154 |
| References                                                                    | 157 |
| Appendix A. Publications                                                      | 177 |
| A.1. Experiment with Pictures and Emotions                                    | 178 |
| A.2. Speech Emotion Recognition                                               | 179 |
| A.3. Emotion in Smart City                                                    | 180 |
| A.4. Main Publications                                                        | 181 |
| A.5. Publications out of Main Work Context (Parallel Publications)            | 189 |
| Appendix B. Additional Plots of each Volunteer                                | 193 |
|                                                                               | xxi |

| Appendix C. Emosense Software - User Manual | 201 |
|---------------------------------------------|-----|
| C.1. Emosense Realtime/Online               | 201 |
| C.1.1. Log File Nomenclature                | 202 |
| C.2. Emosense Offline                       | 203 |

#### CHAPTER 1

#### Introduction

Going deep in the daily researches about emotions, it was notice that in fact, each emotion is a complex explosion of "selfish" sensations, which each sensation goes in its own way and sometimes it blocks and interferes with other sensations.

Its complexity and inseparability between all emotions are somehow, the reason that only one measurement channel is not sufficient to fully identify it. Since emotions are present at every moment, researchers should be able to understand its aspects and responses, especially because in everyday life the people suffer with emotion-related problems such as: stress and emotional disturbance affecting their actions, humor, work, well-being, family and general relationship that can also cause mental health disturbance (Quah, 2018; Hagen, Knizek, and Hjelmeland, 2017), low immunity and malignant diseases such as cancers and others irreversible damages (Alberdi, Aztiria, and Basarab, 2016; Elefteriou and Campbell, 2015).

Emotion is an important part of the human behavior and it is organized on two primary categories – conscious and unconscious. Conscious emotion relates the emotional response based on some cognitive processes; and the unconscious emotion that is based on the autonomic process from nervous system (Barrett, 2006; Poels and Dewitte, 2006). Based on that, several researches shown that the interactions with different environments (Lim, 2016), pleasant places (Thompson et al., 2012), hazards situations or by the judgment that it require (Breakwell, 2014), memory bias and societal influences (Poels and Dewitte, 2006) are some situations that can determine and influence the emotional state of an individual. Spontaneous positive feedback obtained when walking in green city's places establishing a visual contact with nature (Thompson et al., 2012; Grinde and Patil, 2009a), listening some music (Thomas et al., 2013), meditation (Tang, Tang, and Posner, 2016) and affective cognition (Misky, 2006; Ong, Zaki, and Goodman, 2015) are some of external factors that can also induce or optimize some emotional states. It is important to also note the use of music and meditation to induce good fillings or relaxing moments.

Besides that, the emotion is leaded by the brain and it is the result of chemical processes that bring together several internal (biological) and external factors to produce an output or response which it reflects as an emotional state (Misky, 2006). Additionally, this response is perceived as being felt in the body (Barret, Lewis, and Haviland-Jones, 2016) and sometimes it reflects some physiological changes in our human body (Roberson et al., 2018) or psychophysiological modes that themselves track and steer the redirection of physiological and psychological resources to adapt behaviour (Critchley and Garfinkel, 2017).

Sometimes the emotion arouses from biological resources while it suppress other e.g., in the anger emotion, that it seems that the body arouse resources that increase the muscles' power to run or fight <sup>1</sup>, while it inhibits the resource of planning and prudence, replacing cautiousness with aggressiveness and the sympathy for hostility (Misky, 2006). In particular, the primary emotion anger plays a fundamental role in the human life such as, fear and trust, that are directly related to protection, defense and maintenance of life.

Regarding to the emotion analysis, several methods and techniques can be applied to improve the health and emotion recognition through the use of a couple of hardware devices and software such as: in multisensing systems (Roza and Postolache, 2017), Artificial Intelligence (AI), robotics (Chepin et al., 2016) and Internet of Things (IoT) (Postolache, 2017), for instance. We can also present the advances in biomedical signal and image processing, liking the emotions' treatments to several techniques such as the relationship between electrophysiological signals i.e., Electrocardiogram (ECG), Electrocardiogram (EMG), Electroencephalogram (EEG) and functional image processing and their derived interactions (Rajeswari and Jagannath, 2017).

This work uses a multimodal approach <sup>2</sup> based on a set of these technologies, concepts and a practical methodology architecture to recognize emotions, through the signal acquisition, processing, feature extraction and recognition techniques, which it can be also applied to several workplaces e.g., administrative sectors (Mishra et al., 2011), aviation (Roza and Postolache, 2018), smart vehicles (Okegbile et al., 2019) and in urban areas (Roza and Postolache, 2016).

#### 1.1. Main Motivation and Practical Contribution

Nowadays, aviation accidents continue to occur and together with these undesirable situations, comes several improvements on aviation safety. Despite being in a COVID-19 pandemic situation, it was possible to note important improvements as presented in April 2022, by the International Air Transport Association (IATA). It revealed that in 2021, there were 26 accidents versus 35 in 2020, where the number of fatalities declined from 132 in 2020 to 121 in 2020. Part of these substantial reduction was due to the COVID-19 pandemic since that just over 25 million flights were operated in 2021, an increase of 16% compared to 2020, but 55% below than 2019 (IATA, 2022).

Before the pandemic context, these improvements also happened. In April 2020, the IATA presented a safety report revealing the accident rates along 2019 and shows all reached improvements compared to 2014-2018. In 2019, were a total of 53 accidents, which 8 of them were fatal, having 240 deaths. In 2018, were a total of 62 accidents, which 11 were fatal, having 523 deaths. Looking for the period 2018-2014, were an average of 63.2 accidents, 8.2 fatal, having 303.4 deaths per year (IATA, 2020). It represents a reduction of 9 accidents (3 fatal), compared to 2018, and a reduction of 283 deaths. Also

<sup>&</sup>lt;sup>1</sup>It is also known as fight or flight, it is a physiological reaction that occurs in response to a perceived attack, harmful event or threat to survival.

 $<sup>^{2}</sup>$ Sometimes it is called multisensing or multimodal sensing system, which it consists of a system that uses several input modes to return a resultant output.

in 2017, the Boeing Aerospace Company presented a statistical summary (Boeing, 2017), about commercial jet airplane accidents confirmed to worldwide operations since 1959 till 2016. It considered airplanes that are heavier than 60,000 pounds maximum gross weight, showing a very clear statistical analysis of accidents, which it was possible to note the impressive evolution of aviation safety along the past years. In addition, according to the last Boeing's report (Boeing, 2023), the rates of fatal accidents as well as hull losses are steadily decreasing over time.

As well as the Boeing, the International Civil Aviation Organization (ICAO) also presented a similar report considering the period between 2008 to 2018. It shown the same evolution of aviation safety along this period (ICAO, 2017). Fortunately, the aviation has been safer year by year, reaching lower levels of accidents, considering fatalities with hull losses or not. However, there aren't reasons to forget these risks, because there are another problems to solve along the next years that is, the analysis of physio-psychological burden (Suzuki et al., 2017) and behaviour from the aircrew inside of a real flight activity (IATA, 2016), which it surely can result on a mitigation of accidents by human failures.

Analyzing several accident reports from the last 15 years, it shown that the main causes of these accidents, were the human factors and their respective physiological aspects (ANAC, 2019; IATA, 2016; Ancel and Shih, 2012). Based on that, it is possible to note that the aviation safety is facing a new age of accident factors, i.e. the age of aviation accidents caused by human failure, what it motivate us to find new solutions to minimize these undesirable occurrences. The lack of a proper attention on these aspects, can result on irreversible problems, e.g. serious injuries and fatal accidents. Stress, drugs, fatigue, high workload, lack of pilot skills during an unexpected event and emotional disorders (Bendak and Rashid, 2020; Kandera, Škultéty, and Mesárošová, 2019; McKay and Groff, 2016) can optimize the occurrence of accidents. Same reasoning can be applied to the people of the airport ground staff, air traffic controls, among others. Figure 1.1, shows the progress of accidents rate on commercial aviation since 1959 up to 2022.



FIGURE 1.1. Boeing statistical summary about fatal accident rate per million departures between 1959 through 2022 (Boeing, 2023).

#### 1.1.1. Human Factors and Aviation Accidents

Table 1.1, presents some accidents on commercial aviation, which the final reports indicated the main causes as human factors.

| Table 1.1:  | Some     | accident  | s on | comme   | rcial | aviat | tion, | cause  | d |
|-------------|----------|-----------|------|---------|-------|-------|-------|--------|---|
| mainly by   | human    | failure.  | The  | victims | situa | ation | was   | define | d |
| as fatal (F | ) and ir | njured (I | ).   |         |       |       |       |        |   |

| Company            | Depart/Arrival       | Year | Victim | Main Cause/Probable Cause                         |
|--------------------|----------------------|------|--------|---------------------------------------------------|
| China Eastern Air- | China/ China         | 2022 | 132    | $\diamond$ No final report was presented yet.     |
| lines              |                      |      | (F)    | But according to US NTSB, the analy-              |
|                    |                      |      |        | sis suggests someone in the cockpit in-           |
|                    |                      |      |        | tentionally downed the plane.                     |
| Pakistan Interna-  | Pakistan/ Pakistan   | 2020 | 97 (F) | $\diamond$ Crashed on go around (under investi-   |
| tional Airlines    |                      |      | 2 (I)  | gation). First information indicate hu-           |
|                    |                      |      |        | man failure, probably due the lack of             |
|                    |                      |      |        | attention of the pilots.                          |
| Pegasus Airlines   | Turkey/ Turkey       | 2020 | 3/179  | $\diamond$ Runway over<br>run during landing (un- |
|                    |                      |      | (F/I)  | der investigation).                               |
| Ethiopian AL       | Ethiopian/ Kenyan    | 2019 | 157    | $\diamond$ Incorrect MCAS operation/conflict.     |
|                    |                      |      | (F)    |                                                   |
| Aeroflot           | Russia/ Russia       | 2019 | 41 (F) | $\diamond$ Incorrect approach, landing weight     |
|                    |                      |      |        | and landing (bounced landing).                    |
| Lion Air           | Indonesia/ Indonesia | 2018 | 189    | $\diamond$ Incorrect MCAS operation/conflict.     |
|                    |                      |      | (F)    |                                                   |
| Cubana de          | Cuba/Cuba            | 2018 | 112    | $\diamond$ Wrong aircraft weight setup and un-    |
| Aviación           |                      |      | (F)    | correct takeoff.                                  |
| Fly Dubai          | UAE/Russia           | 2016 | 62 (F) | $\diamond$ Incorrect landing.                     |
| German Wings       | Spain/Germany        | 2015 | 150    | $\diamond$ co-pilot suicide.                      |
|                    |                      |      | (F)    |                                                   |
| Malaysia AL        | Malaysia/China       | 2014 | 239    | $\diamond$ Probable co-pilot suicide.             |
|                    |                      |      | (F)    |                                                   |
| Lion Air           | Indonesia/Indonesia  | 2013 | 46 (I) | $\diamond$ Crashed into water in final approach.  |
|                    |                      |      |        | Pilot under the influence of drugs.               |
| **demo flight **   | Indonesia/ Indonesia | 2012 | 45 (F) | $\diamond$ Controlled flight into terrain.        |
| Air France         | Brazil/ France       | 2009 | 228    | $\diamond$ Lost of control after wrong proce-     |
|                    |                      |      | (F)    | dures in flight.                                  |
| Turkish Airlines   | Turkey/ Netherlands  | 2008 | 9 (F)  | $\diamond$ Stall close to the landing. The crew   |
|                    |                      |      |        | noticed the problem too late.                     |
| TAM L. Aéreas      | Brazil/Brazil        | 2007 | 199    | ♦ Incorrect landing (wrong reverse                |
|                    |                      |      | (F)    | setup).                                           |

| Gol L. Aéreas       | Brazil/Brazil    | 2006 | 154    | $\diamond$ Partial collision with another aircraft |
|---------------------|------------------|------|--------|----------------------------------------------------|
|                     |                  |      | (F)    | (TCAS $^3$ off). Failure of the air traffic        |
|                     |                  |      |        | control.                                           |
| Bashkirian Airlines | Russia/ Spain    | 2002 | 71 (F) | $\diamond$ In-flight collision mainly due the air  |
|                     |                  |      |        | traffic control failure.                           |
| Air Transat         | Canada/ Portugal | 2001 | 18 (I) | $\diamond$ Fuel starvation and the bad crew ex-    |
|                     |                  |      |        | ecution of fuel control in flight.                 |
| American Airlines   | USA/ USA         | 2001 | 265    | ♦ Incorrect co-pilot procedures during             |
|                     |                  |      | (F)    | takeoff under strong turbulence pro-               |
|                     |                  |      |        | duced by another aircraft.                         |
| Aero México         | Mexico/ USA      | 1986 | 64 + 3 | $\diamond$ In-flight collision with another air-   |
|                     |                  |      | (F)    | craft (Piper PA-28-181 Archer). Sec-               |
|                     |                  |      |        | ond aircraft did not contact the tower             |
|                     |                  |      |        | to change course, intercepting the route           |
|                     |                  |      |        | of the other aircraft.                             |

### 1.1.2. Looking for Real Pilots' Feedback Regarding to the Research Application

During the development of this work, some meetings were held with real pilots<sup>4</sup> of some air companies and military air force from Brazil and Portugal. It were important to obtain some practical and realistic feedback from professional pilots regarding to the proposed work in a practical and real situation.

Several feedback were also acquired regarding to the proposed work methodology, which all contacted pilots really agreed with the need of these researches on real aviation. When the possibility of real application were presented, some of them agreed and others were afraid to, for several reasons as presented below.

> "I have more than 20 years as civil pilot and surely it will bring more problems than benefits to us, because the pilots maybe will be afraid to reveal your own emotional condition before each flight!" (Civil aviation pilot, 2018)

> "Pilots like to fly and if the companies start to prohibit us to fly due our majority emotional state, it will not be good!" (Civil aviation pilot, 2018)

> "I recognize how important your researches are but, I think that for aviation context it will not worth. Why you don't try to apply it on car contexts?!" (Civil aviation pilot, 2018)

Other feedback were also obtained, where they presented real situations that occurred in their work, revealing to us the need for a deeper emotional analysis of the pilots during training and flight activities.

 $<sup>^{3}\</sup>mathrm{A}$  Traffic Collision Avoidance System (TCAS) or traffic alert and collision avoidance system.

<sup>&</sup>lt;sup>4</sup>In this work section, the pilot and co-pilot will be referred as pilot or simply, aircrew.

"Really interesting this approach! We can use it to try to measure our emotional stability during our first flight just after the end of vacation, that is when we are very excited to fly again!" (Military pilot – Air Force, 2015)

"Interesting work! It can be useful to us. Keep me in touch." (Military pilot – Air Force, 2018)

"Nowadays, we don't have how to measure the level of nervousness of our cadets, or even if they were really confident at each flight exercise. This proposed work, can be useful to us." (Military pilot – Air Force, 2020)

"Surely it will be useful to our pilots along the training because it can show us if our pilots are confident enought along the flight missions." (Military pilot – Air Force, 2021)

When they was argued about the huge amount of system compensation that the modern aircraft have (e.g. fly-by-wire, self navigation, instrument landing system and other automatic flight controls) to make the pilots' work easier during a flight, they said:

"Today, I understand our work more as a system operator then indeed, an aircraft pilot!" (Civil aviation pilot, 2018)

When was presented other probable perspective, regarding to the devices to be used to store their biosignals in real time and how much time it will sometimes be necessary to a probably device set-up, dataset storage and calibration just before and/or after each flight, they said:

> "I think that sometimes to arrive a little bit early to the airline company, only to collect my biosignals will increase our stress!" (Civil aviation pilot, 2018)

They also presented a probable feedback from the airline companies regarding to future practical applications.

"Nowadays, it is almost impossible to be applied on any airline company, because it will be expensive for them to implement it!" (Civil aviation pilot, 2018)

In 2016, a Portuguese flight school was contacted to try to apply the proposed work there, together with their students and flight simulator but unhappiness it wasn't possible. For our request they said:

> "Sorry, but we can not execute these experiments with our students because it will produce a lot of instabilities in their training!" (Flight school Directory – Portugal, 2016)

In 2015, talking about aviation with a military pilot, he said about his returns to the flight activities after days of vacation:

"That day, I was very excited to fly again after my vacation. Due to that, I couldn't sleep before that day!" (Military pilot – Air Force, 2015)

These feedback are important to motivate us to go deeper in these researches, because it give us professional perspective regarding to the demand of the development of the proposed work.

#### 1.1.3. Contribution

The main contribution of the present work is to study the complex hazards and to improve the physiological data analysis of the pilots also looking for their emotional responses before, during and after the flights and than, to give support on aviation accidents avoidance, caused by human failures. With these data, it is possible to create a multisensing integrated dataset, to build a generalist and also particular pilot dataset profile based on the emotional and  $\beta$ -band responses along the flight activities. In a further developments, the integrated multisensing dataset can also includes physiological data from three different phases: before, during and after the flight, as shown in Figure 1.2.



FIGURE 1.2. Work scope diagram – practical contribution regarding to the on-flight phase.

Therefore, this work presents a practical contribution regarding to the on-flight phase, including the data acquisition, processing, storage and recognition on offline mode.

Some main questions and answers are presented below, about the proposed dataset, system outputs and the data acquisition in real context.

1.1.3.1. Using the Produced Dataset This work considers that all acquired and processed data from the flight experiments, represent a sample about what can happen in a real flight context. In real application, the dataset must to be defined on two different types: generalist dataset, having data from all pilots, considering the similarity of emotional patterns between them; and the particular dataset, which it brings information of each

pilot. Both dataset must share information to produce high generalism on the emotion recognition process based on deep leaning and data mining techniques. It must be the best way to produce a better engine of emotion recognition, not missing the particular patterns of each pilot nor their general aspects either. However, since the present work focused on the generalist dataset, the training, testing and validation were executed over some sets of the same dataset.

1.1.3.2. System Outputs on Real Application In the context of emotion recognition, the proposed system must to return intensities of emotions (i.e. 5 different emotions in this case) based on EEG, HR and GSR techniques. In a practical real life context, once obtained the dataset, the chosen learning method<sup>5</sup> trains over this dataset, being able to be used before, during or after every flight.

In a practical context and inside the context of aviation, an airline company can use the proposed system to know which emotions the pilots are feeling before, during or after a flight. This way, the company must to use the proposed system and put some skin surface electrodes on the pilots' body to acquire their biological data (in this case, without facial information because now, the recognition model was already developed after the model training). These acquired data must to be stored and analyzed offline. At the end, the system must return e.g. a report, presenting the recognized emotions that probably were felt by the pilot along the time.

These outputs can be used by the flight supervisor or medical team to carry out the necessary actions to improve the flight safety and avoid future accident. In case of the pilot presents some critical emotions when it are not compatible with some flight phase, the system should alert about it. In addition, to reach good results, the system must present high accuracies which it can be improved with the time and more good data of other experiments.

1.1.3.3. *Real Pilots and Electrodes Application during a Real Flight* To recognize emotions based on biosignals, some electrodes must to be used. The pilot comfort should also be considered in real life and for this reason, a possible approach can be through the use of smart wearable textiles.

Emotion recognition based on face, should only be used if the system needs more data to improve the learning process otherwise, once we have the learning method already trained, only bio acquisition based on electrodes is necessary to recognize new emotions.

#### 1.2. Challenges

A multisensing architecture aims to do multi-data acquisition in a synchronized way to keep the minimum of data coherence along the time for each event. It should to return data according to the computed inputs.

During the development of this work, a couple of challenger situations happened, as presented below:

<sup>&</sup>lt;sup>5</sup>The chosen learning method is the technique used to recognize emotions based on the acquired dataset. It is presented in detail later.

- Impossibility to execute experiments with real pilots on a real aviation context e.g., flight school;
- The choice of an environment to execute the experiments;
- No major support from airline companies;
- The choice of the psychological data acquisition inside the experiment context;
- Short time to develop a device that execute this data acquisition together with some wearable technologies e.g., t-shirt;
- The non-existence of a software that do the synchronized data acquisition, processing and recognition;
- Functional integration between several electrodes, acquisition software and the face recognition software;
- High noise acquired during each experiment.

These main challengers were solved using flight simulator. The real pilots were replaced by voluntaries i.e., beginner volunteers of flight simulator; the environment of experiment was adapted on laboratory. The psychological support was mainly introduced through questionnaires. Due to the short time to develop very complex devices and wearable, it were replaced by a couple of commercial sensors. To figure out the work requirements about the data acquisition, processing and emotion recognition in a multimodal way, three proprietary software prototypes were developed: EmoSense - Real Time (ES-RT) for real time multi-acquisition, EmoSense - Processing (ES-P) for offline data processing, and EmoSense - Machine Learning (ES-ML) for emotion recognition based on deep learning.

Several software and sensors were used together; three execution checklists (defining the correct execution step) were developed to give support to the correct execution and synchronization of the system. It were executed before, during and after each flight experiment.

A set of other methods were also used and developed to remove or attenuate the noises of the data, mainly due to motion artifacts.

#### 1.3. Going Deep on Emotion Researches

Since the  $18^{th}$  century the researchers try to find out a reliable approach to know what indeed happens behind the feelings and emotions.

William James, said that observing the body expressions caused by some emotional stimuli, they appear to prove that there are pleasures and pains inherent in certain forms of nerve-action wherever that action occurs (James, 1884). Other authors based on the definition of the autonomic, sympathetic, parasympathetic and enteric nervous systems, executed the initial researches to understand how different emotional states are represented within the brain and how it are expressed in different patterns of activities (Langley, 1898; Cannon, 1927).

According to Paul Ekman, one of the main references on emotion and facial expressions, in recent years the field of emotion researches has grown enormously as well as the number of scientists involved in (Ekman, 2016). It probably gave support to nowadays,

to say that these first authors were correct in their suspicions about emotions. A couple of analysis proved that emotions are completely linked to the Autonomic Nervous System (ANS) and it play a critical role in the human bio-regulation, survival, social inclusion and human relationship (Preckel, Kanske, and Singer, 2018; Clark et al., 2016; Damásio, 2001). Physiologically, the emotion and the ANS share similar temporal features, which the ANS responses can change during an emotion state (Barret, Lewis, and Haviland-Jones, 2016). These responses are inconstant and short-term event that come from chemical processes that join several biological (internal) and external factors to produce an output reflected as an emotional state (Misky, 2006). The emotion can also be understood as a mental state or feeling that can also occurs in spontaneous manner, reflecting the physiological changes in the human body which it is leaded by the brain (Roberson et al., 2018). These external and spontaneous factors can induce or optimize some emotions (e.g. positive feedback) resulting in several situations as e.g., motivations (Berridge, 2018), good feelings when listening an appraisal music (Cespedes-Guevara and Eerola, 2018; Revbrouck, Eerola, and Podlipniak, 2018; Thomas et al., 2013), when walking in green places of a city, establishing a visual contact with nature (Riaz, Gregor, and Lin, 2018; Thompson et al., 2012; Grinde and Patil, 2009b); meditating (Beblo et al., 2018; Tang, Tang, and Posner, 2016), or even when executing an affective cognition tasks (Petrovica, Anohina-Naumeca, and Ekenel, 2017; Ong, Zaki, and Goodman, 2015; Misky, 2006). It is important to note that is also possible to induce emotions e.g., when the person choices to listen some songs, looking for good feelings or relaxing moments. Music (Sánchez-Porras and Rodrigo, 2017), smell (Soto-Vásquez and Alvarado-García, 2017), food (Lagast et al., 2017; Randler et al., 2017) and meditation (Soto-Vásquez and Alvarado-García, 2017) are some interesting examples that show that our emotional states can also be induced by our wishes (Preckel, Kanske, and Singer, 2018).

These emotional responses to several inputs can certainly justify its inconstancy about each event along the time. In addition, the emotion regulation can also be affected by some body impairments such as, depression (Sanchez et al., 2017), drugs abuse (Clark et al., 2016), intellectual disability (Pereira and Faria, 2015), nervous anorexia (Kolar et al., 2017), stress (Alberdi, Aztiria, and Basarab, 2016), schizophrenia and brain's damages, representing specific deficits or part of a more general cognitive dysfunction inside of the social information processing as for instance in the recognition of facial emotions and identity (Yang et al., 2018; Barkhof et al., 2015).

Robert Plutchik, considered that there are eight primary emotions related to improve the animal and human survival process. He identified these emotions as: anger, fear, sadness, disgust, surprise, anticipation, trust and joy (Plutchik, 1980). Although, due to the complex mechanism of the brain having its several inputs, outputs and reactions, there isn't a precise answer for that question.
Figure 1.3, shows the circumplex model developed by Robert Plutchik and Kellerman to clearly describe the observed emotion-related categories (Plutchik and Kellerman, 2013).



FIGURE 1.3. Circumplex model of emotion-related categories (Plutchik and Kellerman, 2013).

Computationally, a couple of researches also tried to answer this question using the emotion processing and recognition methods (sometimes called of automatic emotion processing and classification). These studies are getting space in academic fields, developing several applications and techniques to try to understand and accurately classify or recognize the human's emotional states. A huge set of algorithms and methods are frequently developed to try to recognize emotions automatically and then, apply it in different contexts. There are a massive amount of researches and datasets that lead with emotions as such as the methods to evaluate it. Signal processing, feature extraction techniques, artificial intelligence, data mining and statistical learning are some examples that comply the role in the processing, analysis and recognition of emotions' patterns.

In details, the automatic emotion classification, identification or recognition, is a complex and important task that also can be used to improve the health and the life's quality as presented in this work, which the emotion recognition techniques are applied to find a manner to recognize and measure emotions using several approaches. These approaches and techniques can be used based on: Gaussian process regressions and Mel-Frequency Cepstrum Coefficients (MFCC) (Fukuyama and Goto, 2016); fuzzy logic (Salankar et al., 2017; Qamar and Ahmad, 2015; Matiko, Beeby, and Tudor, 2014); analysis of the potential of physiological signals for emotion recognition using the extended linear discriminant analysis (pLDA) to extract features (Kim and André, 2008); cross-correlation (Roza and Postolache, 2016); Artificial Neural Networks (ANN) (Roza and Postolache, 2017); wavelets (Al-Fahoum and A Al-Fraihat, 2014); Hilbert-Huang transform (Agrafioti, Hatzinakos, and Anderson, 2012), among others.

There are different ways to start a research based on emotions recognition: analyzing and acquiring physiological data (i.e. biosignals), using basically a set of dry or wet electrodes in a non-intrusive and non-invasive manner (Sun et al., 2017; Joutsen et al., 2018; Roza and Postolache, 2016); analyzing psychological questionnaires and picture presentation to trigger and detect different emotions (Xu et al., 2017; Reis, Arriaga, and Postolache, 2015); analyzing facial expression using computer vision techniques (Tarnowski et al., 2017; Li et al., 2017; Gunes and Hung, 2016); analyzing suicide notes (O'Dea et al., 2015; Desmet and Hoste, 2013), and other textual analysis based in lexical means in communication (Kima, and Sumner, 2017); analyzing the body expressions during emotional triggers (Rajhans et al., 2016); and analyzing and acquiring human speech data (Franti et al., 2017; Wen et al., 2017a; Sánchez-Gutiérrez et al., 2014).

The based-emotions researches and its effects or mechanisms may be used for several purposes. Some of these purposes are based on researches and applications including subjective and objective analysis such as: tests of emotional influence through behavioral mechanisms (Roberson et al., 2018); analysis of product-evoked emotions (Silva et al., 2017) to give support in health care based on smart city context and concepts of IoT (Postolache, 2017; Patsakis et al., 2014); detection of the relation between emotions and the regulation of lifestyle behavior (Isasi, Ostrovsky, and Wills, 2013); analysis of suicides notes to avoid recurrent occurrences (Desmet and Hoste, 2013); analysis of its positives effects in individuals when they are in green and natural city's places (Thompson et al., 2012); developments of tools of meaning detection of language to understand, recognize emotions (Ezhilarasi and Minu, 2012); and also by developing of interfaces to detect emotions from facial expressions to helps anxious individuals (Heuer et al., 2010).

### 1.4. Thesis Content

This thesis is organized in such way to propose a clear and easy understanding regarding to the main steps developed in this work. Each method and techniques were applied to reach the emotion recognition which it were set in details, chapter by chapter, as briefly presented below.

Chapter 3, outlines the developed multimodal sensing system and data acquisition, presenting the sensors and acquisition processes; Chapter 4, outlines the preprocessing techniques to be executed before the phases: processing, features extraction and recognition process; Chapter 5, outlines the data processing and the techniques applied on this task; Chapter 6, outlines the feature extraction and detailed descriptions of the used techniques for that; Chapter 7, outlines the emotion recognition methodology and application; Chapter 8, outlines the result analysis regarding to the  $\beta$ -Band spectrogram; Chapter 9, outlines the result analysis regarding to the emotion process; Chapter 10, 12 outlines all findings conclusions and limitations; Appendix A, outlines all produced publications along the present work and Appendix B, outlines additional plots referent to the brain data of all volunteers.

#### CHAPTER 2

# Literature Review – Techniques on Emotion Sensing and Recognition

Several examples on literature has appeared to reveal the importance of the multimodal sensing systems to recognize emotions: emotion recognition through the presentation of several pictures and use of several biosignals (Roza and Postolache, 2017); identification of cognitive states of aircraft pilots while they are using flight simulators (Wang et al., 2020; Harrivel and Pope, 2017); harmonization of robotic devices and emotion states as frustration and boredom (C.Rodriguez-Guerrero et al., 2017); development a multimodal dataset to improve the emotion analysis, where the physiological responses to both visual and audiovisual stimuli are recorded (Conneau et al., 2017); multimodal sensing with support of cross-correlation method to identify emotions (Roza and Postolache, 2016); use of two different physiological signals to identify emotions (Alhouseini et al., 2016); and multimodal system to exam of the usefulness of physiological measurements in a biocooperative feedback loop to adjusts the difficulty of an upper extremity rehabilitation task (Novak et al., 2011).

These multimodal sensing systems are usually based on a couple of techniques and exam types such as: Heart Rate Variability (HRV) (Mather and Thayer, 2018; Haiblum-Itskovitch, Czamanski-Cohen, and Galili, 2018); Electrocardiography (ECG) analysis (Roza, Almeida, and Postolache, 2017; J., Murugappan M, and S., 2013; Shalin and Vanitha, 2013; Agrafioti, Hatzinakos, and Anderson, 2012); Electroencephalography (EEG) (Roza and Postolache, 2017; Voznenko et al., 2016; Othman et al., 2013) analysis; salivary cortisol analysis (Thompson et al., 2012); Galvanic Skin Response (GSR) (Sierra, 2011). Generally, to acquire the biosignals are used a set of electrodes on a non-intrusive and non-invasive manner (Roza and Postolache, 2016; Vojtech et al., 2013) through the use of: psychological questionnaires, using emotion valence and picture/video presentation (Reis, Arriaga, and Postolache, 2015; al., 2005; Pereira and Faria, 2015); facial expression recognition using computer vision (Gunes and Hung, 2016); speech communication (Wu, Falk, and Chan, 2011), using speech analysis; analysis of suicide notes (Desmet and Hoste, 2013), and other textual analysis based on lexical means in communication (Zaśko-Zielińska and Piasecki, 2015).

Regarding to the recognition system architecture, it is possible to affirm that emotions can't be recognized accurately using only one metric such as Heart Rate (HRV), for instance. Previous researches shown that in fact, the HRV could reflect the human emotion only in emotional situations that are relatively strong or intense, what is not applicable nor feasible either to daily applications (Choi et al., 2017). If the system intends to recognize emotions accurately, fatally the usage of multimodal sensing is the main requirement.

In the following sections, a state of the art is presented based on emotion analysis and recognition. Multimodal systems relying on face, speech and physiological sensing were considered, which the researches based on face and physiological sensing are the main trunk of this work.

### 2.0.1. Emotion Recognition Techniques based on Facial Expressions

Facial Emotion Recognition (FER) is a powerful and very important research topic in the fields of computer vision and artificial intelligence. It can be applied to give support to the health, security, robotics, among others. Some of these automatic facial emotion recognition are based on the researches of Paul Ekman and Friesen (Ekman and Friesen, 1978), whom they defined the Facial Coding System (FACS), which it is a system based on facial muscle changes. The FACS is being very useful to characterize facial actions to express individual and involuntary emotions reactions.

In this scope, according to Paul Ekman, it is sufficient to note that there is consistent evidence across investigators, of an universal facial expressions for at least five emotions; he also putted in discussion if there are more emotions that have universal facial expressions (Ekman, 1992). It is also valid to consider that not necessary, the facial expression and what it signified is socially learned as culturally variable (Ekman, 1999). Figure 2.1, shows the general architecture of a FER system for mainly all supervised learning process.



FIGURE 2.1. General architecture of a FER system.

On this context, Barros et al., proposed a neurocomputational model that learns to attend to emotional expressions and to modulate emotion recognition (Barros et al., 2017). Chenchah and Lachiri, examined an assessment of emotion error rate using classical descriptors (MFCC and PLP) and new type of speech features considered as more robust to noise and reverberation distortions also using various Signal-to-Noise Ratio (SNR) levels (Chenchah and Lachiri, 2017). De et al., presented a human facial expression and emotion recognition system using eigenface approach and Hue-Saturation-Value (HSV) color model to detect on offline mode the human face in an image (De, Saha, and Pal, 2015). Jain et al., proposed a network architecture based on convolution layers followed by Recurrent 16 Neural Network (RNN) to design a combined model to extract the relations within facial images (Jain et al., 2018). Kayaa et al., describes a multimodal approach for videobased emotion recognition in the wild, using summarizing functional of complementary visual descriptors for video modeling (Kayaa, Gürpınarb, and Salah, 2017). Khalfallah and Ben Hadj Slama, presented a web-based intelligent tutoring system called Remote Laboratory (RL), that it is a computer-based learning environment that allows students from anywhere to access and perform experiments on real laboratory equipment based on Internet (Khalfallah and Slama, 2015). Krithika and Lakshmi, developed a system to recognize emotions based on the movements of the head and eyes, captured from a recording using a video camera (Krithika and G.G., 2016). Lopes et al., proposed a simple solution for facial expression recognition that uses a combination of Convolutional Neural Network (CNN) and specific image pre-processing steps (Lopes et al., 2017).

Mao et al., proposed a real-time emotion recognition approach based on both 2D and 3D facial expression features captured by Kinect sensors (Mao et al., 2015). Martinez, proposed a model that predicts emotions and the existence of a large number of previously unknown facial expressions, including compound emotions, affect attributes and mental states that are regularly used by people (Martinez, 2017). Matlovic et al., focused on two approaches to identify emotions such as, namely emotions detection using facial expressions recognition and electroencephalography (EEG) (Matlovic et al., 2016). Mayya et al., proposed a novel method for automatically recognize facial expressions using Deep Convolutional Neural Network (DCNN) features (Mayya, Pai, and Pai, 2016). Patwardhan, developed a multimodal system to detect emotions based on audio-visual continuous data (Patwardhan, 2017). Subhashinia and Niveditha, developed a C# application to analyzing and detection of the employees' emotions for amelioration of organizations, using facial images and Bézier Curves (BC) (Subhashinia and Niveditha, 2015). Tarnowski et al., developed a system to identify emotions based on facial expressions using three-dimensional face model (Tarnowski et al., 2017).

### 2.0.2. Emotion Recognition Techniques based on Human Speech

Emotion recognition based on speech analysis, represents a complex problem inside of signal processing, including a couple of features mainly based on frequency analysis e.g. filter-banks and wavelets. To try to solve this complex goal, several researches presented feasible solutions. The emotion recognition tasks through human speech data can be understood basically, as shown in Figure 2.2.

Abdelwahab and Busso, present a solution to address the problem of low performance of speech emotion classifiers by combining Active Learning (AL) and supervised Domain Adaptation (DA) using an elegant approach for Support Vector Machine (SVM) (Abdelwahab and Busso, 2017). Alonso et al., developed a system to recognize emotional intensity from speech using a few feature set obtained from a temporal segmentation of the speech signal of different language like German, English and Polish (Alonso et al., 2015). Bahreini et al., present the voice emotion recognition part of the Framework for



FIGURE 2.2. General architecture of a speech-based system to recognize emotions.

Improving Learning Through Webcams And Microphones (FILTWAM) for real-time emotion recognition on affective e-learning settings (Bahreini, Nadolski, and Westera, 2016). Bertero and Fung, developed a real-time Convolutional Neural Network (CNN) model for speech emotion detection, also providing an in-depth model visualization and analysis (Bertero and Fung, 2017). Brester et al., propose an evolutionary feature selection technique based on two-criterion optimization model to give support to emotion recognition task (Brester et al., 2016). Cao et al., presented a ranking approach for emotion recognition which naturally incorporates information about the general expressibility of several speaker (Cao, Verma, and Nenkova, 2015). Davletcharova et al., conducted an experimental study on recognizing emotions from human speech, considering the emotions neutral, anger, joy and sadness, using several recognition methods (Davletcharova et al., 2015). Deb and Dandapat, explored the effect of breathiness component on speech under stress inside of the speech emotion analysis (Deb and Dandapat, 2015). Fayek et al., developed a frame-based formulation to speech emotion recognition that relies on minimal speech processing and end-to-end deep learning to empirically explore feed-forward and Recurrent Neural Network (RNN) architectures and their variants (Fayek, Lech, and Cavedon, 2017). Goran and Negoescu, presented a framework to improve the class quality and the student memorization in the school, using emotional constraints by speech, face and texts (Goran and Negoescu, 2015). Lanjewar et al., developed a speech emotion recognition system based on spectral components of Mel Frequency Cepstrum Coefficients (MFCC), wavelets features of speech and pitch of vowel traces (Lanjewar, Mathurkar, and Patel, 2015). Mannepalli et al., developed an adaptive fractional Deep Belief Network (DBN) and several spectral features to recognize different emotions from speech (Mannepalli, Sastry, and Suman, 2017). Motamed et al., developed an optimized model based on limbic system of mammalian brain for speech emotion recognition on dynamic situations like the brain's emotional networks (Motamed, Setayeshi, and Rabiee, 2017).

Muthusamy et al., presented a new feature enhancement to improve the discriminatory power of the features extracted from speech and glottal signals (Muthusamy, Polat, and Yaacob, 2015a). They also presented a novel Particle Swarm Optimization system based Clustering (PSOC) and Wrapper based Particle Swarm Optimization (WPSO) to enhance the discerning ability of the features and to select the discriminating features respectively (Muthusamy, Polat, and Yaacob, 2015b). Ozseven, presented a new feature selection methods to increase the emotional recognition success and to reduce the processing workload with these fewer features (Ozseven, 2019). Shahin and Ba-Hutair, present a solution to speech emotion recognition using the second-order Circular Suprasegmental Hidden Markov Models (CSPHMM2s) as the classifiers (Shahin and Ba-Hutair, 2015). Shukla et al., presents a novel subspace projection approach for analysis of speech signal under stressed condition (Shukla, Dandapat, and Prasanna, 2016). Sun et al., presents a novel Weighted Spectral Features (WSF) based on local Hu moments to improve the speech emotion recognition (Sun, Wen, and Wang, 2015). Szaszak et al., developed an information analysis technique, called Weighted Correlation based Atom Decomposition (WCAD) to execute the speech synthesis inside the context of stress detection that can also be applied to some emotion status (Szaszák, Tundik, and Gerazov, 2018). Trigeorgis et al., proposed a solution to the problem of context-aware emotional relevant feature extraction, by combining Convolutional Neural Networks (CNNs) with Long short-term memory (LSTM) networks in order to automatically learn the best representation of the speech signal (Trigeorgis et al., 2016).

Yogesh et al., presented a new set of features and feature enhancement techniques, e.g. Generalized Regression Neural Network (GRNN), to recognize emotion and stress from speech signals (Yogesh et al., 2017b). Yogesh et al., also developed a speech emotion and stress recognition system, by identifying speakers' emotion from their voices, using higher order spectral and selection algorithm features (Yogesh et al., 2017a). Wang et al., developed a new Fourier parameter model using the perceptual content of voice quality and the first- and second-order differences for speaker-independent speech emotion recognition (Wang et al., 2015). Wen et al., present an ensemble of random Deep Belief Networks (DBN) method for speech emotion recognition (Wen et al., 2017b). Xue et al., propose a rule-based voice conversion system for emotion which it is capable of converting neutral speech to emotional speech using dimensional space (arousal and valence) to control the degree of emotion on a continuous scale (Xue, Hamada, and Akagi, 2018). Zha et al., apply Multiple Kernel Learning (MKL) algorithm to recognize the spontaneous speech emotion (Zha et al., 2016).

### 2.0.3. Emotion Recognition Techniques based on Physiological Parameters

Emotion recognition using physiological sensing (biosignal) is the main contribution of this work. In general, the emotion recognition systems using biosignal are mainly based on multimodal sensing.

Various researches shown that an emotion recognition system using only a single-mode channel of biosignal does not worth for several emotional situations. This way, to increase the range of the emotion analysis, the proposed work decided to use a multimodal or a more complex approach. Figure 2.3, shows a general architecture of a supervised system to recognize emotions from biosignals data. It starts on input data; during the training phase, input data are stored in some dataset to be processed further. After the processing, several features are extracted from these data to train and produce a model to recognize emotions automatically. In the test, no models are created but the features of the input data are applied over the produced model of the training phase.



FIGURE 2.3. General architecture of a biosignal-based system to recognize emotions.

Alhouseini et al., presented an analysis of emotional properties based on two physiological signals such as, ECG and EEG (Alhouseini et al., 2016). Bozhkov et al., proposed an unified system for efficient discrimination of positive and negative emotions in a group of 26 volunteers based on EEG signals (Bozhkov et al., 2015). Capuano et al., used the Friedman test to verify whether the work on exposure and emotional identification influences help to decrease the levels of anxiety and depression (Capuano et al., 2017). Cruz et al., presented an automatic recognizer of the facial expression around the eyes and forehead based on Electrooculography (EOG) signals, giving support to emotion recognition task (Cruz et al., 2015). Goshvarpour et al. (2017), used GSR and ECG data to develop a study to examine the effectiveness of Matching Pursuit (MP) algorithm in emotion recognition, using mainly Principal Component Analysis (PCA) to reduce the features dimensionality and Probabilistic Neural Network (PNN) as the recognition technique (Goshvarpour, Abbasi, and Goshvarpour, 2017). He et al., presented an emotion recognition system based on physiological signals using ECG and respiration (RSP) signals, recorded simultaneously by a physiological monitoring device based on wearable sensors (He, Yao, and Ye, 2017). Kaur et al., proposed a methodology and also performed an analysis about the impact of positive and negative emotions using SVM and Radial Basis Function (RBF) as the recognition methods (Kaur, Singh, and Roy, 2018). Kumar et al., executed derived features based on bi-spectral analysis for quantification of emotions using a valence-arousal emotion model to get a way of gaining phase information by detecting phase relationships between frequency components and characterization of the non-Gaussian information from EEG signals (Kumar, Khaund, and Hazarika, 2016). Lan et al., proposed a novel real-time subject-dependent algorithm using Stability Intra-class Correlation Coefficient (ICC) with the most stable features that give a better accuracy 20

than other available algorithms when it is crucial to have only one training session (Lan et al., 2016). Lahane and Sangaiah, presented a new approach to emotion recognition based on EEG and classification method using Artificial Neural Networks (ANN) with features analysis based on Kernel Density Estimation (KDE) (Lahane and Sangaiah, 2015). Petrovica et al., presented an analysis of emotion recognition techniques used on existing systems to enhance ongoing research on the improvement of tutoring adaptation (Petrovica, Anohina-Naumeca, and Ekenel, 2017). Reis et al., developed an application that stores several physiological signals based on HR, ECG, SpO2 and GSR, which it were acquired while the volunteers watched advertisements about smoking campaigns (Reis, Arriaga, and Postolache, 2015).

Roza and Postolache, executed experiments based on flight simulator to developed a multimodal sensing architecture to recognize emotions using three different techniques for biosignal acquisitions (Roza et al., 2019; Roza and Postolache, 2018). Roza and Postolache, also developed a multimodal sensing system to identify emotions using different acquisition techniques, based on image presentation methodology (Roza and Postolache, 2017). Roza et al., developed an emotion recognition system based on cross-correlation and the Flowsense database (Roza and Postolache, 2016). Shin et al., proposed a real-time user interface with emotion recognition that depends on the need for skill development to support a change in the interface paradigm to one that is more human centered (Shin, Shin, and Shin, 2017). Yin et al., developed a solution to recognize emotions through physiological sensing using a Multiple-fusion-layer based on Ensemble classifier of Stacked Autoencoder (MESAE) (Yin et al., 2017b). Yin et al., proposed an ensemble deep learning framework by integrating multiple stacked auto-encoder with parsimonious structure to reduce the model complexity and improve the recognition accuracy using physiological feature abstractions (Yin et al., 2017a).

### 2.0.4. Techniques Comparisons

Figure 2.4, shows some main publications referred in this work, published between 2015 and 2019, inside of the context of emotion recognition using facial, speech and physiological sensing technologies.



FIGURE 2.4. Comparison between the number of selected publications (2015 to 2019).

Tables 2.1 to 2.3, show a more detailed information of each research, previously presented in this work.

| Reference         | Source | Techniques | Major Contribution                             |
|-------------------|--------|------------|------------------------------------------------|
| Jain et al.       | Facial | CNN, RNN   | $\diamond$ Development an DNN architecture     |
|                   |        |            | combining CNN and RNN to better rec-           |
|                   |        |            | ognize emotion patterns within facial          |
|                   |        |            | images.                                        |
| Barros et al.     | Facial | CNN        | $\diamond$ Development of a neuro-             |
|                   |        |            | computational model that learns to             |
|                   |        |            | attend to emotional expressions and to         |
|                   |        |            | modulate emotion recognition.                  |
| Kayaa, Gürpınarb, | Facial | CNN, ELM,  | ♦ Description of a multimodal approach         |
| and Salah         |        | PLS        | for video-based emotion recognition in         |
|                   |        |            | the wild.                                      |
| Lopes et al.      | Facial | CNN        | $\diamond$ Simple methodology to identify emo- |
|                   |        |            | tions using images of faces as references.     |
| Martinez          | Facial | AUs        | ♦ Development of a model based on face         |
|                   |        |            | expression recognition to predict emo-         |
|                   |        |            | tion, valence, arousal and specific com-       |
|                   |        |            | bination of facial muscle movements.           |

Table 2.1: Some techniques regarding to face emotion recognition since 2015.

| Patwardhan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Facial,   | SVM          | ♦ Development of a multimodal system              |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|---------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Speech    |              | to detect emotions from audio and video           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | data.                                             |  |  |
| Tarnowski et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Facial    | ANN, KNN     | ♦ Development of a system to identify             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | emotion based on facial expressions.              |  |  |
| Matlovic et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Facial,   | SVM          | $\diamond$ Use of two approaches to identify emo- |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Biosignal |              | tions based on emotions detection using           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | facial expressions recognition and EEG            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | signals.                                          |  |  |
| Mayya, Pai, and Pai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Facial    | Deep CNN     | $\diamond$ Development of a novel method for      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | automatically recognizing facial expres-          |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | sions using Deep Convolutional Neural             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | Network.                                          |  |  |
| Krithika and G.G.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Facial    | Viola jones, | $\diamond$ Development of a system that can       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | LBP, Ada     | identify and monitor emotions of the              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | Boost, ANN   | student in an e-learning environment              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | and provide a real-time feedback mech-            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | anism to enhance the e-learning aids.             |  |  |
| De, Saha, and Pal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Facial    | ED, Eigen-   | $\diamond$ Development of a human facial ex-      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | faces        | pression and emotion recognition sys-             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | tem modeled using eigenface approach              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | and Hue-Saturation-Value (HSV) color              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | model.                                            |  |  |
| Mao et al.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Facial    | SVM          | ♦ Development of a real-time emotion              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | recognition approach based on both 2D             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | and 3D facial expression features.                |  |  |
| Khalfallah and Slama                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Facial    | > 70 Small   | ♦ Web-based tutoring system to allows             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | classifiers  | students to access and perform experi-            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | ments on real laboratory equipment via            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b></b>   |              | Internet.                                         |  |  |
| Goran and Negoescu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Facial,   | Memorization | $\diamond$ Measure the acquisition level and the  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Speech    | ievei (ML)   | emciency in the memorization of several           |  |  |
| Caller and the state of the sta | D:- 1     | DC           | Detection of small ' time f                       |  |  |
| Suphashinia and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | racial    |              | ◇ Detection of employee's emotion for             |  |  |
| Iniveditha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |              | amenoration of organizations.                     |  |  |

Table 2.2: Some techniques regarding to speech based on emotion recognition since 2015.

| Reference | Source | Techniques | Major Contribution                                |  |
|-----------|--------|------------|---------------------------------------------------|--|
| Ozseven   | Speech | SVM, ANN,  | $\diamond$ Proposed a new statistical feature set |  |
|           |        | k-NN       | lection method based on the changes i             |  |
|           |        |            | emotions on acoustic features.                    |  |

| Szaszák, Tundik, and | Speech | HMM.          | ♦ Developed a prosodic stress detection            |  |  |  |
|----------------------|--------|---------------|----------------------------------------------------|--|--|--|
| Gerazov              | ~P     | WCAD          | system for fixed stress languages                  |  |  |  |
| Xue, Hamada, and     | Speech | Fujisaki F0   | ♦ Proposes an inverse three-layered                |  |  |  |
| Akagi                |        | model. target | model with acoustic features as output             |  |  |  |
|                      |        | prediction    | at the top layer, semantic primitives at           |  |  |  |
|                      |        | model         | the middle layer and emotion dimension             |  |  |  |
|                      |        |               | as input at the bottom layer.                      |  |  |  |
| Abdelwahab and       | Speech | SVM           | ♦ Development of a solution to address             |  |  |  |
| Busso                | 1      |               | the low performance of speech emotion              |  |  |  |
|                      |        |               | classification.                                    |  |  |  |
| Bertero and Fung     | Speech | CNN           | ♦ Development of a real-time Convolu-              |  |  |  |
| U U                  | 1      |               | tional Neural Network model for speech             |  |  |  |
|                      |        |               | emotion detection.                                 |  |  |  |
| Chenchah and Lachiri | Speech | HMM           | ♦ Analysis of an assessment of emotion             |  |  |  |
|                      |        |               | error rate using MFCC and PLP, and a               |  |  |  |
|                      |        |               | new type of speech features.                       |  |  |  |
| Fayek, Lech, and     | Speech | Deep ANN      | $\diamond$ Development of a speech emotion         |  |  |  |
| Cavedon              |        |               | recognition system to explore feed-                |  |  |  |
|                      |        |               | forward and recurrent neural networks.             |  |  |  |
| Mannepalli, Sastry,  | Speech | Adaptive      | $\diamond$ Development of an adaptive fractional   |  |  |  |
| and Suman            |        | Fractional    | deep belief networks to recognize differ-          |  |  |  |
|                      |        | DBN           | ent emotion from speech.                           |  |  |  |
| Motamed, Setayeshi,  | Speech | ANN, ANFIS    | $\diamond$ Development of a model based on the     |  |  |  |
| and Rabiee           |        |               | limbic system in order to obtain a desir-          |  |  |  |
|                      |        |               | able learning model for speech emotion             |  |  |  |
|                      |        |               | recognition.                                       |  |  |  |
| Yogesh et al.        | Speech | ELM           | $\diamond$ Development of a speech emo-            |  |  |  |
|                      |        |               | tion/stress recognition system using               |  |  |  |
|                      |        |               | spectral features.                                 |  |  |  |
| Yogesh et al.        | Speech | ELM Kernel,   | $\diamond$ Presents a new set of features and fea- |  |  |  |
|                      |        | KNN, PNN,     | ture enhancement techniques to support             |  |  |  |
|                      |        | GRNN          | the emotion and stress recognition.                |  |  |  |
| Wen et al.           | Speech | Random DBN    | ♦ Development of an new approach of                |  |  |  |
|                      |        |               | random deep belief networks method for             |  |  |  |
|                      |        |               | speech emotion recognition.                        |  |  |  |
| Bahreini, Nadolski,  | Speech | SVM           | ♦ Shows a valid use of computer micro-             |  |  |  |
| and Westera          |        |               | phone data for real-time and adequate              |  |  |  |
|                      |        |               | Interpretation of vocal intonations.               |  |  |  |
| Brester et al.       | Speech | SVM, ANN,     | ◆ Design of a parallel multicriteria               |  |  |  |
|                      |        | Logit         | heuristic procedure based on an island             |  |  |  |
|                      |        |               | model.                                             |  |  |  |

| Shukla, Dandapat,    | Speech | HMM        | $\diamond$ Development of a novel subspace pro-            |  |  |
|----------------------|--------|------------|------------------------------------------------------------|--|--|
| and Prasanna         |        |            | jection approach for analysis of speech                    |  |  |
|                      | ~ .    |            | signal.                                                    |  |  |
| Trigeorgis et al.    | Speech | CNN, LSTM  | ♦ Solution to the problem of "context-                     |  |  |
|                      |        |            | aware" emotional relevant feature ex-                      |  |  |
| 7ha at al            | Speech | MIZI       | Application of Multiple Kornel Learn                       |  |  |
|                      | Speech | WIXL       | ing (MKL) to recognize the spontaneous                     |  |  |
|                      |        |            | speech emotion                                             |  |  |
| Alonso et al.        | Speech | SVM        | <ul> <li>♦ Development of a system to recognize</li> </ul> |  |  |
|                      | ~F     |            | emotion from speech using different lan-                   |  |  |
|                      |        |            | guages like German, English and Polish.                    |  |  |
| Cao, Verma, and      | Speech | SVM        | ♦ Introduced a novel ranking models for                    |  |  |
| Nenkova              |        |            | emotion recognition.                                       |  |  |
| Davletcharova et al. | Speech | NB, RBF,   | $\diamond$ Study aimed at exploring dependen-              |  |  |
|                      |        | Ada boost, | cies the nature of utterance have with                     |  |  |
|                      |        | Lazy IB1   | the human emotional state.                                 |  |  |
| Deb and Dandapat     | Speech | HMM        | $\diamond$ Evaluation of the performance of                |  |  |
|                      |        |            | breathiness features for classification of                 |  |  |
|                      | ~ .    | ~~~~       | speech under stress.                                       |  |  |
| Lanjewar, Mathurkar, | Speech | GMM, KNN   | ♦ Development of system to detect emo-                     |  |  |
| and Patel            | Carach | CMM        | tions from speech.                                         |  |  |
| Muthusamy, Polat,    | Speech | GIVIIVI    | ♦ Improvement of emotion recognition                       |  |  |
|                      |        |            | ture Model and Extreme Learning Ma-                        |  |  |
|                      |        |            | chine.                                                     |  |  |
| Muthusamy, Polat,    | Speech | ELM        | ♦ Development of a particle swarm opti-                    |  |  |
| and Yaacob           | 1      |            | mization model to enhance the emotion                      |  |  |
|                      |        |            | speech recognition.                                        |  |  |
| Shahin and Ba-Hutair | Speech | HMM        | $\diamond$ Enhancement of talking condition                |  |  |
|                      |        |            | recognition in stressful and emotional                     |  |  |
|                      |        |            | talking environments.                                      |  |  |
| Sun, Wen, and Wang   | Speech | SVM        | $\diamond$ Shows that the $Hu$ WSF can be com-             |  |  |
|                      |        |            | puted from local regions of a spectro-                     |  |  |
|                      |        |            | gram using $Hu$ moments.                                   |  |  |
| Wang et al.          | Speech | SVM        | ♦ Development of a new Fourier pa-                         |  |  |
|                      |        |            | rameter model for speaker-independent                      |  |  |
|                      |        |            | speech emotion recognition.                                |  |  |

| Reference                  | Source    | Techniques                                                                                                           | Major Contribution                                |  |  |
|----------------------------|-----------|----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--|--|
| Kaur, Singh, and Roy       | Biosignal | SVM, RBF                                                                                                             | $\diamond$ Performed an analyze about the im-     |  |  |
|                            |           |                                                                                                                      | pact of positive and negative emotions            |  |  |
|                            |           |                                                                                                                      | using electroencephalogram.                       |  |  |
| <b>Roza and Postolache</b> | Biosignal | ANN                                                                                                                  | ♦ Developed of a multimodal architec-             |  |  |
|                            |           |                                                                                                                      | ture to acquire and recognize emotions            |  |  |
|                            |           |                                                                                                                      | based on flight simulation tasks.                 |  |  |
| Capuano et al.             | Biosignal | Friedman Test                                                                                                        | $\diamond$ Verification whether work on exposure  |  |  |
|                            |           | (FT)                                                                                                                 | and emotional identification influences           |  |  |
|                            |           |                                                                                                                      | the decreased level of anxiety and de-            |  |  |
|                            |           |                                                                                                                      | pression.                                         |  |  |
| Goshvarpour, Abbasi,       | Biosignal | PNN                                                                                                                  | $\diamond$ Developed a study to examine the ef-   |  |  |
| and Goshvarpour            |           |                                                                                                                      | fectiveness of Matching Pursuit (MP) al-          |  |  |
|                            |           |                                                                                                                      | gorithm in emotion recognition.                   |  |  |
| He, Yao, and Ye            | Biosignal | SVM                                                                                                                  | $\diamond$ Development of an emotion recogni-     |  |  |
|                            |           |                                                                                                                      | tion system based on ECG and respira-             |  |  |
|                            |           |                                                                                                                      | tion (RSP) signals using wearable sen-            |  |  |
|                            |           |                                                                                                                      | sors.                                             |  |  |
| Shin, Shin, and Shin       | Biosignal | ANN, SVM,                                                                                                            | $\diamond$ Provides services to meet the need to  |  |  |
|                            |           | BN                                                                                                                   | recognize emotions when using conter              |  |  |
| Yin et al.                 | Biosignal | MESAE                                                                                                                | $\diamond$ Presentation of a classifier to reduce |  |  |
|                            |           |                                                                                                                      | the model complexity and improve the              |  |  |
|                            |           |                                                                                                                      | accuracy for emotion recognition.                 |  |  |
| Yin et al.                 | Biosignal | MESAE                                                                                                                | ♦ Development of a solution to iden-              |  |  |
|                            |           |                                                                                                                      | tify emotions using physiological sensing         |  |  |
|                            |           |                                                                                                                      | based on MESAE.                                   |  |  |
| Roza and Postolache        | Biosignal | ANN, SVM                                                                                                             | ♦ Development of a multimodal system              |  |  |
|                            |           |                                                                                                                      | to identify emotions by the use of several        |  |  |
| <b>.</b>                   | <b>D</b>  |                                                                                                                      | techniques of biosignals acquisition.             |  |  |
| Petrovica, Anohina-        | Biosignal | ANN, NB,                                                                                                             | Analysis of the emotion recognition               |  |  |
| Naumeca, and Ekenel        |           | Logit, LR,                                                                                                           | techniques used in existing systems.              |  |  |
|                            |           | SVM, KNN,                                                                                                            |                                                   |  |  |
| A 11 • • • 1               | D' ' 1    |                                                                                                                      |                                                   |  |  |
| Amouseini et al.           | ыosignal  | AININ                                                                                                                | ♦ Considers two physiological signals             |  |  |
|                            |           |                                                                                                                      | and shows the analysis of its emotional           |  |  |
| Kumor Khound and           | Biogianal | ANN CUM                                                                                                              | A Execution of hispastral analysis to of          |  |  |
| Hozoniko                   | Diosignal | $\begin{array}{c} \mathbf{A}\mathbf{I}\mathbf{V}\mathbf{I}\mathbf{V}, \\ \mathbf{D}\mathbf{P}\mathbf{F} \end{array}$ | for a way to obtain other important in            |  |  |
| падагіка                   |           | NDF                                                                                                                  | formation from the applying bigging l             |  |  |
|                            |           |                                                                                                                      | ormation from the analyzed biosignal.             |  |  |

Table 2.3: Some techniques regarding to biosignal based on emotion recognition since 2015.

| Lan et al.          | Biosignal | ICC         |                              | $  \diamond \text{Proposed} \text{ and tested a novel real-time}$ |  |                                   |
|---------------------|-----------|-------------|------------------------------|-------------------------------------------------------------------|--|-----------------------------------|
|                     |           |             |                              | subject-dependent algorithm with stable                           |  |                                   |
|                     |           |             |                              | features to have only one training session                        |  |                                   |
|                     |           |             |                              | for the user.                                                     |  |                                   |
| Roza and Postolache | Biosignal | SCC         |                              | $\diamond$ Emotion classification using biosignals                |  |                                   |
|                     |           |             |                              | from Flowsense dataset.                                           |  |                                   |
| Bozhkov et al.      | Biosignal | ANN,        | Logit,                       | $\diamond$ Development of an unified system for                   |  |                                   |
|                     |           | LDA,        | KNN,                         | efficient discrimination of positive and                          |  |                                   |
|                     |           | NB,         | SVM,                         | negative emotions.                                                |  |                                   |
|                     |           | DT          |                              |                                                                   |  |                                   |
| Cruz et al.         | Biosignal | Multicl     | ass                          | ♦ Development of an automatic recog-                              |  |                                   |
|                     |           | LDA         |                              | nizer of the facial expression based on                           |  |                                   |
|                     |           |             | EOG to to give support to er |                                                                   |  |                                   |
|                     |           |             |                              | recognition.                                                      |  |                                   |
| Lahane and Sangaiah | Biosignal | ANN         |                              | ♦ Development of a new approach to                                |  |                                   |
|                     |           |             |                              |                                                                   |  | emotion recognition based on EEG. |
| Reis, Arriaga, and  | Biosignal | Questionn., |                              | ♦ Application to store several physiolog-                         |  |                                   |
| Postolache          |           | ANOVA       | 4                            | ical signals.                                                     |  |                                   |

# 2.0.5. Recognition Techniques Comparisons

By observing the techniques used in these researches to recognize emotional patterns, some of them were applied on more than one perspectives e.g., ANN, SVM, KNN, CNN, HMM, ELM, PNN, RBF, NB, Ada boost, ML and Logit, as shown in Figure 2.5.



FIGURE 2.5. Venn diagram over the most common techniques used to recognize emotions based on face, speech and biosignal (2015 to 2019).

Recognition techniques based on the neural networks class were majority in emotion recognition context, e.g, RNN, CNN, ANN, RBF, PNN and GRNN. The second more used was SVM, as shown in Figure 2.6.



FIGURE 2.6. Recognition techniques found on emotion-related researches (2015 to 2019).

The present state of the art was fundamental to define the best recognition technique to be used in this work and which tools or sensing techniques to apply.

#### CHAPTER 3

### Multimodal Sensing System and Data Acquisition

Multimodal sensing approach is not a new architecture or new method to support a recognition system, but it is a more robust and powerful approach to be applied in situations in which a low amount of channel (inputs) are not sufficient to reach a good recognition accuracy along the time. It is based on several channels that come mainly from different sources of data, resulting on related outputs. It is sometimes challenging for researchers due the time analysis and multi sampling rate synchronization. For some researches contexts like, emotion recognition based on biosignals for instance, it is not recommended to use only one type of biosignal e.g. heart rate variability, to accurately detect emotions, because it can reflects emotions only in strong or intense emotional situations (Choi et al., 2017). According to some studies, when an extended number of biosignals are considered, better results can be reached.

These multisensing approaches can also be found in another applications as for instance: on dynamic system and nanostructures (Adhikari and Khodaparast, 2021); on aviation context, using flight simulations (Roza and Postolache, 2019; Roza et al., 2019; Roza and Postolache, 2018); temperature measurement on chemistry (Chi et al., 2019); using summarizing functional of complementary visual descriptors, for video modeling (Kayaa, Gürpınarb, and Salah, 2017); on identification of cognitive states of aircraft pilots, while they are using flight simulators (Harrivel and Pope, 2017); and to exam of the usefulness of psychophysiological measurements in a bio-cooperative feedback loop to adjusts the difficulty of an upper extremity rehabilitation task (Novak et al., 2011).

The complexity of the present research requires the use of a multimodal sensing system to give support to the emotion recognition process in a general perspective. In this work, the aviation context was used to execute the experiments and validate the research results. A set of acquisition and recognition techniques were used. The chosen biosignal acquisition techniques were based on: Electroencephalography (EEG); Heart Rate (HR) through PPG sensor and Galvanic Skin Response (GSR). It were also considered the data acquisition based on face recordings and questionnaires, which this last acted as a personal emotion report, directly answered by each volunteer. After the data acquisition and storage, the further steps were data preprocessing, processing, features extraction and emotion recognition.

The experimental context is based on aviation but the designed methodology, used techniques and reached results, can also be applied on other researches contexts e.g.smartcity, biophilia, automobilism or even, administrative works. Applying it on smartcity context, an emotion regulation strategy can be used to improve the tourism in city's places (Roza and Postolache, 2016); on biophilia context, it can be powerful to relate emotions with green places, using different strategies to improve the development of green places and also collaborating with some smartcity concepts; if considering the automobilism, it can be extremely useful to monitor the drivers' emotional state along a travel or delivery task (Benoit et al., 2006); finally, when considering the administrative works, it researches and multimodal sensing system can be useful to analyze not only emotions but also the well being, life quality, stresses levels at work and satisfaction or happiness levels along the work period (Mishra et al., 2011). In the aviation context, this research brings a contribution, ensuring an emotion regulation and/or monitoring of each pilot to give support in the avoidance of aviation accidents caused by human failures (Roza et al., 2019), for instance.

Figure 3.1, shows a set of contexts that can be applied inside of the present work methodology of data acquisition, analysis and recognition.



FIGURE 3.1. Diagram with some examples of application based on the developed multimodal system proposed in this work.

Between 2016 and 2018, a couple of other experiments were developed inside of the scope of physiological signals (biosignals), signal processing and emotion recognition, which it were important to give support to the final multimodal system presented here.

### 3.1. Multimodal Architecture Description

Each multimodal sensing system can presents different execution procedure. In this present work, several steps were considered since the environment setup until the final emotion recognition. All experiments were executed in late afternoon and night due to be a calm and noiseless time in the laboratory. The experiment's supervisor closed all communication with the volunteer during the simulated flight. Figure 3.2, presents the general steps of execution.

The environment setup was designed to keep the repeatability and minimum error propagation along the experiment. It includes: environment illumination, keeping similar light intensities for all volunteers in experiment; noise control, to avoid noises as much as possible during the experiments; simulation screen configuration (i.e. bright, contrast, 30



FIGURE 3.2. Execution steps of the proposed multimodal sensing system.

resolution, etc) and size were the same for all experiments. The volunteer comfort is other important behaviour to be considered in the present multimodal experiment due the number of sensors on the volunteer's body. Furthermore, good chairs, properly table with ideal high, among other factors. The volunteers' feedback about the their own comfort, before the experiment begin was also considered.

The next steps is based on electrodes procedures such as, electrodes setup and cleaning. This work also considers an auxiliary channel of data acquisition based on questionnaires, represented in the diagram with the label channel X. It is useful to understand, based on volunteers' feedback, the emotional state of each one before, during and after the flight experiment. The volunteers' face recordings were used to represent the emotions references (target) along the experiments. These references leaded the emotion recognition process, outputting emotion intensities to be used on the training phase.

This work used two different software to execute the physiological data acquisition: Neuroelectrics Instrument Controller (NIC) software for EEG, and the EmoSense - Real Time (ES-RT) software to acquire HR from PPG, and GSR data. The software synchronization was mainly based on sampling rate and accelerometer parameters.

Environment setup, skin cleaning and data synchronization are important behaviours that must be executed to avoid bad raw biosignal acquisition on multisensing context. All these previous behaviours can not worth enough, if no baseline technique be applied just before the data acquisition. Without this baseline, the beginning of the experiment can brings a high level of data uncertainties and a couple of data artifacts due to several reasons, e.g. distractions (visual mainly), loss of attention, abrupt body movements and so on. In this work, the baseline was based on the eyes-closed data acquisition with 30 to 60 seconds of duration. It is useful to normalize the physiological parameters before the experiment begins. Just after the baseline time ends, the system begins to recording the facial expression, HR from PPG, GSR and EEG data. All these data are acquired at same time. The questionnaires' answers were recorded before, during and after each experiment. With exception of questionnaires, all those acquired data are raw and need a such couple of the preprocessing before to go forward. It was based on outliers detection and removal, normalization, abrupt data correction, data smoothing and trend corrections (detrend).

The preprocessing represents a complex phase of this work from where it is possible to extract good data features and emotion recognition. In the processing phase, some mistakes from previous phases can also be fixed, as such as the data optimization. Time and frequency analysis, filtering, data resampling, peak detection, among other things can be executed. With all these data treatment and processing, it is much simpler to extract features since these features were already well defined according to input data. Once the feature extraction has done, it is possible to execute the emotion recognition.

In the emotion recognition process, the data shape must be well defined and organized in a such way to produce coherent results. Since was chosen a supervised learning technique to recognize emotions, the set of emotions intensities and classes must to be minimally coherent to produce good training results and then, good new data recognition on test and validation.

### 3.2. Proof of Concept (PoC) of the Experiment

A Proof of Concept (PoC) is an execution of a certain methodology or idea, in order to demonstrate its feasibility, complexity level and coherence. It can also represents a prototype to verify if some concept or theory has practical potential. It is usually simpler than a final concept, system or architecture. Although it be simpler, its outputs can determine if the proposed methodology or idea should go further or not. This work executed two different PoCs, on which the idea of the proposed multimodal sensing system was tested. Each PoC included at most three flight simulations (for each volunteer) and several emotional events analysis. Previous studies shown that there is a direct and critical relation between the risk work and emotional events (Breakwell, 2014) and the results of the PoCs were important to show emotional stimuli along the simulated flights.

Figure 3.3, shows two different approaches of the PoCs proposed in this work, based on the multimodal architecture presented above. On the first PoC (right setup), the simulation was executed with two volunteers as flight pilots and one experiment supervisor. The HR, EEG, SpO2 and GSR, were considered in this first PoC. Three people were involved on: the volunteer acting like a pilot, that was responsible by joystick commands (using the left or right hand) and some keyboard commands as landing gear up and down; the second volunteer acting like co-pilot, that was responsible by the "80 knots" speed call-out, flaps controls and to inform to the first volunteer about the flight tasks checklists along the simulation (i.e. alert of before flight, takeoff, navigation, approach, landing and after flight); and the supervisor, that only inform the beginning and the end of a flight, keeping in silence with the volunteers along the flight. Additionally, in the first approach, were also considered the face recording, three points HR electrodes (left and right wrists and one ankle), flight plan/checklist, headset (to avoid noise from external environment) and questionnaires. The experiment execution wasn't based on execution checklist, which sometimes the execution sequence was impaired several times due that. No data processing and emotion recognition were executed in this first approach. Only the aircraft Extra 300S was used.



FIGURE 3.3. Setups of the PoCs. First PoC approach using pilot and copilots (right); second PoC using only a pilot and supervisor as co-pilot (left).

Several improvements of the first PoC, were applied in the second PoC (left setup) and in the main experiment, such as: HR sensor was changed from wrists (with high motion artifacts) to earlobe, using a single earchip based on Photoplethysmogram (PPG)

<sup>1</sup>; Pulse Oximetry (SpO2)<sup>2</sup> wasn't used on the second PoC nor in the main experiment either because it presented constant values along the experiments, close to 99%; only one volunteer was considered during this PoC, reducing the complexity of the execution; the supervisor kept the previous functions and also absorbed the co-pilot tasks from the prior PoC; processing and basic emotion recognition were executed based on HR and GSR only. The hand with GSR electrodes was kept moveless along the experiment. Along the execution of both PoCs, presented a lot of motion artifacts mainly, due to mainly the not well defined execution checklist with precise tasks to do by the supervisor. A execution checklist was only used on the main experiment. The aircrafts Extra 300S and Cessna 172SP were used respectively to, training flight and main flight.

The PoCs execution and its outputs shown that is possible to apply the proposed multimodal sensing system architecture to support the emotion recognition along simulated flight experiments. The first data processing and statistical analysis revealed different emotional states along each flight. Figure 3.4, shows two different executions of the second PoC.



FIGURE 3.4. Flight simulation experiment during the second PoC using previous setup, a small environment and basic volunteer screen.

# 3.3. Training Flight - Cognition versus Emotion

The training flight prepares the volunteers to the main flight experiment. It was simpler then the main experiment, including some basic flight procedures to help the volunteer to be more familiar with the simulation behaviours and controls. The training was based on: the flight maneuvers, GPS use, airplane controls in the air, takeoff, climb, navigation

<sup>&</sup>lt;sup>1</sup>Photoplethysmogram (PPG) is an optically obtained plethysmogram used to detect several skin phenomena.

<sup>&</sup>lt;sup>2</sup>Pulse Oximetry (SpO2) is a technique to measures the arterial blood oxygen saturation and pulse rate. 34

(cruise route), descent, approach, final approach and landing. Other maneuvers such as, pitch, roll and flight in route (stabilized flight). Speed and altitudes controls were up to the volunteer (i.e. free flight).

The Microsoft Flight Simulator - Steam Edition (FSX-SE)  $^3$  was used during all flight experiments. The default airplane was the Extra 300S–Patty Wagstaff was used in the training, as shown in Figure 3.5.



FIGURE 3.5. Airplane Extra 300S used during the training.

The training was used to observe and attenuate the cognition effects on the volunteers in flight.

Several studies show the close relationship between cognition and emotion (Perlovsky, 2020; Ekman, 1999). According to Forgas, in general, the affect is another aspect that can influence the kind of information, processing strategies that people adopt; in the same way the affect can also reduces or even eliminates such common judgmental mistakes (as the fundamental attribution error) by triggering more harmonious and externally oriented thinking (Forgas, 2008). On the same context, Berle and Moulds, said that prevailing cognitive-behavioural models of mental disorders give passing regarding to the possibility that the relationship between cognition and emotions may be bidirectional or that emotional states may influence cognitive content and processes (Berle and Moulds, 2013).

Breakwell, said that in hazard situations, the cognition process can be affected by emotional situations switching drastically a normal to tragic situation (Breakwell, 2014). For this reason, the training flight proposed in this work was used as an important resource to make the volunteer more self confidence with the flight procedures and commands, reducing the cognition effects on emotional events and vice versa (strategy based on cognitive reappraisal) (Dixon et al., 2020). In another words, the training flight was an useful tool for emotion regulation strategy in order to change naturally their emotion levels while they try to flight regularly (McRae, 2016).

### 3.3.1. Cognitive Reappraisal and Acceptance

Cognitive reappraisal and acceptance are two emotion regulation strategies. Both are associated with beneficial psychological health outcomes over time (Troy et al., 2018)

<sup>&</sup>lt;sup>3</sup>FSX-SE download link: https://store.steampowered.com/app/FSX-SE.

by the deliberate control of attention to minimize excessive emotional reactivity (Dixon et al., 2020).

Cognitive reappraisal, is a primary form of cognitive change, using cognitive skills (e.g. challenging interpretations, perspective-taking, reframing the meaning of situations) and linguistic processes to reframe or reinterpret the meaning of a stimulus or situation in order to up- or down-regulate the emotions (Goldin, Jazaieri, and Gross, 2014). It Reappraisal can modify emotional reactions to stressful, anxiety-provoking situations and can lead to psychological flexibility and emotional well-being (Gross and Thompson, 2007). Troi et al., also shown several studies that are consistent in highlighting the positive effects of reappraisal on long-term outcomes that relate to psychological health and well-being (Troy et al., 2018).

Acceptance, is a component of mindfulness practice, which it has demonstrated efficacy in reducing social anxiety severity. Unlike reappraisal, which it focuses on changing the content of one's thoughts and feelings, acceptance involves changing how one relates to his or her thoughts and feelings (Troy et al., 2018). Acceptance also involves an active willingness to fully experience thoughts, emotions and sensations in an open and nonjudgmental manner as they change from moment to moment, without attempting to change or avoid them (Dixon et al., 2020).

### 3.4. Main Flight Experiment

This work was based on a set of flight simulations to understand and analyze the biosignals and the resulted emotional responses of the volunteers during the simulated flights. These volunteers acted like pilots in flight which they were trained to execute some simulated flights. They are not real aircraft pilots. The motivations and contributions regarding to context of these experiments, are explained in details in Section 1.1–Main Motivation and Practical Contribution.

To execute these flights, the Microsoft Flight Simulator–Steam Edition (FSX-SE) (Steam and Microsoft, 2006) was used, adding some auxiliary add-ons based on turbulence and terrain, to produce more realism during the flight Steam and Microsoft, 2006. The environment setup from the main experiment, was the result of two initial proof of concepts (POCs) (Section 3.2). Several improvements from those PoCs were applied and are shown in the final setup (Figure 3.6).



FIGURE 3.6. Setup used on the main experiment.

Several improvements were applied in the final setup: a large screen to improve the immersive experience during the simulation, maintaining an average distance of 1.70 to 1.90 meters of the volunteer; a computer to run the flight simulator and to record facial emotions; the volunteer must use only the joystick during the experimental flight and only one hand to control the aircraft; the GSR electrodes were placed on the free hand i.e., without movements to avoid motion artifacts; a microcontroller was used to acquire the HR data from the HR device (e.g. Arduino board); the supervisor used two different softwares, one to receive HR and GSR data from Bluetooth communication, and another to receive the Bluetooth data from EEG device; also a video camera was used to record the volunteers' body gestures.

During the experiment, the volunteers (acting like pilots in command) had no contact with the supervisor. The supervisor only communicated with the volunteers before and after each simulation. Was also recommended to the volunteers, to avoid to talk and to move the hand having the GSR electrodes, because it can produce additional noises and motion artifacts.

Figure 3.7, shows the real environment used in the main simulation. The position of desk table, small camera and the screen, were kept the same during all experiments. Different from the solution presented on PoCs, which the supervisor had a replicated screen to see the volunteers actions, in the main experiment, the supervisor watched in real time the simulated flights, as shown in Figure 3.7-right.



 2 Emotion questionnaires
 5 Flight plan and pilot checklist
 8 User (pilot)
 11 EEG headcap
 14 RT camera replication

 3 Flight simulator PC
 6 Camera to face recording
 9 HR earclip
 12 Supervisor side
 15 Supervisor flight view

FIGURE 3.7. Experiment environment. Volunteer side (left); supervisor side (right).

Additional volunteer (acting like a co-pilot), wasn't considered in the main experiment due to some reasons: difficulties to find more people (pilot and co-pilot) for each experiment; time to train both volunteers for different tasks along the experiment; each volunteer should have double time of experiment because generally, the volunteer (copilot) also wished to simulate as a pilot. Other improvement is the use of a single HR electrode which presented less motion artefact along the experiment; the double back pat on volunteer's back (executed by the supervisor during all PoCs to give instructions and to get instantaneous volunteer feedback about the his feelings) was removed because the volunteers in experiment, reported that it took too much loss of attention to answer this requested questions during the flights; the headset was removed from the volunteer (pilot) because during the experiment the supervisor executes some instructions by callouts. Other additional input data such as the volunteer's voice, wasn't considered on main experiment.

Considering the practical context and the complexity of the proposed experiment, i.e. aviation based on flight simulations and multimodal sensing, two different experiments were executed: a flight training (presented before) and executed before the main flight; and the main flight experiment presented in this section. Moreover, to avoid mistakes of experiment execution, an execution checklist was developed to aim the supervisor to correctly accomplish the several steps regarding to the proposed multimodal sensing system.

Table 3.1, presents the main resources applied for each case i.e., first and second PoC and main experiment. It shows the improvements of each PoC until the main experiment. 38

| Resource                 |    | Po  | C 1 |      | PoC 2 |       |     |      | Main Experiment |     |     |          |
|--------------------------|----|-----|-----|------|-------|-------|-----|------|-----------------|-----|-----|----------|
| (Biosignal)              | HR | GSR | EEG | Face | HR    | GSR   | EEG | Face | HR              | GSR | EEG | Face     |
| Acquisition              | ×  | ×   | ×   | Х    | ×     | ×     | ×   | Х    | ×               | ×   | ×   | X        |
| Preprocessing            | ×  | ×   | ×   | ×    | ×     | ×     | ×   | ×    | ×               | ×   | ×   | ×        |
| Processing               | ×  | ×   | —   | ×    | ×     | ×     | -   | ×    | ×               | ×   | ×   | $\times$ |
| Recognition              | -  | _   | —   | _    | ×     | ×     | _   | ×    | ×               | ×   | ×   | $\times$ |
| Resource                 |    | Po  | C 1 |      |       | PoC 2 |     |      | Main Experiment |     |     |          |
| Camera (Face)            |    |     | ×   |      |       |       | ×   |      | X               |     |     |          |
| Head Shaking             |    |     | ×   |      |       |       | ×   |      |                 |     | ×   |          |
| Questionnaire            |    |     | ×   |      |       |       | ×   |      |                 |     | ×   |          |
| Flight Plan/Route        |    |     | ×   |      |       |       | ×   |      |                 |     | ×   |          |
| Flight Checklist         |    |     | ×   |      | ×     |       |     | ×    |                 |     |     |          |
| Training Flight          |    |     | ×   |      | ×     |       |     | ×    |                 |     |     |          |
| Eyes-Closed Baseline     |    |     | ×   |      | ×     |       |     | ×    |                 |     |     |          |
| Headset                  | ×  |     |     | ×    |       |       | -   |      |                 |     |     |          |
| Double "Back Pat"        | ×  |     |     | ×    |       |       | -   |      |                 |     |     |          |
| Aircraft Extra 300S      | ×  |     |     | ×    |       |       |     |      | _               |     |     |          |
| Aircraft Cessna $172$ SP | —  |     |     |      |       | ×     |     |      |                 | ×   |     |          |
| GSR Hand (Fixed)         |    |     | _   |      | -     |       |     |      |                 | ×   |     |          |
| Execution Checklist      |    |     | _   |      | -     |       |     | ×    |                 |     |     |          |
| Supervisor Call-outs     |    |     | _   |      | —     |       |     | ×    |                 |     |     |          |
| Large Screen             |    |     | _   |      | _     |       |     | ×    |                 |     |     |          |
| Immersive View           |    |     | _   |      | _     |       |     |      | ×               |     |     |          |
| Camera (Body)            | _  |     |     | _    |       |       | ×   |      |                 |     |     |          |
| HR Earclip               | _  |     |     | X    |       |       | ×   |      |                 |     |     |          |
| HR 3xElectrodes          | ×  |     |     | -    |       |       | —   |      |                 |     |     |          |
| Co-Pilot (New Volunteer) | ×  |     |     | —    |       |       | —   |      |                 |     |     |          |
| SpO2 (fingerclip)        |    |     | ×   |      | -     |       |     | —    |                 |     |     |          |
| Voice Recorder           | ×  |     |     | X    |       |       | _   |      |                 |     |     |          |

TABLE 3.1. Resources applied on each PoC and in the main experiment.

# 3.4.1. Computers Configuration

Three different computers were used in this work for different purposes. The acquisition and the EmoSense software development were executed by the computer having the configuration: Hewlett Packard (HP), processor with 2.2 GHz Intel Core i7 (7th Gen), memory with 16 GB having 1600 MHz DDR3 and Intel HD Graphics board 6000 having 1,536 MB.

The raw data preprocessing, processing, feature extraction and emotion recognition were executed in a computer having the characteristics: MacBook Air, processor with 2.2 GHz Intel Core i7, memory with 8 GB having 1600 MHz DDR3 and Intel HD Graphics board 6000 having 1,536 MB. The flight simulator and the face recordings were executed in a computer having: ASUS, processor with 3.2 GHz Intel Core i7 (8th Gen), memory 16 GB having Intel HD Graphics board 6000 having 1,536 MB.

# 3.4.2. Execution Checklist - Listing the Steps of the Experiment

Execution checklists were designed to the supervisor and it were fundamental to give support to the to all steps necessary to execute correctly the experiment. It presents

a couple of sequential and direct actions since the environment setup until the end of experiment.

Were developed there different execution checklists, inspired on the real aviation procedure checklists (Figure 3.8): Before Execution Checklist (BEC), Just Before Execution Checklist (JBEC) and Execution Checklist (EC).

|    |                         | BEFORE EXECUTION CHECK (BEC)                                                     |
|----|-------------------------|----------------------------------------------------------------------------------|
| 1  |                         | Connect Webcam                                                                   |
| 2  |                         | Pre-Start Software to Record Face and Flight (Ex. OBS Software)                  |
| 3  | 1                       | Pre-Start Flight Simulator (FS)                                                  |
| 4  |                         | Adjust FS Time and Season                                                        |
| 5  |                         | Adjust FS Airports/Route                                                         |
| 6  |                         | Adjust FS Joysctick                                                              |
| 7  | Initial Adjustments     | Adjust TV Configuration                                                          |
| 8  | initial Adjustments     | Adjust Light Environment                                                         |
| 9  |                         | Adjust Webcam position                                                           |
| 10 |                         | Adjust PC Experiment (pre-start ENOBIO and EmoSense)                             |
| 11 |                         | Participant Read Term of Experiment                                              |
| 12 |                         | Start Instructions of the Experiment (Leaded by the Supervisor)                  |
| 13 |                         | Participant Clean Hands (GSR Electrodes) and Part of Ear (HR Electrodes)         |
| 14 |                         | Participant Sit on the Chair (Confortable Way)                                   |
| 1  |                         | Set EEG Electrodes                                                               |
| 2  | Electrodes<br>Placement | Set HR Electrodes                                                                |
| 3  |                         | Set GSR Electrodes                                                               |
| 1  | UB                      | Start MEDLab Device for HR Acquisition                                           |
| 2  | пк                      | Check Arduino Connection for HR Acquisition                                      |
|    |                         | JUST BEFORE EXECUTION CHECK (JBEC)                                               |
| 1  |                         | Connect to ENOBIO bluetooth module using ENOBIO Software                         |
| 2  |                         | Connect to Shimmer Modules and Serial Port using EmoSense Software               |
| 3  | Device Connections      | Set ENOBIO Software to BETA Band Acquisition                                     |
| 4  | and Questionnaire       | Change the FileName of the File's Experiment on ENOBIO Software                  |
| 5  |                         | Execute the Test Acquisition from EmoSense Software                              |
| 6  |                         | Fill Initial Emotion Questionnaire                                               |
| 7  |                         | START Flight Simulator and Face Recording                                        |
|    |                         | EXECUTION CHECK (EC)                                                             |
| 1  |                         | Marker 1: Shake Participant Head Twice to Front and Back                         |
| 2  | Neutral Baseline        | Participant Close Eyes During 30 seconds or 1 minute (Supervisor inform to stop) |
| 3  | Neutral Dasenfie        | Participant Open Eyes During 30 seconds or 1 minute (Supervisor inform to stop)  |
| 4  |                         | Marker 2: Shake Participant Head Twice to Front and Back                         |
| 1  |                         | Start Flight                                                                     |
| 2  | FLIGHT                  | Finish Flight (With Accident or Not)                                             |
| 3  |                         | Marker 3: Shake Participant Head Twice to Front and Back                         |

FIGURE 3.8. Experiment checklists executed by the supervisor.

# 3.4.3. Execution of the Simulated Flight

This work analyzed emotions of 8 volunteers (N=8) of flight simulator, during the execution of 7 different tasks while they fly based on basic concepts of Visual Flight Rules (VFR) through the air traffic rules and procedures applicable to air traffic in Lisbon FIR and Santa Maria Oceanic FIR, conform with Annex 2 and 11 to the Convention on International Civil Aviation (ICAO, 2005).

All experiments and training were executed under Visual Meteorological Condition (VMC) and minimum navigation altitude of 1,800ft (feet MSL). For each volunteer, a maximum of 3 flights were executed. The used airplane for this main experiment was the default aircraft model Cessna 172SP Skyhawk, as shown in Figure 3.9.



FIGURE 3.9. Airplane Cessna 172SP used during the main experiment.

# 3.4.4. Flight Plan - Route of the Simulation

The flight route used in this experiment have almost 8.4nm (Nautical Miles) of distance from Lisbon International Airport (ICAO LPPT/374ft/THD ELEV 378ft MSL) to Alverca (ICAO LPAR/11ft/THD ELEV 15ft MSL), intercepting the waypoints WP1 (HDG 063°), WP2 (HDG 036°) and WP3 (HDG 039°). Takeoff was planned to departure from runway 03 (HDG 026°) and landing on runway 04 (HDG 039°), as shown in Figure 3.10.



FIGURE 3.10. Flight route (red line) of the experiment (Lisbon to Alverca).

The supervisor explained each task of the simulated flight to the volunteers; also shown the ideal air speed (for takeoff, climb, approaches and landing), flight direction (flight head) and altitudes. Other complex tasks such as, the air charts, fuel mixtures, VOR/ILS navigation, flaps set up, real checklists, Automatic Terminal Information Service (ATIS) reports, technical communications or another technical airplane operation were not considered. If any complex action was required in flight, the supervisor executed.

### 3.4.5. Tasks of the Experiment

Since this work tries to aim some problems of the real aviation, it considered to use main real flight phases such as: takeoff (Task 1), climb (Task 2), navigation/cruise route (Task 3), descent (Task 4), initial approach (Task 5), final approach (Task 6) and landing (Task 7), as shown in Figure 3.11.



FIGURE 3.11. Lateral view of the proposed flight task chart, route and tasks.

It were also recommended by the supervisor to keep a maximum flight altitude in route of 2,300 feet and an average final approach altitude of 550 feet to avoid accidents during the landing task. If it is not possible to maintain 550 feet at final approach, the volunteer was advised to abort the landing task, climb the aircraft, turn to the left side of Alverca Airport (i.e. runway 04) and initiate the final approach again.

Each volunteer had a maximum time of 10 minutes to execute these tasks, otherwise the supervisor stops the simulation and stores the simulation data as valid to analysis. Some volunteers did not completed all the tasks due some accidents along the simulated flight.

### 3.4.6. Volunteers and Flight Checklists

The experiment considers two different volunteers: the first pilot or pilot in command (PIC), and the co-pilot or second in command (SIC). Each one using a set of well defined tasks along the simulated flight. In the main experiment, the co-pilot actions (executed by a second volunteer in the first PoC) were replaced to be executed by the supervisor.

The pilot and co-pilot tasks are guided by two different checklists. These checklists informed to both what to do during each step of the flight, as presented in Table 3.2. The different colors on it, inform to the aircrew the importance of each procedure in flight: green color, means not critical procedure; purple means, not critical but mandatory; 42

and red color means, that this procedure is critical, mandatory and must be executed immediately to avoid accident.

| Tasks   | Pi        | lot Checklist                                | Co–Pilot Checklist |                   |  |
|---------|-----------|----------------------------------------------|--------------------|-------------------|--|
|         | Procedure | Value                                        | Procedure          | Value             |  |
|         | Throttle  | Full                                         | _                  | _                 |  |
| 11      | Wait For  | 80KIAS                                       | Alert              | 80KIAS "Call-out" |  |
|         | Climb     | $550 { m ft}$                                | Alert              | Climb             |  |
| $T_{2}$ | Roll      | $\mathbf{Right}  \mathbf{for}  \mathbf{10s}$ | Alert              | Roll Time         |  |
| 14      | Climb     | 1,800ft                                      | Alert              | Climb             |  |
|         | Intercept | WP1                                          | Alert              | Intercept         |  |
|         | Throttle  | 70%                                          | Alert              | Throttle          |  |
|         | Check     | Route                                        | Check              | Route             |  |
| T3      | Intercept | WP2                                          | Alert              | Intercept         |  |
|         | Throttle  | 10%                                          | Alert              | Throttle          |  |
|         | Wait      | 5s                                           | Alert              | Wait              |  |
| $T_{1}$ | Descent   | 900ft                                        | Alert              | Descent           |  |
| 11      | Intercept | WP3                                          | Alert              | Intercept         |  |
|         | Descent   | $550 \mathrm{ft}$                            | Alert              | Descent           |  |
| T5      | Throttle  | $40-65 	ext{KIAS}$                           | Flaps              | Set Full          |  |
| 10      | Pitch     | $15^{\circ}$                                 | _                  | -                 |  |
|         | Descent   | $250 \mathrm{ft}$                            | Alert              | Descent           |  |
| T6      | Descent   | $15 \mathrm{ft}$                             | Alert              | Descent           |  |
|         | Touch     | _                                            | _                  | _                 |  |
| T7      | Throttle  | 0KIAS                                        | Flaps              | Set $0^{\circ}$   |  |
|         | Full Stop | _                                            | —                  | —                 |  |

TABLE 3.2. Pilot and co-pilot checklists used during the main flight simulations.

The tasks of the co-pilot were executed by the experiment supervisor. The checklists as such as the route, are based on a real flight procedure. However, the flight scenario, physics of the environment and flight model, not presented a full realism due the beginner level of the involved volunteers.

# 3.4.7. Head Shaking Indicator - Beginning and End of Experiment

The head shaking indicator was the strategy used to synchronize the real-time EEG sensing acquisition with the other data having different sampling rate. The head shaking methodology was inspired by standard procedures of real military pilots, in which they quickly shake their heads to indicate the beginning or the synchronization of some flight procedures, for instance, synchronized takeoff and maneuvers (Figure 3.12).



FIGURE 3.12. EEG's accelerometer output of the double head shaking movement.

The EEG and GSR devices used in this work have also embedded accelerometers, which they were used to capture the head shaking (placed on the head back) of the volunteers during the flight. The head shaking represents a signal like a wave mark used in the further data split process. It was used in four different moments of the experiment: double head shaking to indicate the beginning of the eyes-closed baseline; double head shaking to indicate the end of this baseline; double head shaking to indicate the beginning of the flight (i.e., takeoff); and double head shaking to indicate the end of the flight experiment.

### 3.4.8. Physiological Sensing

The proposed multimodal sensing system, considered three physiological sensing: cardiac system based on Heart Rate (HR), Galvanic Skin Response (GSR) and Electroencephalog-raphy (EEG). To acquire these sensing, 11 Ag/AgCl dry electrodes and one earclip were used: 8 electrodes placed on the scalp (EEG), 1 placed on the earlobe (EEG reference), 1 placed on earlobe (HR) and two on the hand of the volunteer (GSR).

The GSR signal is based on Electrodermal Activity (EDA) and refers to the electrical resistance between two sensors, when a very weak current occurs passed between them. It is typically acquired from the hands or fingers (Goshvarpour, Abbasi, and Goshvarpour, 2017). In this work, it was acquired by the Shimmer3-GSR+ unit, which can measure activity, emotional engagement and psychological arousal in lab scenarios and in remote capture scenarios that are set outside of the lab. Was recommended that these electrodes kept immobile during the experiment to avoid an additional motion artifacts in GSR data.

Emotional and cognitive responses, can also affect the brain functioning, producing several stimuli. The usage of flight simulation shows to be a powerful tool to produce these brain stimulations in different flight moments. The brain activities were acquired by the device Neuroelectrics Enobio-N8, which it had 8 channels, Bluetooth communication and a sampling rate of 500 samples per second. Some studies claim that it is difficult to find the specific region of scalp where the brain activity is sufficiently high to detect emotional states (Murugappan, Nagarajan, and Yaacob, 2011; Min, Chung, and Min, 2005); however, if one intendeds to detect emotional responses, it is recommended to use the prefrontal cortex or frontal lobe (located near the front of the head) because it be more involved with cognition and decision making of emotional responses (Umeda and Satoshi, 2013; Rosso et al., 2004).

The 10–20 system or International 10–20 system was the method used to describe and apply the location of scalp electrodes. This way, to better detect emotion, alertness situations and cognition artifacts of the scalp, the electrodes were placed on that recommended areas (Kucikienė and Praninskienė, 2018; Umeda and Satoshi, 2013; Rosso et al., 2004), some of which were also used by Harrivel and Pope (Wang et al., 2020; Harrivel and Pope, 2017) in other simulated flight experiments: Fp1 (channel 1), F3 (channel 2), C3 (channel 3), T7 (channel 4), Fp2 (channel 5), F4 (channel 6), C4 (channel 7) and T8 (channel 8). The EEG reference electrode (EEGR) was placed on the volunteers' earlobes (Othman et al., 2013; Murugappan, Nagarajan, and Yaacob, 2011). Furthermore, according to Min the frequency below 30Hz (Min, Chung, and Min, 2005). It frequency aimed our choice to use the beta rhythms (or band) in this experiment (Othman et al., 2013; Murugappan, Nagarajan, and Yaacob, 2011).

Figure 3.13, shows the positions of each electrode, used during the experiment. Note the usage of electrodes on frontal cortex to acquire EEG data, due its close relation to the emotional events.



FIGURE 3.13. Electrodes placement. EEG and HR, placed on the scalp and ear (left); and GSR, placed on the indicator and middle fingers (right).

3.4.8.1. The Beta Rhythms The beta rhythms (beta band) are expressed by distinct peaks on the spectrograms and may be found in various locations of the cortex in normal conditions. According to Kropotov (Kropotov, 2009), the beta band is more often found in the frontal or central areas when compared to posterior regions of the brain cortex, showing a frequency around 13 Hz. It is conventionally divided into the following sub-bands: low beta (from 13 to 20 Hz), high beta (from 21 to 30 Hz) and gamma activity (from 31 Hz and higher). He also says that there is a special beta frequency activity at 40 Hz. For this reason, the present work considered the beta band analysis from 12 to 30 Hz and 40 Hz. Unfortunately, from analyzing only 40 Hz, it is hard to conclude relevant results; thus, it was decided to also consider a small part of gamma band, i.e., 31 to 40 Hz (Kropotov, 2009), to produce continuous plots from 12 to 40 Hz.

The most prominent hypotheses suggest that the beta band indicates ongoing sensorimotor integration (Khanna and Carmena, 2017), being more related to awareness and concentration contexts. In the beta state, our brain easily does the analysis and preparation of the information and generates solutions and new ideas. Furthermore, it is very beneficial for work productivity, studying for exams or other activities that require high concentration and alertness, as is reported in (Khanna and Carmena, 2017; Woaswi et al., 2016).

At least two distinct beta rhythms can be found: the beta rhythms located over the sensorimotor strip (primary motor cortex)–the Rolandic beta rhythms, and the beta rhythms located more frontally–frontal beta rhythms (Kropotov, 2009; Ritter, Moosmann, and Villringer, 2009).

In this work, the Rolandic or pericentral beta rhythms were also considered. The selected beta rhythm is modulated during various motor and cognitive tasks (Harrivel and Pope, 2017; Wang et al., 2020), being observed as a spontaneous activity during eyes-open and eyes-closed conditions in healthy subjects over the areas C3, Cz and C4. The close relation of the prefrontal cortex and beta rhythm, with the emotion artifacts and the cognitive tasks, makes these brain outputs an important data to be used in this work as well (Umeda and Satoshi, 2013; Rosso et al., 2004).

3.4.8.2. Acquisition Software To store in real time, all raw data acquired by each device, two software were considered in the experiment: the Enobio-N8, and the Emosense (ES-RT). This last, was entirely developed in this work on Python 3.5. The first software was used to acquire EEG data, and second one to acquire HR and GSR data.

Figure 3.14, shows both real time software used on acquisition and storage of all data of the main experiment.


FIGURE 3.14. Emosense RT software, to acquire HR and GSR data (top) and Enobio-N8 to acquire EEG data (bottom).

Figure 3.15, shows an example of EEG 8–channels raw data, acquired and stored by the Enobio-N8 software.

There, are possible to see the raw data with several motion artifacts, eyes movements artifacts and other additional noises. Some of these noises and artifacts were removed using several techniques presented in details further.



FIGURE 3.15. EEG raw (noisy) 8 channels dataset referent to CR1 experiment.

3.4.8.3. Acquisition Devices The multimodal biosignal acquisition was based on Heart Rate (HR), Galvanic Skin Response (GSR) and Electroencephalography (EEG). The emotion monitoring system includes a set of smart sensors such as: two shimmer3-GSR+, one Medlab-Pearl100, and one Enobio-N8, as presented in Table 3.3.

| Device                                 | Electrodes      | Accelerometer | Application  | Where?         |
|----------------------------------------|-----------------|---------------|--------------|----------------|
| $\mathbf{Shimmer3}$ - $\mathbf{GSR}$ + | 2 Dry           | —             | GSR BT data  | Hand (fingers) |
| MedLab-Pearl100                        | 1 PPG/Earclip   | —             | HR data      | Earlobe        |
| Enobio-N8 Headcap                      | 8  Dry + 1  REF | —             | EEG BT data  | Head (scalp)   |
| ${f Shimmer3-GSR+}$                    | _               | Applied       | Head shaking | Head (back)    |
| Enobio-N8 Acc                          | —               | Applied       | Head shaking | Head (back)    |

TABLE 3.3. Devices and its application in the main experiment.

A total of two Shimmer3-GSR+ units were the devices used to acquire the GSR data and to act as an auxiliary head shaking indicator, using its embedded accelerometer. It includes: 1 channel GSR (Analog); the measurement range: 10k and 4.7M $\Omega$  (.2 $\mu$ S - 100 $\mu$ S); frequency range: DC-15.9Hz; input protection RF/EMI filtering, current limiting; auxiliary input: 2 channel analog/I2C; digital input: via 3.5mm; 24MHz MSP430 CPU with a precision clock subsystem; 10 DoF inertial sensing via accelerometer integrated, gyroscope, magnetometer and altimeter; low power consumption, light weight and small form factor; also perform the analog to digital conversion and readily connects via Bluetooth or local storage via micro SD card. Furthermore, it is also a highly configurable which can be used in a variety of data capture scenarios (Shimmer3, 2017).

Figure 3.16, shows the devices applied in this work to acquire all physiological data and head movements.



FIGURE 3.16. Acquisition devices: Enobio-N8 (left); Shimmer GSR (middle-left); Shimmer for ECG/HR (middle-right) and MedLab P100 (right).

The HR data was acquired by the Medlab-Pearl100 device. It is considered an excellent artefact suppression device due to PEARL-technology and includes: a compact, portable and attractive design; crisp, easily readable TFT colour display; reliably measures SpO2; pulse rate, and pulse strength; integrated 100h trend memory; integrated context sensitive help system; intuitive, multi-language user interface; works on mains and from integrated battery; full alarm system with adjustable alarm limits; usable from neonates to adults (Medlab, 2017).

To acquire the EEG data, the Enobio-N8 Toolkit was used. It is a wearable toolkit with a wireless electrophysiology sensor system for the recording of EEG. Using the Neuroelectrics headcap toolkit (having several dry and wet electrodes), the Enobio-N8 is ideal for out-of-the-lab applications. It comes integrated with an intuitive, powerful user interface for easy configuration, recording and visualization of 24 bit EEG data at 500 sampling rate, including spectrogram and 3D visualization in real time of spectral features. It is ready for research or clinical use. In addition to EEG, triaxial accelerometer data is automatically collected. You can also use a microSD card to save data offline in Holter mode; and as like as Shimmer device, it can use Bluetooth to transmit real time data too (Quesada Tabares et al., 2017).

## 3.4.9. Facial Emotion Sensing

During the experiment, the face of the volunteers and the flights actions along the experiments, were recorded and its outputs were processed after the experiment. Two software were used to record different data: the OBS-Studio, to record the flight and volunteer's face at the same time in a synchronized manner; and the Face Reader software, used to recognize the emotions based on the face recording (Figure 3.17).



FIGURE 3.17. Face Reader software used to detect emotions from face.

Figure 3.18, shows different face expressions from 3 females and 5 males volunteers along of some proposed simulated flights. The Face Reader software, considers 7 emotions: neutral, happy, sad, angry, surprised, scared and disgust. Although, the neutral and disgust emotions were omitted from analysis due to the low importance in these experiments.

## 3.4.10. Emotion Questionnaires

Questionnaires are another important tools used to acquire emotional data before and after all experiments. Several studies also use questionnaires to give support to the volunteers' feedback, based on what they are feeling in such moment (Roza and Postolache, 2017; Xu et al., 2017; Reis, Arriaga, and Postolache, 2015).

To comply these requirements, a standard questionnaire was adopted, having 22 emotions descriptors and its measurements based on the standard study presented by Jones et al., which they used it for sport context, being easily adapted to the present work (Jones et al., 2005). These questionnaires responses represent a subjective data that can be used to try to match with the detected facial emotion at the end of experiment. Each 50



FIGURE 3.18. Face recording of some volunteers during experiment.

volunteer must to execute at most three flights, having to answer one questionnaire for each different moment, as defined below:

- Before the first flight (QB1);
- After first (A1) flight/Before second (B2) flight (QA1B2);
- After second (A2) flight/Before third (B3) flight (QA2B3);
- After third flight (QA3).

Figure 3.19, presents the emotion questionnaire filled by each volunteer during the phases of the main experiment. A set of four questionnaires were considered, having 22 different emotions description each one, which it were rated between 0 (not at all) to 4 (extremely) in different moments of the experiment (flight sequence).

The field Participant Code, represents the individual volunteer code for each experiment; Flight Phase, represents the flight moment of questionnaire: Before, if the flight sequence is 1 (before first flight); During if the flight sequence is more than 1 and less or equal to 3; After, if already executed the last flight of experiment; and Sequence, represents the flight repetition order, because each volunteer can flight more than one time. Experiment: PhD Experiment - Flight Simulator x Emotions

Participant Code: FSP

Phase: Before | During | After

Sequence: 1 | 2 | 3 | 4 | 5 |

Date: / /

Table below presents a list of words which describe a range of feelings that participants may experience. Please read each one carefully and indicate on the scale next to each item how you feel <u>right now</u>, <u>at this moment</u>, in relation to each phase of the experiment.

Important: There are no right or wrong answers. Do not spend too much time on any one item, but choose the answer which best describes your feelings right now in relation to the experiment.

|    | Feelings     | Not at all | A little | Moderately | Quite a bit | Extremely |
|----|--------------|------------|----------|------------|-------------|-----------|
| 1  | Uneasy       | 0          | 1        | 2          | 3           | 4         |
| 2  | Upset        | 0          | 1        | 2          | 3           | 4         |
| 3  | Exhilarated  | 0          | 1        | 2          | 3           | 4         |
| 4  | Irritated    | 0          | 1        | 2          | 3           | 4         |
| 5  | Pleased      | 0          | 1        | 2          | 3           | 4         |
| 6  | Tense        | 0          | 1        | 2          | 3           | 4         |
| 7  | Sad          | 0          | 1        | 2          | 3           | 4         |
| 8  | Excited      | 0          | 1        | 2          | 3           | 4         |
| 9  | Furious      | 0          | 1        | 2          | 3           | 4         |
| 10 | Joyful       | 0          | 1        | 2          | 3           | 4         |
| 11 | Nervous      | 0          | 1        | 2          | 3           | 4         |
| 12 | Unhappy      | 0          | 1        | 2          | 3           | 4         |
| 13 | Enthusiastic | 0          | 1        | 2          | 3           | 4         |
| 14 | Annoyed      | 0          | 1        | 2          | 3           | 4         |
| 15 | Cheerful     | 0          | 1        | 2          | 3           | 4         |
| 16 | Apprehensive | 0          | 1        | 2          | 3           | 4         |
| 17 | Disappointed | 0          | 1        | 2          | 3           | 4         |
| 18 | Energetic    | 0          | 1        | 2          | 3           | 4         |
| 19 | Angry        | 0          | 1        | 2          | 3           | 4         |
| 20 | Нарру        | 0          | 1        | 2          | 3           | 4         |
| 21 | Anxious      | 0          | 1        | 2          | 3           | 4         |
| 22 | Dejected     | 0          | 1        | 2          | 3           | 4         |

FIGURE 3.19. Questionnaire with 22 emotions, used before and after the experiment.

3.4.10.1. Analyzing the Questionnaires Responses All emotions presented on proposed questionnaires, were conceptually resumed to five emotions classes as described by Jones et al. (Jones et al., 2005): anxiety, dejection, excitement, anger and happiness. These resumed emotions were obtained from the previous 22 emotions, as shown below.

• Anxiety: uneasy (E01), tense (E06), nervous (E11), apprehensive (E16), anxious (E21);

- Dejection: upset (E02), sad (E07), unhappy (E12), disappointed (E17), dejected (E22);
- Excitement: exhilarated (E03), excited (E08), enthusiastic (E13), energetic (E18);
- Anger: irritated (E04), furious (E09), annoyed (E14), angry (E19);
- Happiness: pleased (E05), joyful (E10), cheerful (E15), happy (E20).

The results of these questionnaires, are shown in Figure 3.20. It is possible to note that during the experiment, since first questionnaire (QB1) to the last questionnaire (QA3), the volunteers confirmed to feel several emotions more characterized as, anxiety, excitement and happiness, which they kept having high intensities along the experiments. The anger and dejection, were other resumed emotions that the volunteers said to feel too, but in less intensities.



FIGURE 3.20. Emotions selected on questionnaires and the resumed emotions.

When the volunteers chose to flight more than once, it was possible to see a small anxiety attenuation along the flights, probably characterized by the learning process (tasks and flight controls) experienced by the volunteers. The intensities of dejection increased along the flights, which disappointed (E17) presented the higher values, because it reflected the amount of air crashes (accidents) along the simulated flights (see Section 3.4.12). The intensities of anger also increased along the experiment, due probably by the same reason of dejection. These both emotions were not strongly characterized in this work but between them, the resumed emotion dejection was more notable, due the situation of frustration after the occurrences of accidents.

## 3.4.11. Flight Analysis

The practical results of 21 flights are presented in Table 3.4. In 21 flights executed, 62% of them presented general accidents; all flight tasks were accomplished in 38% of the flights i.e., landing successfully; 19% crashed during the climb task, including 14.2% due to stall occurrences and 4.8% due to direct collision occurrences; 9% crashed at final approach task; and 33.3% crashed at landing. The landing tasks were classified as abrupt landing (A-Landing), less smooth landing (LS-Landing) and smooth landing (S-Landing). Regarding the volunteers' gender, 52.3% (11 out of 21) of the flights were executed by male volunteers and 47.7% by female volunteers. The latter reported having no experience with flight simulation and rarely had contact with electronic games. It is likely that these reasons were why the landing tasks were successfully concluded only by male volunteers.

| Detect  | Simulation/Flight Tasks       |          |          |          |          |          |          | Degult            | Condon |
|---------|-------------------------------|----------|----------|----------|----------|----------|----------|-------------------|--------|
| Dataset | Task 1                        | T2       | T3       | T4       | T5       | T6       | T7       | nesun             | Gender |
| DS:RC1  | ×                             | X        | ×        | X        | Х        | ×        | —        | Crash (collision) | Male   |
| DS:RC2  | ×                             | ×        | ×        | ×        | ×        | ×        | _        | Crash (collision) | Male   |
| DS:RC3  | ×                             | ×        | ×        | ×        | ×        | $\times$ | ×        | A Landing         | Male   |
| DS:GC1  | ×                             | ×        | ×        | ×        | ×        | $\times$ | $\times$ | S-Landing         | Male   |
| DS:GC3  | ×                             | ×        | ×        | ×        | ×        | $\times$ | $\times$ | S-Landing         | Male   |
| DS:LS1  | ×                             | ×        | ×        | ×        | ×        | —        | —        | Crash (collision) | Male   |
| DS:LS2  | ×                             | ×        | ×        | ×        | ×        | ×        | $\times$ | LS-Landing        | Male   |
| DS:VC1  | ×                             | $\times$ | $\times$ | $\times$ | ×        | $\times$ | $\times$ | S-Landing         | Male   |
| DS:VC2  | ×                             | $\times$ | $\times$ | $\times$ | ×        | $\times$ | $\times$ | S-Landing         | Male   |
| DS:CR1  | ×                             | $\times$ | ×        | ×        | $\times$ | $\times$ | —        | Crash (collision) | Female |
| DS:CR3  | ×                             | —        | —        | —        | —        | —        | —        | Crash (stall)     | Female |
| DS:CLX  | ×                             | —        | —        | —        | —        | —        | —        | Crash (collision) | Female |
| DS:CL3  | ×                             | ×        | ×        | ×        | ×        | ×        | —        | Crash (collision) | Female |
| Dataset | ** Invalid Flight Datasets ** |          |          |          |          |          |          | Result            | Gender |
| Dataset | Task 1                        | T2       | T3       | T4       | T5       | T6       | T7       | itesuit           | Gender |
| DS:CL1  | ×                             | X        | ×        | ×        | X        | X        | —        | Crash (collision) | Female |
| DS:CL2  | ×                             | —        | —        | —        | —        | —        | —        | Crash (stall)     | Female |
| DS:CR2  | ×                             | ×        | ×        | ×        | ×        | —        | —        | Crash (collision) | Female |
| DS:JO1  | ×                             | ×        | ×        | ×        | ×        | ×        | $\times$ | LS-Landing        | Male   |
| DS:GC2  | ×                             | ×        | ×        | ×        | ×        | ×        | $\times$ | S-Landing         | Male   |
| DS:RN1  | ×                             | $\times$ | ×        | ×        | ×        | $\times$ | —        | Crash (collision) | Female |
| DS:RN2  | ×                             | -        | —        | —        | —        | —        | _        | Crash (stall)     | Female |
| DS:RN3  | ×                             | ×        | ×        | ×        | ×        | ×        | —        | Crash (collision) | Female |

TABLE 3.4. Dataset description according to the flight experiment tasks.

It is also important to consider that of the eight volunteers, one volunteer (male), reported to be an advanced user on flight simulation, i.e., 12.5% of them; four other volunteers (male) were considered to have a mid-level in flight simulation but an experienced level in electronic games, i.e., 50.0% of them. The remaining three volunteers (female) were reported to be beginner level on all these approaches. The volunteers were between 21 and 40 years old.

Figure 3.21 shows a comparison between the accidents or crashes occurrences during the simulated flights experiment ( $N_{accid}=13$ ) and the accident report of the Boeing Aerospace Company (statistics from 1959 to 2016) (Boeing, 2017).



FIGURE 3.21. Distribution of fatal accidents by civil aviation (Boeing report) and general accidents (proposed experiment) (adapted from Boeing, 2017).

The percentage of accidents in the present experiment is based on a total of 13 accidents over 21 flights. The landing task presented the higher accident rate, having 7 occurrences out of 13, i.e., 53.84%. Final approach presented 2 occurrences of accidents out of 13, i.e., 15.38%. On the climb task, it were 4 out of 13, i.e., 30.76%. It is also possible to see that the present experiment shown a similar proportional occurrence if compared with real data reported by the Boeing Aerospace Company (Boeing, 2023; Boeing, 2017).

### 3.4.12. Dataset Description

In this work, a total of 21 multisensing datasets were acquired, which it came from 21 simulated flights obtained of 8 volunteers ( $N_{vol}=8$ ), where each volunteer executed at most 3 flights. Between these flight datasets, 13 of them were valid to be analyzed and 8 were invalid due to several reasons such as: bad electrode connections, error in BT communication, wrong video frame rate and so on.

These datasets include, the emotion questionnaires, face recordings, HR, GSR and EEG data. The dataset names are a sequence of two letters and one number, to indicate

the volunteer's name and the flight sequence of such volunteer, respectively (Roza and Postolache, 2018; Roza et al., 2019; Roza and Postolache, 2019).

3.4.12.1. Dataset Resampling The dataset synchronization was applied over all multisensing datasets. Originally, the obtained raw datasets presented different sampling rates and it was considered to equalize it before the analysis: 22,237 samples of the face dataset (5 S/s-samples per second or Hz), 44,237 samples of each HR and GSR dataset (sampling rate of 10 Hz) and 2,157,087  $\times$  8-channels (or 17,256,696 total samples) of the EEG dataset (sampling rate of 500 Hz), presenting a total of 17,367,407 multisensing samples to be processed and analyzed.

To optimize these raw datasets and then to save processing time and complexity, they were reduced to a common sampling rate of 10 Hz, presenting a final length of 44,237 samples for each data channel, i.e., 44,237 reduced samples for Face, HR and GSR and 44,237  $\times$  8–channels for EEG. It represents a total multisensing sample of 44,237  $\times$  11-channels (Face, HR, GSR and EEG), or a total of 486,607 reduced samples, that represents a total reduction of 97.19% samples to be processed. These sampling rate changes presented some loss of information being mostly corrected by the data processing.

Table 3.5, presents the raw datasets description with its individual number of samples, time and sampling rates between 5 and 500 Hz.

| Dataset | Face (5Hz) | HR (10Hz)  | GSR (10Hz) | EEG (500Hz) ×8Ch |          |         |
|---------|------------|------------|------------|------------------|----------|---------|
| (Raw)   | Samples    | Samples    | Samples    | Samples          | Time (s) | T (min) |
| DS:RC1  | 1,877      | 3,671      | 3,671      | 190,000          | 373.80   | 6.23    |
| DS:RC2  | $1,\!880$  | 4,247      | 4,247      | 188,510          | 375.00   | 6.25    |
| DS:RC3  | 1,784      | $3,\!981$  | $3,\!981$  | 178,498          | 355.80   | 5.93    |
| DS:GC1  | 1,881      | 4,081      | 4,081      | 188,600          | 375.60   | 6.26    |
| DS:GC3  | 1,842      | 4,255      | 4,255      | 184,600          | 366.60   | 6.11    |
| DS:LS1  | $2,\!271$  | $5,\!558$  | $5,\!558$  | 220,000          | 453.00   | 7.55    |
| DS:LS2  | 2,043      | 4,096      | 4,096      | 198,500          | 405.60   | 6.76    |
| DS:VC1  | 1,790      | $2,\!611$  | $2,\!611$  | 179,500          | 357.00   | 5.95    |
| DS:VC2  | $1,\!831$  | 2,042      | 2,042      | 183,400          | 366.00   | 6.10    |
| DS:CR1  | 1,946      | $3,\!998$  | $3,\!998$  | $95{,}500$       | 387.60   | 6.46    |
| DS:CR3  | 165        | 457        | 457        | $16,\!879$       | 31.80    | 0.53    |
| DS:CLX  | 237        | 518        | 518        | 18,000           | 45.60    | 0.76    |
| DS:CL3  | 2,690      | 4,722      | 4,722      | $215,\!100$      | 537.60   | 8.96    |
| Total:  | 22,237     | $44,\!237$ | $44,\!237$ | 2,157,087        | 4,431    | 73.85   |

TABLE 3.5. Raw valid dataset description according to number of samples and time.

Table 3.6, presents in details each reduced dataset already smoothed and resampled to have 10S/s. The emotions surprised and scared presented the higher values of occurrences along the flight datasets (or simulated flights) varying between 26.12% and 72.0%, and between 19.98% and 38.34% respectively.

These emotion classes are the outputs of the Face Reader software, which it sometimes matched wrongly some emotions, mismatching the surprised emotion as angry, for 56

| TABLE $3.6$ . | Reduced datasets | according to | amount of | samples, emotions |
|---------------|------------------|--------------|-----------|-------------------|
| and time.     |                  |              |           |                   |

| Dataset | Higher En                                           | notions/Classes Perce                       | entages                 | Samples    | T(s)   |  |  |  |  |
|---------|-----------------------------------------------------|---------------------------------------------|-------------------------|------------|--------|--|--|--|--|
| DS:RC1  | Happy 816 (22.22%)<br>Surprised 999 (27.21%)        | Sad 341 (9.28%)<br>Scared 1,058 (28.82%)    | Angry 457 (12.44%)      | 3,671      | 373.80 |  |  |  |  |
| DS:RC2  | Happy 1,023 (24.08%)<br>Surprised 1,179 (27.76%)    | Sad 477 (11.23%)<br>Scared 1,111 (26.15%)   | Angry 457 (10.76%)      | 4,247      | 375.00 |  |  |  |  |
| DS:RC3  | Happy 907 (22.78%)<br>Surprised 1,040 (26.12%)      | Sad 466 (11.70%)<br>Scared 1,111 (27.90%)   | Angry 457 (11.47%)      | 3,981      | 355.80 |  |  |  |  |
| DS:GC1  | Happy 907 (22.22%)<br>Surprised 1140 (27.93%)       | Sad 466 (11.41%)<br>Scared 1,111 (27.22%)   | Angry 457 (11.19%)      | 4,081      | 375.60 |  |  |  |  |
| DS:GC3  | Happy 1,031 (24.23%)<br>Surprised 1,179 (27.70%)    | Sad 477 (11.21%)<br>Scared 1,111 (26.11%)   | Angry 457 (10.74%)      | 4,255      | 366.60 |  |  |  |  |
| DS:LS1  | Happy 1,364 (24.54%)<br>Surprised 1,479 (26.61%)    | Sad 1,113 (20.02%)<br>Scared 1,111 (19.98%) | Angry 491 (8.83%)       | 5,558      | 453.00 |  |  |  |  |
| DS:LS2  | Happy 907 (22.14%)<br>Surprised 1,155 (28.19%)      | Sad 466 (11.37%)<br>Scared 1,111 (27.12%)   | Angry 457 (11.15%)      | 4,096      | 405.60 |  |  |  |  |
| DS:VC1  | Happy 751 (28.76%)<br>Surprised 796 (30.48%)        | Sad 108 (4.13%)<br>Scared 956 (36.61%)      | Angry 0 (0.00%)         | 2,611      | 357.00 |  |  |  |  |
| DS:VC2  | Happy 355 (17.38%)<br>Surprised 796 (38.34%)        | Sad 108 (5.28%)<br>Scared 783 (38.34%)      | Angry 0 $(0.00\%)$      | 2,042      | 366.00 |  |  |  |  |
| DS:CR1  | Happy 907 (22.68%)<br>Surprised 1,057 (26.43%)      | Sad 466 (11.65%)<br>Scared 1,111 (27.78%)   | Angry 457 (11.43%)      | 3,998      | 387.60 |  |  |  |  |
| DS:CR3  | Happy 0 (0.00%)<br>Surprised 312 (68.27%)           | Sad 0 (0.00 %)<br>Scared 145 (31.72%)       | Angry 0 $(0.00\%)$      | 457        | 31.80  |  |  |  |  |
| DS:CLX  | Happy 0 (0.00%)<br>Surprised 373 (72.00%)           | Sad 0 (0.00%)<br>Scared 145 (27.99%)        | Angry 0 $(0.00\%)$      | 518        | 45.60  |  |  |  |  |
| DS:CL3  | Happy 1364 (28.88%)<br>Surprised 1,239 (26.23%)     | Sad 517 (10.94%)<br>Scared 1,111 (23.52%)   | Angry 491 (10.39%)      | 4,722      | 537.60 |  |  |  |  |
| Dataset |                                                     | ** Invalid Flight I                         | Datasets **             |            |        |  |  |  |  |
| DS:CL1  | H                                                   | Iead shaking marker exe                     | cuted incorrectly.      |            |        |  |  |  |  |
| DS:CL2  |                                                     | No video emotion recog                      | nition executed.        |            |        |  |  |  |  |
| DS:CR2  | No GSR data                                         | acquired. GSR electrode                     | es/BT not connected c   | correctly. |        |  |  |  |  |
| DS:JO1  | No EEG data                                         | a acquired. EEG BT mo                       | dule not connected co   | rrectly.   |        |  |  |  |  |
| DS:GC2  | No GSR data                                         | acquired. GSR electrode                     | es/BT not connected c   | correctly. |        |  |  |  |  |
| DS:RN1  | Wrong                                               | g/too low video FPS to f                    | ace recording analysis. |            |        |  |  |  |  |
| DS:RN2  | Wrong                                               | g/too low video FPS to f                    | ace recording analysis. |            |        |  |  |  |  |
| DS:RN3  | Wrong/too low video FPS to face recording analysis. |                                             |                         |            |        |  |  |  |  |

instance. Despite these mismatches, the recognition process gone further and kept its training also in these probably wrong detected emotion classes.

Figures 3.22 and 3.23, show 12 datasets (out of 13), correlating it based on HR and GSR inputs data executed before the preprocessing. These raw correlations aren't based on extracted features, because at this point, no features and processing were executed yet. This certainly justify the high cluster overlapping. The emotion classes of each flight dataset are also presented in a bar plot, as shown in Figure 3.24.



FIGURE 3.22. Raw datasets correlation, based on HR and GSR input data.



FIGURE 3.23. Raw datasets correlation, based on HR and GSR input data.



FIGURE 3.24. Classes of emotions detected by Face Reader software for each flight dataset.

### CHAPTER 4

## **Data Preprocessing**

Preprocessing is the first treatment over the acquired datasets; such procedure is extremely important to prepare the data to the next steps of analysis e.g., processing, feature extraction and emotion recognition.

In resume, the preprocessing stage prepares the datasets in a way that makes the applied analysis more efficient. It also reformats the raw data into a format that can be manipulated by any programming language (Hafen et al., 2014). It can include: normalization, smoothing, outliers removal, detrends, abrupt signal correction, baseline corrections and others particular preprocessing. Preprocessing is also used to give support to the data meaning along the recognition process, avoiding that wrong information can be used as regular input.

This section, presents some preprocessing techniques and some results achieved over all acquired data, i.e. Face, GSR, HR and EEG; also it presents two new approaches: one to remove abrupt signal changes and another to detrend signals, which this last were mainly applied on EEG data.

#### 4.1. Gravity Force-Fit Method (GFFM) - First Detrend

This innovative and iterative method called Gravity Force-Fit Method (GFFM), was created in this work to execute smooth, correct abrupt data changes, detrend and correct fluctuations in some raw data along the time. It was mainly applied to execute the first detrend over the EEG raw dataset. Since GSR and HR data presents a natural trends that can not be changed, no detrend was applied for them, otherwise it will produces mistakes on its analysis and feature extraction.

The GFFM methodology is based on a reference line, representing the ground reference where the "gravity forces"  $(g_{t/b})$  pushes the data to fit to such reference. The  $g_{t/b}$ , is a function that can acts in two independent data segments along the y-axis called, the topspace and the bottom-space. The top-space segment includes all data values above the reference line, and the bottom-space includes all data values that are below the reference line. Such gravity function can also be shared between both segments.

The reference line, can be computed on static or dynamic mode. If the reference line is on static mode, it must to be computed only once for all data values; otherwise, if is using on dynamic mode, the reference line must to be computed again for each iteration until some stop condition. Regarding to the number of reference lines to be used along the time, it can be: single i.e., only one reference line for both space segments and iteration; or segmented i.e., more than one reference line along all data. In the segmented method, each reference line have top-space and bottom-space. Regarding to the segment line, it can be computed based on e.g., min-max function, mean, median, among others functions. Figure 4.1, shows the reference line modes and how its function can be selected based on the dataset in use.



FIGURE 4.1. Reference line function and modes along any dataset preprocessing.

Figure 4.2, shows schematically many possible types of gravity force functions, static or dynamic reference line; also how GFFM can be used to correct abrupt signal changes.



FIGURE 4.2. GFFM on abrupt signal correction. Gravity force functions in shared mode (top); gravity force application (middle); final data (bottom).

The coefficient  $g_t$ , represents the gravity force coefficient applied on the top-space, pushing down the signal to fit the reference line;  $g_b$ , represents the gravity force applied on 62 the bottom-space pushing up the signal to fit the reference line. The type of gravity force values can also be based on several functions e.g., constant function, linear, quadratic, exponential, logarithmic, among others as shown in Figure 4.3.



FIGURE 4.3. Gravity force functions and modes along any dataset preprocessing.

The reference line functions are different from gravity force functions. Without the reference line, the gravity force can't be applied because no ground reference exists.

It is recommended that the gravity force for each segment, must to be defined between [0, 1], to fit the data to the reference line, as described in Algorithm 1.

## Algorithm 1 GFFM core algorithm using static and single reference line.

```
len_data \leftarrow len(data)
bias \leftarrow 10e - 10
if rf\_mode =: "static" then
   ref_line \leftarrow 0
  if rf\_range =: "minmax" then
     ref_line \leftarrow (max(data) - min(data))/2
   else
     ref_line \leftarrow mean(data)
   end if
end if
[g_t, g_b] \leftarrow get\_gravity\_vec(data, ref\_line, g\_func)
i \leftarrow 0
while i > len_data do
   if data[i] < ref_line then
     new\_data[i] \leftarrow data[i] + (ref\_line * gb[i] + bias)
   else
      new\_data[i] \leftarrow data[i] - (ref\_line * gt[i] + bias)
   end if
end while
i \leftarrow i + 1
```

To validate the proposed GFFM, several random trended data were applied having different number of samples, comparing GFFM results with the traditional detrend method. Different GFFM configurations were used in this validation, and also several gravity force coefficients, reference line modes and gravity force functions. The results shown that GFFM indeed detrended the signal in an iterative manner, which the data were smoothly detrend when  $g_t$  and  $g_b$  were less then 1. Otherwise, to totally fit the data to reference line,  $g_t$  and  $g_b$  must to be 1.

Some differences can be seen among GFFM and traditional detrend method. While the traditional method uses a trend line as reference, the GFFM uses an idea of ground line as reference to apply "forces" to fit the data, as shown in the trended random data (Figures 4.4 to 4.7).



FIGURE 4.4. GFFM test using a dataset with 150 samples. Reference line on static mode based on median, and gravity force function as independent mode, linear and coefficients  $g_t=1.0$  and  $g_b=0.7$ .



FIGURE 4.5. GFFM test using a dataset with 150 samples. Reference line on static mode based on mean, and gravity force function as shared mode, linear and coefficients  $g_t=0.8$  and  $g_b=1.0$ .



FIGURE 4.6. GFFM test using a dataset with 1000 samples. Reference line on static mode based on mean, and gravity force function as shared mode, linear and coefficients  $g_t=0.9$  and  $g_b=1.0$ .



FIGURE 4.7. GFFM test using a dataset with 2000 samples. Reference line on static mode based on min-max, and gravity force function as shared mode, linear and coefficients  $g_t=0.9$  and  $g_b=1.0$ .

High gravity force means that more data will fit to reference line. If the data presents a linear trend and the applied gravity force gt is smaller than gb for instance, the data in bottom-space will be more fitted to reference line and vice-versa. This method presents advantages and disadvantages. Regarding to the advantages of the GFFM, we can consider:

- Smooth and controlled detrends;
- Independent vertical spaces of detrend (top or bottom);
- Same detrend methods can be applied in any trend type, i.e. linear and polynomial;
- Detrend result looks more realistic keeping a controlled data fluctuations;
- Detrend results are kept in an average place of the raw data amplitude (not zero reference).

Regarding to the disadvantages of the GFFM, we can consider:

- Gravity forces values close to maximum, may damage some parts of the resulted data;
- For data with low trends, GFFM can smoothly damage some parts of the resulted data;
- Not always a better detrend is based on  $g_t = g_b$ , sometimes it should be tested before.

### 4.2. Abrupt Change Correction Method (ACCM)

The present method was initially developed to correct some abrupt changes in the data over time on the GSR and HR data. Noises and abrupt changes along the time, badly affect whole processing sequence. To correct it, a new approach called Abrupt Change Correction Method (ACCM) was developed in this work.

The ACCM algorithm uses a threshold between 0 and 1. For normalized data, the best threshold was 0.2. It means that, if the difference between consecutive data values is higher than 0.2, probably we are facing an abrupt data variation and it should be corrected. These problems were corrected keeping the correct data content along the time, using the Algorithm 2.

### Algorithm 2 ACCM core algorithm.

```
data \leftarrow norm(data)
len_data \leftarrow len(data)
d \leftarrow diff(data[1:], data[:-1])
threshold \gets 0.2
mag \leftarrow abs(d) >= threshold
edges \leftarrow nonzero(mag)
len_edges \leftarrow len(edges)
k \leftarrow 0
while k > len_edges do
   d\_edges \leftarrow edges[k]
  j \leftarrow d\_edges
   while j < len_data do
     if d[d_edges - 1] >= threshold then
         data[j] \leftarrow data[j] - d[d_edges - 1]
     end if
     if d[d_edges - 1] <= -threshold then
         data[j] \leftarrow data[j] + abs(d[d_edges - 1])
     end if
     j \leftarrow j + 1
   end while
   k \leftarrow k + 1
end while
```

The abrupt changes on GSR data, were mainly caused by motion artifacts and by the sensor default configuration, where it decreased abruptly the GSR data values after it reach the maximum y-axis. On HR data, it were cause by the earclip disconnections along the experiment. On EEG data, it were caused by motion artifacts (Table 4.1).

| Dataset        | RC1 | RC2                                                 | RC3 | GC1 | GC3 | LS2  | VC1 | CR1 | CLX | CL3 |
|----------------|-----|-----------------------------------------------------|-----|-----|-----|------|-----|-----|-----|-----|
| HR             | ×   | ×                                                   | ×   | ×   | ×   | ×    | ×   | ×   | ×   | ×   |
| $\mathbf{GSR}$ | ×   | ×                                                   | -   | —   | ×   | _    | ×   | _   | _   | ×   |
| EEG            | -   | ×                                                   | ×   | —   | _   | _    | _   | ×   | ×   | —   |
|                |     | <b>**</b> Corrections applied on Datasets <b>**</b> |     |     |     |      |     |     |     |     |
| ACCM           | >10 | 4                                                   | >10 | >10 | >10 | > 10 | 7   | 10  | >10 | >10 |

Table 4.1: Corrections of abrupt data changes using ACCM, over the experiment datasets RC1 to CL3.

## 4.2.1. Abrupt Change Correction for GSR Data

Figures 4.8 to 4.11, show the data abrupt changes over the GSR datasets. These datasets were previously normalized and corrected along the time (in seconds).



FIGURE 4.8. GSR dataset correction referent to the flight dataset CL3.



FIGURE 4.9. GSR dataset correction referent to the flight dataset RC1 and RC3.



FIGURE 4.10. GSR dataset correction referent to the flight datasets GC1 and LS2.



FIGURE 4.11. GSR dataset correction referent to the flight datasets VC1 and CLX.

## 4.2.2. Abrupt Change Correction for HR Data

Some corrections were also applied on HR dataset along the experiments, as shown in Figures 4.12 and 4.13. The HR abrupt changes were caused by the ear-clip disconnection. When the ear-clip disconnected, the experiment's supervisor put it back in place, immediately.



FIGURE 4.12. HR dataset correction referent to the flight datasets CL3 and VC1.



FIGURE 4.13. HR dataset correction referent to the flight datasets RC1 and GC3.

#### 4.3. Outliers Detection and Correction

Other best practice to process the data before the emotion recognition is to identify the data outliers, which it can interfere on the final result.

An outlier is a value whose value is markedly different from the other values in the dataset (Figure 4.14). To partially solve this problem, there are a couple of methods used to detect possible outliers. Once detected the outliers, it can be removed or normalized according to the dataset values. In this work, the outliers detection method was also used to remove or normalize some signal spikes that arose from the processing phase.



FIGURE 4.14. Outliers detected in some dataset.

The Z-Score and modified Z-Score are some methods that can be used to detect outliers. Table 4.2, presents the detected and removed outliers for all datasets. These methods were applied during the preprocessing and processing.

| Outlier Method   | ACCM    | Normalization | Detected    | Corrected  |
|------------------|---------|---------------|-------------|------------|
| Z-Score          | -       | —             | 947(2.05%)  | 0%         |
| Z-Score          | -       | Applied       | 947(2.05%)  | 0%         |
| Z-Score          | Applied | —             | 947(2.05%)  | 553(1.20%) |
| Z-Score          | Applied | Applied       | 947(2.05%)  | 553(1.20%) |
| Modified Z-Score | -       | —             | 3256(7.06%) | 0%         |
| Modified Z-Score | _       | Applied       | 3256(7.06%) | 0%         |
| Modified Z-Score | Applied | —             | 3256(7.06%) | 777(1.69%) |
| Modified Z-Score | Applied | Applied       | 3256(7.06%) | 777(1.69%) |

Table 4.2: Outliers detection and removal using Z-Score and modified Z-Score.

According to previous table, ACCM is also useful to remove outliers as consequence from the abrupt change data corrections along the dataset. It is also possible to see that the modified Z-Score detected different number of outliers. Both methods were tested and the best result was applied.

### 4.3.1. Z-Score

This method is used to detect outliers on a dataset. It presents low sensibility to detect outliers on small datasets. To compute the Z-score on each observation inside any dataset, the Equation 4.1 is used:

$$Z(n) = \frac{y(n) - \bar{y}}{std(y)} \tag{4.1}$$

The  $\bar{y}$  and std(y) denote the sample mean and sample standard deviation, respectively. In another words, the data is computed in units of how many standard deviations it is from the mean. This method considers to use a threshold greater or lower than 3.0 to indicate potential outliers. It was also considered a constant values called *batch*, to define the number of previous samples to consider in the case of outlier correction or removal process (Algorithm 3).

#### Algorithm 3 Z-Score core algorithm detection and correction.

```
len_data \leftarrow len(data)
batch \leftarrow 10
i \leftarrow 0
while i < len_data do
   z[i] \leftarrow (data[i] - mean(data)) / std(data)
   if z[i] < -3.0 \lor z[i] > 3.0 then
      outlier \leftarrow TRUE
      if i > batch then
         z[i] \leftarrow median(data[(i - batch) : i])
      else
         z[i] \leftarrow median(data[0:i])
      end if
   else
      outlier \leftarrow FALSE
   end if
   i \leftarrow i + 1
end while
```

### 4.3.2. Modified Z-Score

The modified Z-Score is an improvement of Z-Score based on the mean of absolute deviation and a constant. Compared with the Z-Score, the modified Z-Score is much more sensible to detect outliers on small datasets (Equation 4.2).

$$MZ(n) = \frac{0.6745 \times (y(n) - \tilde{y})}{MAD}$$

$$\tag{4.2}$$

The Median Absolute Deviation (MAD) is defined by Equation 4.3. It is recommended to use a threshold greater or lower than 3.5 to better detect potential outliers. The  $\tilde{y}$  and |y|, define the median of the data and the absolute value of y, respectively.

$$MAD = median(|y(n) - \tilde{y}|) \tag{4.3}$$

The outliers were corrected based also on modified Z-Score (Algorithm 4). Like in Z-Score method, the batch size constant was also considered to correct the outliers.

Algorithm 4 Modified Z-Score core algorithm detection and correction.

```
len_data \leftarrow len(data)
MAD \leftarrow abs(data[:] - median(data))
const \leftarrow 0.6745
batch \leftarrow 10
i \leftarrow 0
while i < len_data do
   mz[i] \leftarrow const * (data[i] - median(data))/MAD
   if mz[i] < -3.5 \lor mz[i] > 3.5 then
      outlier \leftarrow TRUE
     if i > batch then
         mz[i] \leftarrow median(data[(i - batch):i])
     else
         mz[i] \leftarrow median(data[0:i])
     end if
   else
     outlier \leftarrow FALSE
   end if
   i \leftarrow i + 1
end while
```

### 4.4. Data Normalization

The acquired data were normalized between 0 and 1. Normalization means to scale the data in identical level or power level. Equation 6.12, presents the normalization used in this work, which n represents each index from input vector.

$$y(n) = \frac{y(n) - \min(y)}{\max(y) - \min(y)}$$

$$(4.4)$$

### 4.5. Face Dataset - Smoothing Abrupt Oscillations

The dataset produced by the Face Reader software, was used as the dataset reference i.e., the target or desired output on the emotion recognition process. It presented a lot of abrupt and non natural variation of emotion intensities along the time, bringing also several mismatches e.g., sometimes recognizing scared emotions as disgusting or surprise. Some of these mismatches, were the major reason of errors on the developed emotion recognition. To minimize these effects, the modified Z-Score was used together with a third-order smooth filtering, varying the window length between 120 and 151 samples.

Figure 4.15, shows the application of modified Z-Score and Savitzky-Golay filter over the raw facial emotion dataset, also shows the emotion discretization between 1 and 5: 1-happy, 2-sad, 3-angry, 4-surprised and 5-scared.



FIGURE 4.15. Raw face emotion dataset with smoothing and resampling.

The smoothing method applied on the facial emotion dataset, was based on Savitzky-Golay filter, to eliminate possible noises in the data by smoothing them using the least-squares polynomials (Savitzky and Golay, 1964).

The emotion discretization along the each sample (Figure 4.15-bottom), was based on Algorithm 5, where it defines the higher emotion intensity (or predominant instantaneous emotion) among all five different emotions by time; it can also be faced like the answer for the question, "which emotion presents the higher intensity now?". This discretization is useful to predict the major (higher) emotion intensities along each sample time, returning a single output between 1 and 5.

### Algorithm 5 Emotion discretization between 1 (happy) and 5 (scared).

$$\begin{split} &len\_face \leftarrow len(face\_data) \\ &num\_emotions \leftarrow 5 \\ &emotion\_classes \leftarrow [] \\ &i \leftarrow 0 \\ &\textbf{while } i < len\_face \textbf{ do} \\ &emo\_tmp \leftarrow [face\_data[i,0:num\_emotions]] \\ &max\_emotion\_index \leftarrow get\_index(max(emo\_tmp)) \\ &emotion\_classes[i] \leftarrow max\_emotion\_index \\ &i \leftarrow i+1 \\ &\textbf{end while} \end{split}$$

## 4.6. Preprocessing Output

At the end of the preprocessing steps presented before (i.e. abrupt changes corrections, normalization, smoothing and outliers detections) the data are ready to be processed and to extract its features. The data correlation will be improved after the data further processing.

Figure 4.16, shows a direct data correlation  $N \times N$  before and after the preprocessing steps in a portion of the raw HR and GSR datasets (N=10,000 in a total of 44,237 samples).



FIGURE 4.16. A set of raw HR and GSR data with N=10e+3 samples) preprocessing result. Raw dataset before preprocessing (left); raw dataset after (right).

All 5 colors in the Figure 4.16-right, represent the 5 emotions based on facial emotion recognition software. This also shows that after the preprocessing, it is possible to organize the

dataset in such a way that it is already easy to visualize several clusters based on facial emotions even they are overlapping clusters.

In this chapter were presented all raw data preprocessing under the facial, HR, GSR and EEG datasets, that it is important to be used in the next steps of this work.

### CHAPTER 5

# **Data Processing**

The dataset processing transforms the raw data into a data format that can be manipulated by any programming language, being possible to achieve good analysis accuracy (Hafen et al., 2014). In the present work, it includes: abrupt changes correction, outliers removal, signal detrend, signal analysis in time and frequency, peaks processing and analysis, data splitting, bandpass and lowpass filtering, as shown in Figure 5.1.



FIGURE 5.1. Detailed stages from recorded data until feature extraction.

#### 5.1. Drift Removal

The second signal detrend applied to all input data x(n), is also called as drift removal. This process is extremely important to improve the quality of data that will be used to perform

emotion recognition. Researches try to reduce the effect of these drifts along the time, through the use of different methods and applications as for instance, to compare the efficiency of some drift removal methods based on ECG (Lenis et al., 2017) or to measure human gait with wearable sensors (Takeda et al., 2014).

In this work, the small recursive filter dc-blocker was applied to execute the second drift removal. It is an efficient tool because conserves the main characteristics of each peak and remove the dc-component <sup>1</sup> of a signal circulating in a delay-line loop (Julius, 2008). This recursive filter is specified by the difference equation below,

$$y(x) = x(n) - x(n-1) + Ry(n-1),$$
(5.1)

where R represents a parameter that normally vary between 0.9 and 1. The digital filters are often implemented by converting the transfer function to a linear constant-coefficient difference equation through the Z-transform, as presented by Equation 5.2.

$$H(z) = \frac{1 - z^{-1}}{1 - Rz^{-1}} \tag{5.2}$$

Figure 5.2, shows a raw EEG signal before and after the application of the dc-blocker, keeping all peaks characteristics and relative amplitudes.



FIGURE 5.2. Result of the drift removal from a raw EEG dataset having t = 9.78 min.

#### 5.2. Auto Regressive Exogenous - Motion Artefact Removal

The Auto Regressive Exogenous (ARX) method was used to estimate the accelerometer artifacts, inside a of several raw data (artefact estimation). It is part of the motion artefact removal acquired along the experiments and was applied mainly on EEG datasets (Siddiquee et al., 2018).

To estimate the accelerometer values along the time, we define the true data (i.e. clean, without noise) as s(n), which it was corrupted by the motion artifacts w(n); using these two parameters, the corrupted data for each data point n, can be defined by,

<sup>&</sup>lt;sup>1</sup>The *dc* component, also called average value, represents a constant voltage that shifts the signal up or down along the y-axis, e.g., considering the signal  $x(t) = A + Bsin(2\pi)$ , the term *A* represents the *dc*-component.

$$x(n) = s(n) + w(n).$$
(5.3)

The data coming from each device, are represented by x(n), where it includes the true data and the artifacts. It is not possible to extract clearly the artefact to remove it although, it can be estimated. The artefact estimation can be represented by  $\hat{w}(k)$ , as presented below.

$$\hat{w}(k) = \left(\sum_{i=1}^{NA} a_i x(k-i)\right) + \left(\sum_{j=0}^{NB} b_j^T u(k-j)\right)$$
(5.4)

The 1xL model vector coefficients a and b can be defined by,  $a = [a_1, a_2, \ldots, a_{NA}]$  and  $b = [b_1, b_2, \ldots, b_{NB}]$  for 1xL input model vector  $u = [u(k), u(k-1), \ldots, u(k-NB)]$  representing the 3D-accelerometer values  $u[k] = [A_x(k), A_y(k), A_z(k)]$ . Thus, expanding the previous Equation, we will have,

$$\hat{w}(k) = a_1(k-1) + \ldots + a_{NA}x(k-NA) + b_0^T u(k) + b_1^T u(k-1) + \ldots + b_{NB}^T u(k-NB).$$
(5.5)

Equations 5.6 to 5.7, can be used to find the models coefficients, where e(n) represents the instantaneous error between the model and the system input, and J(a, b) represents the Jacobian matrix applied to the model coefficients.

$$e(k) = x(k) - \hat{w}(k)$$
 (5.6)

$$J(a,b) = \sum_{k=1}^{N} (x(k) - \hat{w}(k))$$
(5.7)

Once determined the 1xL vector  $a_1, a_2, \ldots, a_{NA}$  and the Lx1 vector  $b_0^T, b_1^T, \ldots, b_{NB}^T$ , the artefact estimation can be found  $\hat{w}(n)$ , the true data  $\hat{s}(n)$  can also be estimated as defined below.

$$\hat{s}(n) = x(n) - \hat{w}(n)$$
 (5.8)

The Signal to Noise Ratio (SNR) defined by Equation 5.9, was used to control the best model estimation, where:  $\sigma_x^2$ ,  $\sigma_{e_{Aft}}^2$  and  $\sigma_{e_{Bef}}^2$  represent respectively, the variance of the data with motion artefact input (x(n)), the variance of the data after  $(\hat{s}(n))$  and before  $(\hat{w}(n))$  the artefact removal (Siddiquee et al., 2018).

$$\Delta SNR = 10 \log_{10}(\frac{\sigma_x^2}{\sigma_{e_{Aft}}^2}) - 10 \log_{10}(\frac{\sigma_x^2}{\sigma_{e_{Bef}}^2})$$
(5.9)

#### 5.3. Filtering - Bandpass and Lowpass Combination

The filtering was applied to consider only the  $\beta$ -band on these experiments, regarding to EEG data. The classical IIR digital filters Butterworth, were used in this work.

The frequency range between 12 to 40Hz was considered using a bandpass Butterworth filter (BPF) to guaranteer a minimum  $\beta$ -band noises; furthermore, a lowpass Butterworth filter filter (LPF), having cutoff frequency of 40Hz, was also applied, to improve the prior filtering effect not increasing its order (Figure 5.3).

The filtering also removed the highest electrooculogram (EOG) artifacts. These EOG artifacts are one of the main noises over the EEG data and must be avoided. It were caused by the eyes globe movements along the experiments, since that the EOG frequencies are mainly between 0.5 to 12Hz.



FIGURE 5.3. Filtering output over EEG data regarding to  $\beta$ -band.

#### 5.3.1. Spectrogram View

Spectrograms can be used to visualize the change of a nonstationary frequency of a data over time. The spectrogram enable us to see the frequency energies or magnitudes along the time, based on consecutive Fourier transforms over different datasets and EEG channels, as shown in Figure 5.4.

Since the beta band (Umeda and Satoshi, 2013) is more related to cognition processes, it is possible to visualize the flight moments where it demanded more cognitive resource of each volunteer. These moments are takeoff (Task 1) and landing (Task 7), where it were indeed critical for all volunteers. The spectrogram shown that in general, the EEG amplitudes of all datasets along the Task 3, were less if compared with the amplitudes referent to takeoff and landing.

Figure 5.5, shows an example of EEG 8-channels after the filtering and processing. At this point, eyes motion artefact and other movement artifacts were removed. To compare the results from these processing, the Chapter 2 presents the same CR1 dataset in raw, without processing. Still in these processed EEG, it is possible to see the high data oscillation, mainly during the takeoff (Task 1), final approach (Task 6) and landing (Task 7).


FIGURE 5.4. Some dataset spectrograms, showing the flight parts with high amplitude.

# 5.4. Discrete Fourier Transform Analysis

The Discrete Fourier Transform (DFT) plays a central role in this work, since most of the processing is based on that. It is also used to visualize the effect of the filtering process. The DFT transforms the data of the space of time, to space of frequency, defined by direct transform as defined in Equation 5.10. In another words, it is represented as linear combinations of bounded exponential through the Fourier transform (Oppenheim and Verghese, 2015). The application of the DFT to spectral analysis will be shown further.

$$x[n] = \sum_{k=0}^{N-1} X[k] e^{j(2\pi/N)kn}$$
(5.10)



FIGURE 5.5. Processed EEG (8 channels) dataset referent to CR1 experiment.

#### CHAPTER 6

# Feature Extraction

Feature extraction, is the last step before the emotion recognition and it can be applied over time and frequency contexts. It is very important in the pattern identification, classification, modeling and general automatic recognition. Feature extraction is also fundamental to minimize the loss of important information embedded in some data and to optimize a dataset bringing a more clear information to recognize any pattern or cluster (Al-Fahoum and A Al-Fraihat, 2014). The considered feature extraction methods are adapted to the processed data, according to the physiological data, e.g. HR, GSR and EEG.

Figure 6.1, shows how the feature extraction works for each dataset along the time. For each part of a data ( $\Delta$ s) along the time, several features were extracted e.g., mean, standard deviation and so on. The features that were extracted of the emotions output dataset (happy, sad, angry, surprise and scared), were related with the same time interval of the features that are extracted of the biosignal dataset (HR, GSR and EEG1-8).



FIGURE 6.1. Feature extraction and sampling demonstration using the feature  $\mu$  for all detected emotions from the face.

A fixed number of samples are selected by time and the features are extracted from it. The number of samples to select i.e., the window length to extract features, is up to the problem and data in case. For instance, for HR data, it is recommended a time window of at least five seconds of samples and so on.

#### 6.1. Features Description

A total of 15 different features were extracted. Each feature was chosen according to each dataset characteristics as presented in Table 6.1, which it describes all extracted features as such as the correspondent datasets. Features based on wavelets were also applied over EEG dataset.

| Extracted                       | Feature                                                       | Applied to         |
|---------------------------------|---------------------------------------------------------------|--------------------|
| Features                        | Description                                                   | Dataset            |
| FEAT_MN                         | $\diamond$ Mean of a sample.                                  | HR, GSR, EEG, Face |
| $\mathbf{FEAT}_{\mathbf{MD}}$   | $\diamond$ Middle value of a sample (median).                 | HR, GSR, EEG, Face |
| $\mathbf{FEAT}_{-}\mathbf{STD}$ | $\diamond$ Standard deviation ( $\sigma$ ) of a sample.       | HR, GSR, EEG       |
| $\mathbf{FEAT}_{-}\mathbf{VAR}$ | $\diamond$ Variance $(\sigma^2)$ of a sample.                 | HR, GSR, EEG       |
| FEAT_ENT                        | $\diamond$ Measure the samples' entropy i.e., irregularities. | HR, GSR, EEG       |
| FEAT_RNG                        | $\diamond$ Absolute range $(max - min)$ value of a sample.    | HR, GSR, EEG       |
| $\mathbf{FEAT}_{-}\mathbf{RMS}$ | $\diamond$ Root mean squared of a sample.                     | HR, GSR, EEG       |
| FEAT_PEK                        | $\diamond$ Measure the amount of peaks into a sample.         | GSR                |
| FEAT_WAC                        | $\diamond$ Mean of the wavelet (Symlets) approximation coeff. | EEG                |
| $\mathbf{FEAT}_{-}\mathbf{WDC}$ | $\diamond$ Mean of the wavelet (Symlets) detailed coeff.      | EEG                |
| FEAT_SD1                        | ♦ Short-term HR variability.                                  | HR                 |
| $\mathbf{FEAT}_{\mathbf{SD2}}$  | $\diamond$ Long-term HR variability.                          | $\mathrm{HR}$      |
| $\mathbf{FEAT}_{-}\mathbf{SCT}$ | $\diamond$ Vector norm from the Poincaré plot centroid.       | $\mathrm{HR}$      |
| FEAT_SAR                        | $\diamond$ Ellipse area based on $SD1$ and $SD2.$             | HR                 |

TABLE 6.1. Extracted features for HR, GSR, EEG and Face datasets.

Regarding to GSR datasets, it was important to understand its data profile and behaviour to properly relate it to the number of peaks (peak frequency) along the time/events; for this reason, one feature that relates peaks by time, was applied. Other peculiarities are also found over the HR datasets as for instance, the HR variabilities during several emotional events along time. This HR dynamic fluctuation, were mainly represented by three features. Furthermore, other statistical features were also applied over all datasets, considering several sample lengths.

Despite the extracted features, not all of them were used at same time, due it can provoke recognition ambiguities and regression problems. To solve that, some techniques were applied to select the best features, by correlating or removing them from some datasets.

#### 6.1.1. Mean Features (FEAT\_MN)

The mean value was applied over the HR, GSR, EEG and face datasets. It is represented by the sample vector  $x = [x_1, x_2, \ldots, x_n]$  as defined below, which the  $\bar{x}$  is the mean value of the sample.

$$\bar{x} = \frac{1}{N} \sum_{n=1}^{N} x_i = \left(\frac{x_1 + x_2 + \dots + x_n}{N}\right)$$
(6.1)

#### 6.1.2. Median Features - Correcting Mean's Discrepancies (FEAT\_MD)

The arithmetic feature median, is sometimes also applied as a feature from HR and GSR data instead of the mean. It because, the median works better when the dataset presents some high 86

spikes, which it cause wrong increase of the data mean value. In this case, the median  $(\tilde{x})$  is more realistic, taking the middle value of this data already ordered (Devore, 2000).

Equation 6.2 must to be used if the sampled data have an odd number of items, or Equation 6.3, otherwise. In both cases of median  $\tilde{x}$ , the data vector x must be first sorted in ascending or descending order.

$$\tilde{x}_{odd} = x(\frac{n+1}{2})item \tag{6.2}$$

$$\tilde{x}_{even} = \frac{x_{(\frac{n}{2})} + x_{(\frac{n}{2}+1)}}{2} item$$
(6.3)

# 6.1.3. Standard Deviation and Variance Features (FEAT\_STD, FEAT\_VAR)

The standard deviation and variance, were also applied over the HR, GSR and EEG datasets. It are represented by,  $\sigma$  and  $\sigma^2$  respectively, as defined by Equations below.

$$\sigma = \sqrt{\frac{\sum_{n=1}^{N} (x(n) - \bar{x})^2}{N}}, \qquad \sigma^2 = \frac{\sum_{n=1}^{N} (x(n) - \bar{x})^2}{N}$$
(6.4)

# 6.1.4. Continuous Entropy Features (FEAT\_ENT)

The continuous entropy or differential entropy, is another feature used in this work. It is a concept in data theory to represents the measurement of the average rate of a random variable; it is also understood as a method to measure the quality or classes<sup>1</sup> diversity of such dataset. On continuous probability distributions, it is based on the expansion from Shannon entropy concept, defined by Equation 6.5,

$$h(X) = -\int_{0}^{N(S)} f(x) log f(x) dx,$$
(6.5)

where X represents a random variable, defined by a probability density function of a subset S. The discrete approximation of h(X), can be defined as below.

$$h(X) = -\Delta x \sum_{0}^{N(S)} f(x) log f(x)$$
(6.6)

#### 6.1.5. Wavelets Features (FEAT\_WAC, FEAT\_WDC)

The wavelet analysis plays an important role as part of the feature extraction methods. It allows us to analyze time and frequency contents of signals simultaneously and with high data resolution. When it is applied over a continuous data, it is called of Continuous Wavelet Transform (CWT), and over a discrete data is Discrete Wavelet Transform (DWT) (Mallat, 2009). It lies on the concept of mother wavelet (MWT), which it is a function used to decompose and describe the analyzed data. The Symlets ('sym7') was the MWT used, due its high similarities and compatibilities with the EEG data in all scalp regions (Equation 6.7) (Al-Qazzaz et al., 2015).

<sup>&</sup>lt;sup>1</sup>In data mining or artificial intelligence, the class represents the type of an instance from a dataset or the target into the classification problem.

$$CWT(a,b) = \int_{-\infty}^{+\infty} x(t)\psi_{a,b}^*(t)dt,$$
(6.7)

where  $\mathbf{x}(t)$  represents the unprocessed signal, a is the dilation, and b is the translation factor. Furthermore, as shown previously, the CWT method includes a complex conjugate term denoted by  $\psi_{a,b}^*$ , where  $\psi(t)$  is the mother wavelet (Al-Fahoum and A Al-Fraihat, 2014) (Equation 6.8).

$$\psi_{a,b}(t) = \frac{1}{\sqrt{|a|}} \psi(\frac{t-b}{a}).$$
(6.8)

Figure 6.2, shows the practical approach of wavelets, which it works basically, fixing a function called mother wavelet, decomposing the signal x(t), into a shifted and scaled versions of this function, allowing to precisely distinguish local characteristics of the signals.



FIGURE 6.2. Wavelet shifts along of a sine wave with different frequencies, where  $a_i \neq a_j$  and  $b_i \neq b_j$ .

## 6.1.6. Peaks Counting Features (FEAT\_PEK)

Peaks detections and counting were applyed over the GSR dataset. It is a important features to characterize the GSR data. Before detect the peaks position, the data was normalized and detrended, to equalize the peaks amplitude along the time. After that, the peaks detection was applied. Once the peak positions were detected, the final procedure was apply it over the original GSR data.

The result of this method, is shown in Figure 6.3 below, which refers to 3,600 samples from dataset RC1, after the detrend and normalization (top plot), returning to original shape (bottom plot).



FIGURE 6.3. Peaks detections and counting over 3600 samples (DS-RC1).

It detection was based on topographic prominence method, which it is an useful concept to maintain a good peak choice, discarding the noisy peaks. In addition, it refers to the minimum point height, necessary to descend to get from the peak to any other higher surface.

## 6.1.7. Poincaré Plots Features (FEAT\_SD1, FEAT\_SD2, FEAT\_SCT, FEAT\_SAR)

The Poincaré plots of RR intervals is one of the methods used in Heart Rate Variability (HRV) analysis. It returns a useful visual map (or cloud), which is capable to summarize the dynamics of an entire RR time series regarding to actual and next one values. It is also a quantitative method to give information over the long- and short-term HRV (Golinska, 2013; Piskorski and Guzik, 2007).

This method is represented by Poincaré descriptors, SD1 and SD2, which are used to quantify geometrically the produced cloud. It is given in terms of the variance of each  $RR_i$  and  $RR_{i+1}$  pairs. The *i* refers to the *i*th RR value, as shown in Figure 6.4.



FIGURE 6.4. Poincaré plot demonstration over the flight dataset RC2.

Mathematically, let the HRV be defined by the vector  $RR = [RR_1, RR_2, \ldots, RR_{n+1}]$  and the position-correlated vectors x and y, as defined below (Tayel and AlSaba, 2015; Piskorski and Guzik, 2007),

$$x = [x_1, x_2, \dots, x_n] \equiv [RR_1, RR_2, \dots, RR_n],$$
(6.9)

89

$$y = [y_2, x_3, \dots, y_{n+1}] \equiv [RR_2, RR_3, \dots, RR_{n+1}].$$
(6.10)

For a regular Poincaré plot, the centroid vector  $C_{xy} = [x_c, y_c]$  of its cloud representation, is define by,

$$x_c = \frac{1}{n} \sum_{i=1}^n x_i, y_c = \frac{1}{n} \sum_{i=1}^n y_i.$$
(6.11)

To compute the numerical representation of the centroid, the *vector norm* is applied using the Equation 6.12.

$$||C_{xy}|| = \sqrt{x_c^2 + y_c^2} \tag{6.12}$$

To compute the *descriptors* (short-term variability) SD1 and SD2 of a standard Poincaré plot, the distances  $d_1$  and  $d_2$  of any *i*th RR from the centroid *interceptors*  $l_1$  and  $l_2$  respectively are defined as,

$$d_{1i} = \frac{|(x_i - x_c) - (y_i - y_c)|}{\sqrt{2}}, d_{2i} = \frac{|(x_i - x_c) + (y_i - y_c)|}{\sqrt{2}}.$$
(6.13)

Considering those prior algebraic definitions for a standard cloud, it is possible to compute the *SD*1 and *SD*2.

$$SD1_{c} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_{1i}^{2}, SD2_{c}} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} d_{2i}^{2}}$$
(6.14)

The area covered by the resulted ellipse, was also used as a feature for HR dataset, and it can be determined as below.

$$SA = \pi . SD1. SD2 \tag{6.15}$$

The results over the Poincaré plots for all datasets (raw and processed datasets) used in this work, are shown in Figures 6.5 to 6.8.



FIGURE 6.5. Poincaré plot for raw dataset and processed dataset (CL3).



FIGURE 6.6. Poincaré plots for raw datasets and processed datasets (RC1 to GC1).



FIGURE 6.7. Poincaré plots for raw datasets and processed datasets (GC3 to VC1).



FIGURE 6.8. Poincaré plots for raw datasets and processed datasets (VC2 to CLX).

# 6.1.8. Sample Absolute Interval Range Features (FEAT\_RNG)

The range of a sample was also used as a feature. It is defined as the absolute difference between the values referent to the last f(t) and the first position  $f(t - \Delta t)$  of a sample in time, as shown in Equation 6.16, which  $\Delta t$  represents the interval length to displace the interval from the actual position t.

$$R(t) = |f(t) - f(t - \Delta t)|$$
(6.16)

#### 6.2. Singular Value Decomposition - Features Selection

Since the features were extracted, some of them can be useless in the recognition process due its low representativity. To select the best set of them, the features must to have its dimensionality reduced. Thus, the Singular Value Decomposition (SVD) was used, executing a matrix decomposition or matrix factorization of the input matrix (extracted features). It is based on eigenvalues, applied to a bidimensional  $m \times n$  matrix A.

Mathematically, this method factorizes a matrix into a product of matrices, as shown in Equation 6.17.

$$A = UDV^*, \tag{6.17}$$

where D is a nonnegative diagonal matrix, having the singular values of A; U and V are matrices that satisfy the condition  $U^*U = I$  and  $V^*V = I$ . The resultant matrix of this decomposition, is the new input matrix applied into the recognition process.

# 6.3. Features Columns Centering

After apply a matrix decomposition, a mean centering or also called column/block centering was computed. It is important to normalize the input vector for each data, in the same space of reference to have zero expectation by each measurement i.e., must be centered as shown in Figure 6.9.



FIGURE 6.9. Columns centering over feature vectors, before (left) and after (right).

Equation 6.18 below, shows how to apply it for each data column, which  $C_A$  represents the centered columns and  $\mu_A$  represents the mean of each column vectors or columns from dataset A.

$$C_A(n) = \sum_{n=1}^{N} (A(n) - \mu_A)$$
(6.18)

#### 6.4. Features Correlation

Several statistical parameters are used to analyze the extracted features such as: point estimation, probability density function and Pearson Correlation Coefficient (PCC).

To not interfere negatively on the final result, some features were not used. In this work, the features means and medians were strongly correlated, motivating us to use only one of them, as shown in Figure 6.10.



FIGURE 6.10. Scatter plot for some extracted features.

## 6.4.1. Pearson Correlation Coefficient - Evaluating the Features Correlations

The selection of the best features, is the process of select relevant features or remove the worst one. The best features improve and the worst degenerate the model accuracies.

In this work, the feature selection was based on correlation coefficient measurement, which it is an important method for feature analysis in machine learning models. It measures how strongly one variable or feature, depends over another variable and basically, it is defined in numerical range between -1 to +1. Variables which are uncorrelated with the analyzed objective, probably it should interfere negatively on the final model or result. In addition, if two variables are strongly correlated to each other (i.e. very close to [-1;-0.9]/[+0.9;+1]), is recommended to eliminate one of these variables because seems to be same. A good correlation can merge between [-0.7;-0.5]/[+0.5;+0.7].

There are three types of features correlations: positive correlation, negative correlation and no correlation (null correlation).

The most used correlation coefficient method, is the statistical method called Pearson Correlation Coefficient (PCC), also called as R-correlation, and it is defined by Equation 6.19.

$$R = \frac{\sum_{n=1}^{N} (y(n) - \bar{y})(\hat{y}(n) - \bar{y})}{\sqrt{\sum_{n=1}^{N} (y(n) - \bar{y})^2 \sum_{n=1}^{N} (\hat{y}(n) - \bar{y})^2}}$$
(6.19)

Simplifying this, we can find the Equation below.

$$R = \sqrt{\frac{\sum_{n=1}^{N} (\hat{y}(n) - \bar{y})^2}{\sum_{n=1}^{N} (y(n) - \bar{y})^2}}$$
(6.20)

There are also methods called, determination coefficient, which it is mainly used as regression metrics method e.g., the square of PCC  $(R^2)$ .

The prior sections shown the extracted features used to recognize emotions. It were features based on statistics, peaks detection, RR dispersion and wavelets. In general, the features extraction stage isn't sufficient to aim totaly the next stage of an emotion recognition. Thus, all of them needed to be analyzed before going forward, since some of them can have low representativity on the recognition process. For this reason, SVD and other normalization were also applied.

## CHAPTER 7

# **Emotion Recognition**

Emotion recognition is the process of identifying human emotions through the attribution of emotional states based on the observation of visual and auditory nonverbal cues. It include facial, vocal, postural, and gestural cues displayed by a sender, that is, a person displaying an emotional reaction (Bänziger, 2014).

The proposed emotion recognition was based on Artificial Neural Networks (ANN) and Deep Learning techniques (DL). It were implemented with Python3 Toolkits (standard and data processing libraries), PyBrain, Keras and TensorFlow. This last, having also execution support of the Graphics Processing Unit (GPU).

#### 7.1. Artificial Neural Network

The ANN is a supervised technique, inspired by the human's brain behaviours, which it can process several instruction in short periods of time, taking fast decisions and reactions. Its topology architecture can be designed according to the problem to be solved being based on the number of layers and neurons. A low number of neurons is recommended to solve simpler problems. However, if the problem complexity increases, another number of neurons must to be analysed as needed. Mathematically, each single neuron, represents a single function over several parameters of activation and thresholds (or biases).

The use of ANN and DL to accurately recognize emotions, was based on a couple of researches, which it were analyzed to find out which techniques are more used nowadays on this context (see the most used techniques presented in Chapter 1). These analysis shown that the techniques based on neural networks e.g., ANN, CNN, RNN, DNN, are powerful tools due its high capacity to solve complex tasks, being massively used on modern controls, dynamic systems, data mining, automatic bio-patterns identification (e.g. fingerprints or face recognition) and robotics. It is possible to cite also the high capacity of the ANN, to produce complex and parallel solutions over the field of extracted features. Each ANN layer, can presents different and parallel outputs. It is also possible to use ANN combined with another techniques such as, K-Means or SVM, for instance.

## 7.1.1. McCulloch-Pitts Neuron Model

The McCulloch-Pitts neuron model, was proposed in 1943 by the neuroscientist Warren Mu-Culloch and the logician Walter Pitts. They designed the artificial neurons (perceptrons) as a structure based on: inputs, activation functions, weights, thresholds and outputs. In this model, the neurons are connected by weights and biases, to control the network output. A single perceptron network is called single-layer perceptron, which it represents a single boundary line having low capacity of classification or regression i.e., very low dimensionality. If the network presents more than a single neuron layer, it is called Multi-Layer Perceptron (MLP), which it can solve complex problems of regression and classification. Figure 7.1, shows the structure of a single neuron model proposed by McCulloch-Pitts.



FIGURE 7.1. Perceptron model.

Several activation functions can be used to compute the neuron output, such as: identity, binary step, logistic (also called sigmoid, sigmoidal or soft step), tangentoid, Inverse Square Root Unit (ISRU), Rectified Linear Unit (ReLU), softmax, among others. In this work, three of them were considered: sigmoidal, softmax and ReLU.

## 7.1.2. ANN Development and Modeling

Since the ANN is a supervised method, the training must to be considered. The data training represents one fraction of the dataset and it is defined in Equation 7.1, where  $\tau$  represents the training-set, x(n) the input-set (or input signal features), d(n) the desired output in each iteration n, and  $N_i$  that represents the number of instances of the training-set (Haykin, 2011).

$$\tau = \{x(n), d(n)\} \mid_{n=1}^{N_i}$$
(7.1)

The induced local field (for forward computation), was used and can be computed by Equation 7.2, which  $x_i$  goes from input neurons i;  $w_{ji}$ , and  $w_b$  represent the weights connections from the neuron j to i, and  $b_{ji}$  is the bias applied for each neuron, by iteration n.

$$v_j(n) = \sum_{i=1}^N w_{ji}(n) x_i(n) + b_{ji} w_b, j \ge 1$$
(7.2)

For each hidden layer, two different activation functions were considered: the sigmoidal and ReLU. The sigmoidal activation function  $\varphi(\cdot)$  is defined by Equation 7.3, where *a* determines the threshold of the function. The sigmoid function returns values between 0 and 1.

$$\varphi_j(v_j(n))_{sig} = \frac{1}{1 + e^{-av_j(n)}}, a \ge 1$$
(7.3)

Another activation function applied in this work, is the ReLU or rectified linear unit. It is defined by Equation 7.4, which it returns values between 0 and  $+\infty$ .

$$\varphi_j(v_j(n))_{ReLU} = \begin{cases} 0 & \text{if } x < 0\\ x & \text{if } x \ge 0 \end{cases}$$
(7.4)

98

Regarding to output layer, also two different activation functions were considered: ReLU and the softmax, which it last one is defined by Equation 7.5. It represents the prediction probability for each emotion, over all output neurons having values between 0 and 1.

$$P(y = j|X)(n) = \frac{e^{v_j(n)}}{\sum_{k=1}^{N_o} e^{v_k(n)}}.$$
(7.5)

The P(y|X) is mainly applied in case of classification problem i.e., which the outputs return independent probabilities limited by the number of output classes in case. Otherwise, when using the  $\varphi_j(v_j(n))$ , the ANN output can be represented by any amount of neurons, which it must to return independent values (not probabilities), being useful when we are working with regression analysis. Since this work lies over the ANN and regression problems, the  $\varphi_j(v_j(n))$ was used.

The error signal or instantaneous error produced by each neuron j forms the output layer, defined by Equation 7.6,

$$\varepsilon_j(n) = d_j(n) - y_k(n), \tag{7.6}$$

where  $d_j(n)$  represents the *j*th element of d(n) and  $y_k(n)$  the *k*th instantaneous output. Furthermore, the  $y_k(n)$  and the instantaneous error energy ( $\xi$ ) of each neuron *j* (Equation 7.7), are both considered to reach the best network accuracy along the training epochs (iterations) (Marsland, 2015; Haykin, 2011).

$$\xi_j(n) = \frac{1}{2}\varepsilon_j^2(n) \tag{7.7}$$

The local gradient applied to each neuron k from the output layer, is described by Equation 7.8.

$$\delta_k(n) = \varepsilon_k(n) y_k(n) (1 - y_k(n)) \tag{7.8}$$

The ANN weights adjustments (for backward computation) applied to each output neuron, are defined by delta-rule (Equation 7.9) (Haykin, 2011),

$$\Delta w_{kj}(n) = \alpha \Delta w_{kj}(n-1) + \eta \delta_k(n) y_k(n), \tag{7.9}$$

where the momentum  $\alpha$  ([0;1]) is used to avoid learning instabilities while it increases the learning rate  $\eta$  ([0;1]), to decrease the mean error; both variables are adjusted during the training phase.

## 7.1.3. Learning Rate Analysis

The learning rate is a fundamental variable to optimize the learning process in the recognition process. One way to find the best learning rate for such problem, is to relate the learning rate with the recognition loss or error.

For a too low learning rate, the loss function doesn't improve enough; when it is too high, the loss function i.e. the recognition begins to diverge. In the optimal learning rate range, the loss is controlled and the recognition accuracy is the most reliable, as shown in Figure 7.2-left. Figure 7.2-right, shows the *log* of the percentage of correct matches, when it intends to consider

one emotion class for each ANN output i.e., when the higher value of each neuron is taken, as the majority emotion in case (emotion classes).



FIGURE 7.2. Learning rate  $\eta(n)$  analysis by test errors  $\varepsilon(n)$  for each iteration *n* from RC1 to CL3 (left); learning rate by correct matches (right).

The best learning rate selection used in the present work, was based on a stochastic or empirical mode, and dynamic mode.

On stochastic or empirical mode, the learning rate selection is made using a range of learning rates, testing one by one. In this case, this selection shown that the optimal learning rate range was between  $10^{-5}$  and  $10^{-4}$ . In this mode, the higher learning rate of this interval ( $eta = 10^{-4}$ ) was chosen for the recognition process.

In dynamic mode the deep learning method was used. In this case, the "Adam" optimization (Kingma and Ba, 2015) can be used. It is an optimization algorithm used to update network weights iteratively based on training data; it is another option instead of the classical stochastic gradient descent method.

#### 7.1.4. Finding an Optimal Hidden Neurons

The layers placed between the input and output layers, are called hidden layers where the hidden neurons are present. A common challenger about the hidden layers, is to find an optimal number of hidden neurons inside them.

The number of the best hidden neurons to use, is found empirically according to the dataset and model to be reached. According to Hastie et al., typically the number of hidden neurons is somewhere in the range of 5 to 100, with the number changing according to the data inputs and training iteration (Hastie, Tibshirani, and Friedman, 2016); otherwise, the produced model might not have enough adaptability to figure out the nonlinearities of the input datasets. To compute the optimal number of hidden neurons avoid overfitting along the training (Equation 7.10).

$$N_h = \frac{N_s}{\rho(N_i + N_o)},\tag{7.10}$$

where  $N_h$ , defines the number of neurons inside the hidden layers;  $N_s$ , defines the number of samples from the training dataset;  $\rho$ , defines an arbitrary scaling factor usually between 2 and 10, to indicate how general the model should be prevent overfitting; and  $N_i$  and  $N_o$ , define 100

respectively the number of input and output neurons. Another common approach to compute the optimal number of hidden neurons, is defined by Equation 7.11.

$$N_h = \sqrt{N_i N_o} \tag{7.11}$$

Other ways to compute the number of hidden neurons are also present by Huang and Hsu (Huang and Hsu, 2012; Tieding, Xijiang, and Shijian, 2010; Yeh, 2003).

#### 7.1.5. Finding an Optimal Train Iterations

The increase the number of training iteration, does not mean that it increases the recognition learning along a new data as well, even if there are descend errors along the training.

Analyzing the descend errors from the train and test (validation), it is possible to detect the moment to stop training, as shown in Figure 7.3. There, it is possible to note the point of divergence between the train and test errors, where it must be used as the stop condition of the training, even if the training descend errors continue to decrease. It because the produced model can fit very well to the training dataset, but very bad at predicting new datasets. This unwanted situation is called overfitting.



FIGURE 7.3. Descend errors and divergence descend close to 1,100 iterations.

## 7.2. Cross Validation - Testing Recognition Models

The emotion recognition tests, were executed based on the methodology of Leave-One-Out Cross Validation (LOOCV) (Baron and Stańczyk, 2021) because it shown to be a good methodology on the proposed multimodal system. It is based on leaving one flight dataset out (k), while it trains the ANN using the other flight datasets (N-1). In a practical emotion recognition, it uses the emotion datasets of the other volunteers to detect the emotions of one single volunteer (Figure 7.4).



FIGURE 7.4. Cross validation applied to test the models. It trains using volunteers datasets, to detect emotions of one single volunteer k.

# 7.3. Realtime Outliers Removal - RTOR

In realtime regression problems, sometimes the neurons output outliars values that are very far of the optimal value; such wrong values are critical to compute correctly the evaluation metrics in realtime e.g., absolute mean errors. To correct this problem, the Realtime Outliers Removal (RTOR) method was developed in this work. The RTOR adds another layer after the ANN output, creating a batch of the outputs values  $y_{1\to n}$  to find local outliars. If it is detected, the final output will be normalized according to outliers removal methods, as shown in Figure 7.5.



FIGURE 7.5. ANN using RTOR methodology over the output neurons  $y_{1\to n}$ .

Figure 7.6, shows how it works and how its methodology is useful to produce better regression models, according to the ANN outputs. The new outputs  $y_{1\to n}^*$ , are based on the batch length, which it represents the number of samples to be treated in realtime.



FIGURE 7.6. RTOR being applied on a neuron output. Note the corrected output  $y_k^*$  (blue) and the raw output  $y_k$  having outliers (green).

#### 7.4. Evaluation Metrics for Emotion Output - Regression Models

Before present metrics to evaluate the emotion recognition outputs, it is extremely important to know that this work does not considers one single emotion as final output, but intensities of five emotions by time, outputted from each independent output neurons. It because, as was said in the introduction of this work, the human body can't feel one single emotion by time, but several of them, having different intensities and valence. For this reason, the presented evaluation metrics, work over all regression outputs, which it was measured separately.

Each output neuron was designed as a regression function (emotion intensities). These outputted emotions intensities are measured to define the quality of it, according to the ideal or target outputs from the training. Thus, below are presented several methods used to quantify the emotion recognition over the outputs.

#### 7.4.1. Mean Absolute Relative Difference (MARD)

The measurement of the recognition's accuracy from each output neuron, was also based on the Mean Absolute Relative Difference (MARD). It corresponds to a direct comparison between paired measurements of a given neuron prediction and the target value.

Mathematically, it is computed as the mean value of the absolute relative difference (ARD) between the prediction outputs  $(\hat{y}(n))$  and the target, as defined in Equations below (Kirchsteiger et al., 2015).

$$ARD(n) = 100\% \frac{|\hat{y}(n) - y(n)|}{y(n)}$$
(7.12)

$$MARD = \frac{1}{N} \sum_{n=1}^{N} ARD(n)$$
(7.13)

# 7.4.2. R-Squared Value $(R^2)$

The  $R^2$ , is a statistical measure of coefficient determination (different of the coefficient correlation from prior chapter). It defines how well a regression line prediction, estimates the actual regression output. In another words, it represents the proportion of the variance for an output values, that is explained by a linear model.

To calculate it, some variables must to be considered: the actual values y(n), compute the mean of those values  $(\bar{y})$  and look at the distance from the actual values to the mean  $(D_{[y\to\bar{y}]})$ ; draw a regression line, and we come up to estimated values  $\hat{y}(n)$  i.e., points from this line; compute the distance from estimated values to the mean  $(D_{[\hat{y}\to\bar{y}]})$ ; and compare these distances values i.e.,  $D_{[y\to\bar{y}]}$  with  $D_{[\hat{y}\to\bar{y}]}$ , as defined by Equation 7.14 (Fukuyama and Goto, 2016).

$$R^{2} = 1 - \frac{\sum_{n=1}^{N} (\hat{y}(n) - \bar{y})^{2}}{\sum_{n=1}^{N} (y(n) - \bar{y})^{2}}$$
(7.14)

It is measured between 0 to 1. When the model does not explains any of the variation in the response variable around its mean, it returns 0; otherwise, in a total fit situation, if the model represents all of the variation in the response variable around its mean, it returns 1. For larger  $R^2$ , a better regression model is obtained.

# 7.4.3. Root Mean Squared Error (RMSE)

The Root Mean Squared Error (RMSE) or also called, Root Mean Squared Deviation (RMSD), computes the error distance between the estimated values  $\hat{y}(n)$  and the actual values y(n) and can range between 0 and  $\infty$ , as defined below.

$$RMSE = \sqrt{\frac{\sum_{n=1}^{N} (\hat{y}(n) - y(n))^2}{N}}$$
(7.15)

#### 7.4.4. Mean Absolute Error (MAE)

The Mean Absolute Error (MAE), represents the average of the absolute difference between the predicted values and the observed value (output or prediction). In another words, it is a linear representation, which all the single differences are weighted equally in the average, as shown in Equation 7.16. Like RMSE, it also can range between 0 and  $\infty$ :

$$MAE = \frac{1}{N} \sum_{n=1}^{N} |y(n) - \hat{y}(n)|$$
(7.16)

This chapter presented how the emotion recognition were defined and executed in this work. ANN architecture, numbers of hidden neurons and layers were some of the information presented. In addition, several methods to analyze the obtained output models were also explained, such as outliars removal in realtime, test or validation methods i.e. LOOCV, and evaluation metrics for emotion outputs.

#### CHAPTER 8

# Result on $\beta$ -Band Analysis from Simulated Flight Experiments

Considering the simulation experiment and the acquired EEG data of the volunteers, the  $\beta$ band analysis was carried out based on: spectrogram analysis and statistical analysis of the brain activities, according to each proposed flight task.

#### 8.1. $\beta$ -Band Spectrogram Analysis

The developed software and spectral analysis were based on Python libraries. The spectrograms were executed by the *scipy.signal.spectrogram*. Figure 8.1, shows the EEG spectrogram referent to the flight dataset RC1, which each vertical line delimits the tasks from 1 up to 7. It was acquired of the volunteer's frontal left lobe (channel Fp1). Figure 8.1-a, shows the data already filtered (between 12 to 40Hz) correspondent to beta band (Kropotov, 2009). The raw EEG dataset (already detrended), is shown in Figure 8.1-b, where it is possible to observe a full band data before the filtering.

To try to relate the volunteer brain activities according to each flight tasks, the EEG spectrogram was considered over the  $\beta$ -band, presenting different magnitudes, according to each flight task. Observing the Figure 8.1-(d,e), it is possible to observe a lower magnitudes during task 3 (cruise flight), that mainly corresponds to the frequency interval between 12 and 30Hz, which it may also indicates a relaxation of the beta brain activity, thus also the volunteer, due the low complexity of the present task.

According to some safety reports, on a real aviation context (Boeing, 2017; ICAO, 2017), the safest flight phase, having the lowest number of accidents, occurs exactly in the flight phase equivalent to task 3. It shows that, the proposed experiments were able to produce similar physiological responses of a real pilot in flight. The considered spectral results can be useful to better understand why in some flight phases higher probability to occur accidents is presented. These physiological responses felt by each volunteers of these experiments, were naturally produced i.e., the experiment supervisor did not interfere on these reactions, not even he said that tasks are the most risky.



FIGURE 8.1. Spectrogram of the flight dataset RC1-frontal left lobe (Fp1). (a) Processed 12-40Hz data; (b) Raw data spectrogram; (c) Spectrogram of the processed 12-40Hz data; (d) Processed data on delimited Y-axis; (e) Grayscale spectrogram with tasks delimitation.

These higher spectra magnitudes are result of a natural complexity of some flight tasks e.g. takeoff and landing, which they require more attention and precise use of flight commands. This can explain why the beta band magnitudes increased when the landing get closer, for instance.

By observing the temporal brain area (channel T8) of the same volunteer (flight RC1), it was also possible to see the brain responses during the flight (Figure 8.2). It is interesting to analyze the feelings of the volunteers (e.g. by using questionnaires), just after starts a cruise flight (task 3), which it come after a more intense situation (high brain activity) due problems during the climb task, to a more stabilized flight; at the same way, when the volunteer felt to be close to start to descent the aircraft (task 4), the brain activity (from frontal lobe Fp1 and temporal lobe T8) shown to increase again, reflecting that the volunteer starts to be alert (or even stressed) to execute the next task.



FIGURE 8.2. Spectrogram of the flight dataset RC1 - temporal right lobe (T8).

The volunteer of the flight RC1, reported feeling a little insecure, to execute the tasks climb, approaches and landing (tasks 2, 5, 6, and 7) correctly. Surely for this reason in this flight, the volunteer's brain presented high magnitude and oscillation during those tasks, resulting in an accident on the last task i.e., landing.

A different way to represent the prior spectrogram (bottom plot), is shown in Figure 8.3. It represents the mean values of all magnitudes (on each frequency) computed by time. This representation shows the brain magnitudes along the time for each flight, of the temporal left and right lobes over positions T7 and T8.



FIGURE 8.3. Mean values of spectrogram magnitudes of the flight dataset RC1 - temporal left and right lobes (T7 and T8).

By observing the temporal left lobe (channel T7), the brain signal begins high on takeoff (task 1), decreasing a little along the climb (task 2), being lower during the cruise flight (task 3); the signal starts to get high magnitudes again, when the volunteer prepared to descent (task 4), what obviously must demand more attention and alertness until the landing (task 7). Even though the volunteer of the flight RC1, was a mid-level volunteer on flight simulator, he reported to feel a little insecure on some tasks of the current flight. The opposite activity of T7 and T8, observed during the task 1, happened probably because the influence of other positions from the

brain, or due the volunteers move only one hand along the experiment reflecting these action on the other side.

Another situation of low brain activity during some flight tasks, can be found in the recorded data of the flight CR1 (frontal left lobe - F3) (Figure 8.4).



FIGURE 8.4. Spectrogram of the flight dataset CR1-frontal left lobe (F3). (a) Processed 12-40Hz data; (b) Spectrogram of the processed 12-40Hz data; (c) Grayscale spectrogram with tasks delimitation; (d) Mean values of spectrogram energies.

It shows clearly the lower levels of magnitude (mainly between 12 and 30Hz) just after takeoff (task 1) and during the cruise flight (task 3). The highest brain magnitudes were produced during the critical flight situations i.e., takeoff, approach and landing. In fact, different patterns of magnitudes were acquired on the same tasks of both flights, RC1 and CR1. The probable reason for such differences, are explained in Subsection 8.1.2.

# 8.1.1. Situations of Imminent Accident or Loss of Control

When the volunteers felt totally not confident about executing the tasks and/or in a situation close to an accident occurring, it was possible to see a high brain activities, as shown in Figure 8.5, with plots of the short flight experiment CR3, in which the volunteer lots the control of the airplane during the beginning of the climb (task 2), going off of the runway (runway 108 excursion) and not reaching the ideal velocity for takeoff. For that reason, the airplane did not reached an ideal altitude and vertical speed, colliding with the ground a few seconds later.



FIGURE 8.5. Spectrogram of the flight dataset CR3-temporal left lobe (T7). (a) Processed 12-40Hz data; (b) Spectrogram of the processed 12-40Hz data; (c) Grayscale spectrogram with tasks delimitation; (d) Mean values of spectrogram energies.

Regarding to the temporal left lobe (channel T7), the spectrogram of this flight clearly shows the brain activity just after the volunteer lost the aircraft controls and before the collision, with some trees over the airport area. For almost 8 s, the volunteer thought to get the airplane's controls again; probably for this reason, we can see a short period of lower brain magnitudes at the middle of the spectrogram (Figure 8.5b-d). Unfortunately, the accident occurred just few seconds after.

The same patterns of brain activities were also identified in other volunteers data; however, such a brain response depends on how the volunteer reacts when facing some flight phases. These experiments show that, when the volunteers have more experience with virtual simulation or even aviation, their brain activities presented a more similar pattern of amplitudes during most of the flight. This is important information for carrying out further research. Analyzing the recorded video of the flight CR3 to detail the accident events, it was possible to see that the volunteer pushed the joystick back (i.e., takeoff command) at 40 knots (20.57 m/s or 74.08 km/h), instead of the recommended takeoff velocity of 80 knots (flight experiment's checklist). After that, the aircraft started to climb slowly for almost 8 seconds (period of lower brain activity–false sensation of the correct fight procedure) and suddenly experienced a stall situation, colliding with the ground at 21 seconds. Then, the aircraft dragged on the ground, until it collided with some obstacles at 32 seconds (this was the second scared moment reported by the volunteer).

# 8.1.2. Volunteer's Expertise and Brain Activity

All spectrogram analysis were used to show the brain behaviour along the tasks. It were based on volunteers that stated they were healthy. Using spectrogram analysis, it is possible to give support to know, how calm were the volunteers when facing some flight situations or moments, or also how was the volunteer's biological reactions throughout the flight.

The spectrogram analysis obtained from the acquired data, shown a direct relation between the volunteers' expertise (or their confidence on flight simulation) and the observed amplitude and oscillation of their brain activity during the flight. The experiment also shown that a more experienced and confident volunteers in the proposed flight tasks, had presented in general, different patterns of brain activities compared to volunteers having less expertise or less familiarity with fight simulations and/or electronic games. The volunteers informed their levels of expertise on the proposed experiment.

Figure 8.6, shows the mean values of spectrogram magnitudes of the frontal left lobe (F3) for two different volunteers: one volunteer feeling insecure to execute the proposed flight tasks, and the other volunteer feeling more confident to execute the same tasks.



FIGURE 8.6. Mean values of spectrogram magnitudes of the flight dataset CR1 and LS2 - frontal left lobe (F3).

The brain activities of the less experienced volunteer (top plot), changed more intensely during the more calm flight phases, reaching mean values close to  $4.5 \times 10^3$  units; it also presented a parabolic-shaped signal mainly between task 2 and 5, showing that the volunteer started to 110

feel calmer along the climb until start the descent procedure. Regarding to the more experienced and confident volunteer, it is possible to see that the brain activities, presented less intensities and less variability of magnitude along the tasks; it also reached an average amplitude close to  $1.42 \times 10^3$  units i.e., 68% less, compared to the first volunteer. Such patterns were repeated along the most flights and volunteers.

The normalized mean values of the brain activities according to the volunteers' expertise, are shown in Figures 8.7-8.9, which the red line represents the beginner-level volunteers (i.e. datasets CR1, CR3, CLX and CLX), the blue line the mid-level volunteers (i.e. datasets RC1, RC2, RC3, GC1, GC3, LS1 and LS2) and the green line the mid-level and experienced-level volunteer (VC1 and VC2); it because this last datasets represents only one volunteer, which it weren't enough to reliably analyze alone. It shows clearly that a more experienced volunteers present in general, lower variations and amplitudes of the brain activities along the time; in the flight tasks which they have more complexity and risk to execute (i.e., task 1 and tasks 4-7), the beginner-level volunteers shown to be unsafe and thus reflecting in a high amplitudes of the  $\beta$ -band as it can be seen in Figure 8.7-Fp1, for instance.

#### Normalized $\mu$ of Energy - Left Lobe x Volunteers` Expertise



FIGURE 8.7. Normalized mean values of the brain activities for all datasets and the volunteers' expertise (left lobe).

In addition, these figures also shown that for all electrode positions, the beginner volunteers present the highest amplitudes in risky tasks and lowest amplitudes in task 3 (cruise flight), where they felt more relaxed after conclude the risky task takeoff. The same situation didn't happen with the more experienced volunteers which they shown to be more confident along most of the flight tasks as shown in Figure 8.8-Fp2 and 8.8-T8, for instance.

In every plots, the mean values of brain activities for both type of volunteers (mid-level and experienced-level), presents less oscillation between the tasks and lower amplitudes in critical



Normalized  $\mu$  of Energy - Right Lobe x Volunteers` Expertise

FIGURE 8.8. Normalized mean values of the brain activities for all datasets and the volunteers' expertise (right lobe).

flight phases such as, takeoff, approach and landing for instance. Another way to see that, is through the Figure 8.9, where in the takeoff, descend, approach and landing, the beginner volunteers presented higher amplitudes of brain activities compared to a more experienced volunteers on flight simulations.



FIGURE 8.9. Normalized mean values of brain activities for all datasets over each task according to volunteers' expertise.

These last three figures reinforce the other figures and shown that indeed, a brain of a less experienced volunteers produces a more stabilized pattern of signal, being sometimes easy to identify an unsafe volunteer looking only for the data shape along the time and proposed tasks. 112

#### 8.2. $\beta$ -Band Analysis for Flight Tasks

A quantification of the brain responses for each flight task is described in this section, based on some statistical features.

The brain activities were analyzed according to each flight task: takeoff, climb, cruise flight (route), descent, approach, final approach and landing. It were measured based on some statistical features such as: mean value, standard deviation and variance. These information were useful to show the relation between the brain activities and those flight phases.

In less than 20% of the dataset, it is possible to observe that the signal of one lobe (e.g. left lobe), seems to have an opposite activities compared to the signal from the right lobe. One probably reasons observed for that, are based on: the brain signals coming from one lobe or position, interfering over the signal of other lobe; or due to the volunteers movements along the experiments, which they used the right hand to control the airplane, while the left hand kept immovable along each flight. Such observed motion artefacts on the beta band mainly over the motor cortex, are presented by Khanna and Carmena (Khanna and Carmena, 2017), Chung et al. (Chung et al., 2016; Chung et al., 2018).

Figure 8.10-left, shows the mean value  $\mu_0$  of the brain magnitude for each flight task, regarding to the frontal left lobe (channel Fp1). The parameter  $\sigma^2[\mu_0]$  of the Figure 8.10-right, represents the variance of the mean value spectrogram  $\mu_0$ . It is important to show how the mean value spectrum  $\mu_0$  vary along the time.



FIGURE 8.10. Mean values of brain magnitudes by tasks, of the flight dataset CR1 - frontal left lobe (Fp1), considering a total of 13 volunteers' datasets.

Table 8.1, presents the normalized mean values and standard deviation for dataset CR1. There, it is possible to see that the volunteer seemed to feel more calm or confident during the task 3; the initial approach (task 5) and final approach (task 6), presented the higher intensities.

The variance values of the brain amplitudes over the considered spectrum (12-40Hz) flight CR1, are shown in Figure 8.11. High variances between the frequencies in the same time (vertical axis), means that the spectrum magnitude of each frequency are highly different. Otherwise, it means that the brain magnitude in the same time, presented more similar intensities for each frequency. It is useful to measure which tasks presented more magnitude variances by frequencies axis, along the time.



FIGURE 8.11. Mean of magnitudes by tasks, of the flight dataset CR1 - frontal left lobe (Fp1).

Tables 8.2-8.13, present the mean values, standard deviations and variances of all flight datasets.

| Electrode                       | Sim               | Simulator/Flight Tasks - Flight DS:CR1 [Normalized $\mu_0 \pm \sigma_0$ ] |                   |                   |                   |                     |                   |  |  |  |
|---------------------------------|-------------------|---------------------------------------------------------------------------|-------------------|-------------------|-------------------|---------------------|-------------------|--|--|--|
| Channel                         | Task 1            | Task 2                                                                    | Task 3            | Task 4            | Task 5            | Task 6              | Task 7            |  |  |  |
| EEG-Fp1                         | $0.65 \pm 0.22$   | $0.48 {\pm} 0.18$                                                         | $0.29 {\pm} 0.15$ | $0.41 {\pm} 0.15$ | $0.88 {\pm} 0.12$ | $0.69 {\pm} 0.07$   | $0.54{\pm}0.10$   |  |  |  |
| EEG-F3                          | $0.51 {\pm} 0.13$ | $0.52{\pm}0.23$                                                           | $0.18{\pm}0.12$   | $0.72{\pm}0.19$   | $0.85{\pm}0.05$   | $0.72 {\pm} 0.14$   | $0.68{\pm}0.03$   |  |  |  |
| EEG-C3                          | $0.53 {\pm} 0.12$ | $0.35{\pm}0.22$                                                           | $0.42{\pm}0.21$   | $0.72 {\pm} 0.09$ | $0.71{\pm}0.07$   | $0.71 {\pm} 0.11$   | $0.93{\pm}0.06$   |  |  |  |
| EEG-T7                          | $0.48 {\pm} 0.17$ | $0.26 {\pm} 0.11$                                                         | $0.24{\pm}0.17$   | $0.62{\pm}0.25$   | $0.36{\pm}0.11$   | $0.53 {\pm} 0.15$   | $0.82{\pm}0.07$   |  |  |  |
| EEG-Fp2                         | $0.48 \pm 0.08$   | $0.42{\pm}0.26$                                                           | $0.25{\pm}0.13$   | $0.52{\pm}0.27$   | $0.85{\pm}0.10$   | $0.58 {\pm} 0.14$   | $0.49 {\pm} 0.12$ |  |  |  |
| EEG-F4                          | $0.54{\pm}0.07$   | $0.30{\pm}0.17$                                                           | $0.50 {\pm} 0.20$ | $0.76{\pm}0.06$   | $0.81{\pm}0.15$   | $0.61 {\pm} 0.15$   | $0.84{\pm}0.03$   |  |  |  |
| EEG-C4                          | $0.45 {\pm} 0.23$ | $0.51{\pm}0.21$                                                           | $0.49{\pm}0.28$   | $0.72 {\pm} 0.09$ | $0.47{\pm}0.05$   | $0.66{\pm}0.17$     | $0.68{\pm}0.06$   |  |  |  |
| EEG-T8                          | $0.43 {\pm} 0.17$ | $0.34{\pm}0.14$                                                           | $0.48{\pm}0.23$   | $0.77 {\pm} 0.11$ | $0.61{\pm}0.03$   | $0.50{\pm}0.08$     | $0.56{\pm}0.14$   |  |  |  |
| Electrode                       | Si                | mulator/F                                                                 | light Tasks       | s - Flight D      | S:CR1 [No         | $\mathbf{rmalized}$ | $\sigma_0^2$ ]    |  |  |  |
| Channel                         | Task 1            | Task 2                                                                    | Task 3            | Task 4            | Task 5            | Task 6              | Task 7            |  |  |  |
| EEG-Fp1                         | 0.05              | 0.03                                                                      | 0.02              | 0.02              | 0.01              | 0.00                | 0.01              |  |  |  |
| EEG-F3                          | 0.02              | 0.05                                                                      | 0.01              | 0.03              | 0.00              | 0.02                | 0.00              |  |  |  |
| EEG-C3                          | 0.01              | 0.05                                                                      | 0.05              | 0.01              | 0.01              | 0.01                | 0.00              |  |  |  |
| EEG-T7                          | 0.03              | 0.01                                                                      | 0.03              | 0.06              | 0.01              | 0.02                | 0.01              |  |  |  |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | 0.01              | 0.07                                                                      | 0.02              | 0.08              | 0.01              | 0.02                | 0.01              |  |  |  |
| EEG-F4                          | 0.01              | 0.03                                                                      | 0.04              | 0.00              | 0.02              | 0.02                | 0.00              |  |  |  |
| EEG-C4                          | 0.05              | 0.04                                                                      | 0.08              | 0.01              | 0.00              | 0.03                | 0.00              |  |  |  |
| EEG-T8                          | 0.03              | 0.02                                                                      | 0.05              | 0.01              | 0.00              | 0.01                | 0.02              |  |  |  |

TABLE 8.1.  $\mu_0$ ,  $\sigma_0$  and  $\sigma_0^2$  of  $\beta$ -band, 31-39Hz and 40Hz of the flight dataset CR1 (beginner level volunteer).

TABLE 8.2.  $\mu_0$ ,  $\sigma_0$  and  $\sigma_0^2$  of  $\beta$ -band, 31-39Hz and 40Hz of the flight dataset RC1 (mid-level volunteer).

| Electrode                       | Sim               | Simulator/Flight Tasks - Flight DS:RC1 [Normalized $\mu_0 \pm \sigma_0$ ] |                   |                   |                   |                   |                   |  |  |  |
|---------------------------------|-------------------|---------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|--|
| Channel                         | Task 1            | Task 2                                                                    | Task 3            | Task 4            | Task 5            | Task 6            | Task 7            |  |  |  |
| EEG-Fp1                         | $0.46{\pm}0.21$   | $0.55 {\pm} 0.22$                                                         | $0.28{\pm}0.13$   | $0.61 {\pm} 0.19$ | $0.55{\pm}0.13$   | $0.36 {\pm} 0.04$ | $0.51{\pm}0.06$   |  |  |  |
| EEG-F3                          | $0.69 {\pm} 0.22$ | $0.40 {\pm} 0.19$                                                         | $0.39{\pm}0.14$   | $0.51{\pm}0.13$   | $0.46{\pm}0.06$   | $0.25{\pm}0.07$   | $0.55{\pm}0.12$   |  |  |  |
| EEG-C3                          | $0.60 {\pm} 0.15$ | $0.49{\pm}0.17$                                                           | $0.32{\pm}0.11$   | $0.33{\pm}0.15$   | $0.11{\pm}0.07$   | $0.37 {\pm} 0.16$ | $0.69{\pm}0.21$   |  |  |  |
| EEG-T7                          | $0.85 {\pm} 0.10$ | $0.37 {\pm} 0.16$                                                         | $0.36{\pm}0.18$   | $0.59{\pm}0.26$   | $0.56{\pm}0.08$   | $0.43 {\pm} 0.08$ | $0.69{\pm}0.10$   |  |  |  |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | $0.36 {\pm} 0.32$ | $0.60{\pm}0.23$                                                           | $0.49 {\pm} 0.22$ | $0.68{\pm}0.16$   | $0.65{\pm}0.07$   | $0.65{\pm}0.08$   | $0.59{\pm}0.06$   |  |  |  |
| EEG-F4                          | $0.51 {\pm} 0.09$ | $0.64{\pm}0.15$                                                           | $0.46{\pm}0.32$   | $0.50{\pm}0.18$   | $0.73 {\pm} 0.12$ | $0.33{\pm}0.08$   | $0.73 {\pm} 0.16$ |  |  |  |
| EEG-C4                          | $0.77 {\pm} 0.15$ | $0.60{\pm}0.17$                                                           | $0.26{\pm}0.12$   | $0.53{\pm}0.25$   | $0.37{\pm}0.19$   | $0.42{\pm}0.19$   | $0.93{\pm}0.05$   |  |  |  |
| EEG-T8                          | $0.45 {\pm} 0.12$ | $0.70 {\pm} 0.14$                                                         | $0.36{\pm}0.16$   | $0.44{\pm}0.25$   | $0.43{\pm}0.12$   | $0.36{\pm}0.07$   | $0.53{\pm}0.08$   |  |  |  |
| Electrode                       | Si                | mulator/F                                                                 | light Tasks       | - Flight D        | S:RC1 [No         | ormalized a       | $[\tau_0^2]$      |  |  |  |
| Channel                         | Task 1            | Task 2                                                                    | Task 3            | Task 4            | Task 5            | Task 6            | Task 7            |  |  |  |
| EEG-Fp1                         | 0.05              | 0.05                                                                      | 0.02              | 0.04              | 0.02              | 0.00              | 0.00              |  |  |  |
| EEG-F3                          | 0.05              | 0.03                                                                      | 0.02              | 0.02              | 0.00              | 0.01              | 0.02              |  |  |  |
| EEG-C3                          | 0.02              | 0.03                                                                      | 0.01              | 0.02              | 0.00              | 0.03              | 0.04              |  |  |  |
| EEG-T7                          | 0.01              | 0.02                                                                      | 0.03              | 0.07              | 0.01              | 0.01              | 0.01              |  |  |  |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | 0.10              | 0.05                                                                      | 0.05              | 0.02              | 0.01              | 0.01              | 0.00              |  |  |  |
| EEG-F4                          | 0.01              | 0.02                                                                      | 0.10              | 0.03              | 0.01              | 0.01              | 0.03              |  |  |  |
| EEG-C4                          | 0.02              | 0.03                                                                      | 0.02              | 0.06              | 0.03              | 0.04              | 0.00              |  |  |  |
| EEG-T8                          | 0.01              | 0.02                                                                      | 0.03              | 0.06              | 0.01              | 0.00              | 0.01              |  |  |  |

| Electrode                       | Simulator/Flight Tasks - Flight DS:RC2 [Normalized $\mu_0 \pm \sigma_0$ ] |                   |                   |                   |                   |                   |                   |  |  |
|---------------------------------|---------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--|--|
| Channel                         | Task 1                                                                    | Task 2            | Task 3            | Task 4            | Task 5            | Task 6            | Task 7            |  |  |
| EEG-Fp1                         | $0.50 {\pm} 0.07$                                                         | $0.45 {\pm} 0.18$ | $0.44{\pm}0.15$   | $0.34{\pm}0.18$   | $0.56{\pm}0.13$   | $0.82{\pm}0.13$   | $0.48 {\pm} 0.11$ |  |  |
| EEG-F3                          | $0.46 {\pm} 0.20$                                                         | $0.63{\pm}0.28$   | $0.65{\pm}0.20$   | $0.38{\pm}0.18$   | $0.37{\pm}0.09$   | $0.67 {\pm} 0.16$ | $0.47 {\pm} 0.08$ |  |  |
| EEG-C3                          | $0.35 {\pm} 0.23$                                                         | $0.55{\pm}0.22$   | $0.59{\pm}0.27$   | $0.55{\pm}0.31$   | $0.21{\pm}0.10$   | $0.71 {\pm} 0.10$ | $0.67{\pm}0.05$   |  |  |
| EEG-T7                          | $0.52{\pm}0.13$                                                           | $0.52{\pm}0.22$   | $0.42 {\pm} 0.18$ | $0.33{\pm}0.21$   | $0.63 {\pm} 0.10$ | $0.70 {\pm} 0.18$ | $0.45{\pm}0.05$   |  |  |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | $0.48 {\pm} 0.17$                                                         | $0.66{\pm}0.15$   | $0.53 {\pm} 0.16$ | $0.40 {\pm} 0.26$ | $0.65{\pm}0.15$   | $0.54{\pm}0.06$   | $0.48{\pm}0.05$   |  |  |
| EEG-F4                          | $0.47 {\pm} 0.06$                                                         | $0.55{\pm}0.18$   | $0.28 {\pm} 0.11$ | $0.47 {\pm} 0.22$ | $0.31{\pm}0.08$   | $0.61{\pm}0.07$   | $0.56{\pm}0.09$   |  |  |
| EEG-C4                          | $0.27 {\pm} 0.17$                                                         | $0.43 {\pm} 0.16$ | $0.47{\pm}0.23$   | $0.27{\pm}0.16$   | $0.24{\pm}0.12$   | $0.57{\pm}0.13$   | $0.42{\pm}0.05$   |  |  |
| EEG-T8                          | $0.23 {\pm} 0.02$                                                         | $0.54{\pm}0.13$   | $0.37{\pm}0.15$   | $0.48{\pm}0.32$   | $0.32{\pm}0.05$   | $0.59{\pm}0.18$   | $0.74 {\pm} 0.09$ |  |  |
| Electrode                       | Si                                                                        | mulator/F         | light Tasks       | - Flight D        | S:RC2 [No         | ormalized a       | $\sigma_0^2$ ]    |  |  |
| Channel                         | Task 1                                                                    | Task 2            | Task 3            | Task 4            | Task 5            | Task 6            | Task 7            |  |  |
| EEG-Fp1                         | 0.00                                                                      | 0.03              | 0.02              | 0.03              | 0.02              | 0.02              | 0.01              |  |  |
| EEG-F3                          | 0.04                                                                      | 0.08              | 0.04              | 0.03              | 0.01              | 0.03              | 0.01              |  |  |
| EEG-C3                          | 0.05                                                                      | 0.05              | 0.07              | 0.10              | 0.01              | 0.01              | 0.00              |  |  |
| EEG-T7                          | 0.02                                                                      | 0.05              | 0.03              | 0.04              | 0.01              | 0.03              | 0.00              |  |  |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | 0.03                                                                      | 0.02              | 0.02              | 0.07              | 0.02              | 0.00              | 0.00              |  |  |
| EEG-F4                          | 0.00                                                                      | 0.03              | 0.01              | 0.05              | 0.01              | 0.01              | 0.01              |  |  |
| EEG-C4                          | 0.03                                                                      | 0.02              | 0.05              | 0.03              | 0.01              | 0.02              | 0.00              |  |  |
| EEG-T8                          | 0.00                                                                      | 0.02              | 0.02              | 0.11              | 0.00              | 0.03              | 0.01              |  |  |

TABLE 8.3.  $\mu_0$ ,  $\sigma_0$  and  $\sigma_0^2$  of  $\beta$ -band, 31-39Hz and 40Hz of the flight dataset RC2 (mid-level volunteer).

TABLE 8.4.  $\mu_0$ ,  $\sigma_0$  and  $\sigma_0^2$  of  $\beta$ -band, 31-39Hz and 40Hz of the flight dataset RC3 (mid-level volunteer).

| Electrode                       | Sim               | Simulator/Flight Tasks - Flight DS:RC3 [Normalized $\mu_0 \pm \sigma_0$ ] |                   |                   |                   |                      |                   |  |  |  |
|---------------------------------|-------------------|---------------------------------------------------------------------------|-------------------|-------------------|-------------------|----------------------|-------------------|--|--|--|
| Channel                         | Task 1            | Task 2                                                                    | Task 3            | Task 4            | Task 5            | Task 6               | Task 7            |  |  |  |
| EEG-Fp1                         | $0.27 {\pm} 0.20$ | $0.31{\pm}0.09$                                                           | $0.39{\pm}0.11$   | $0.10{\pm}0.09$   | $0.23 {\pm} 0.17$ | $0.66{\pm}0.08$      | $0.86{\pm}0.09$   |  |  |  |
| EEG-F3                          | $0.20{\pm}0.15$   | $0.26{\pm}0.11$                                                           | $0.51{\pm}0.23$   | $0.22 {\pm} 0.15$ | $0.53 {\pm} 0.10$ | $0.52{\pm}0.06$      | $0.61{\pm}0.10$   |  |  |  |
| EEG-C3                          | $0.41 {\pm} 0.15$ | $0.84{\pm}0.11$                                                           | $0.49 {\pm} 0.29$ | $0.06{\pm}0.07$   | $0.24{\pm}0.06$   | $0.39{\pm}0.01$      | $0.38{\pm}0.22$   |  |  |  |
| EEG-T7                          | $0.36 {\pm} 0.04$ | $0.33 {\pm} 0.13$                                                         | $0.54{\pm}0.20$   | $0.09 {\pm} 0.04$ | $0.19{\pm}0.05$   | $0.26{\pm}0.02$      | $0.66{\pm}0.17$   |  |  |  |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | $0.31 {\pm} 0.13$ | $0.51{\pm}0.15$                                                           | $0.33 {\pm} 0.16$ | $0.91{\pm}0.05$   | $0.56{\pm}0.21$   | $0.40 {\pm} 0.06$    | $0.51{\pm}0.06$   |  |  |  |
| EEG-F4                          | $0.20{\pm}0.10$   | $0.65 {\pm} 0.26$                                                         | $0.43 {\pm} 0.22$ | $0.14{\pm}0.08$   | $0.30{\pm}0.10$   | $0.52{\pm}0.03$      | $0.75 {\pm} 0.12$ |  |  |  |
| EEG-C4                          | $0.33 {\pm} 0.15$ | $0.36{\pm}0.06$                                                           | $0.49 {\pm} 0.21$ | $0.05{\pm}0.05$   | $0.58{\pm}0.16$   | $0.91{\pm}0.10$      | $0.78{\pm}0.12$   |  |  |  |
| EEG-T8                          | $0.42 {\pm} 0.10$ | $0.56{\pm}0.16$                                                           | $0.64{\pm}0.20$   | $0.14{\pm}0.13$   | $0.31{\pm}0.19$   | $0.82{\pm}0.08$      | $0.82{\pm}0.04$   |  |  |  |
| Electrode                       | Si                | mulator/F                                                                 | light Tasks       | s - Flight D      | S:RC3 [No         | $\mathbf{prmalized}$ | $[\tau_0^2]$      |  |  |  |
| Channel                         | Task 1            | Task 2                                                                    | Task 3            | Task 4            | Task 5            | Task 6               | Task 7            |  |  |  |
| EEG-Fp1                         | 0.04              | 0.01                                                                      | 0.01              | 0.01              | 0.03              | 0.01                 | 0.01              |  |  |  |
| EEG-F3                          | 0.02              | 0.01                                                                      | 0.05              | 0.02              | 0.01              | 0.00                 | 0.01              |  |  |  |
| EEG-C3                          | 0.02              | 0.01                                                                      | 0.08              | 0.01              | 0.00              | 0.00                 | 0.05              |  |  |  |
| EEG-T7                          | 0.00              | 0.02                                                                      | 0.04              | 0.00              | 0.00              | 0.00                 | 0.03              |  |  |  |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | 0.02              | 0.02                                                                      | 0.03              | 0.00              | 0.04              | 0.00                 | 0.00              |  |  |  |
| EEG-F4                          | 0.01              | 0.07                                                                      | 0.05              | 0.01              | 0.01              | 0.00                 | 0.01              |  |  |  |
| EEG-C4                          | 0.02              | 0.00                                                                      | 0.04              | 0.00              | 0.02              | 0.01                 | 0.01              |  |  |  |
| EEG-T8                          | 0.01              | 0.02                                                                      | 0.04              | 0.02              | 0.04              | 0.01                 | 0.00              |  |  |  |

| Electrode                       | Simulator/Flight Tasks - Flight DS:GC1 [Normalized $\mu_0 \pm \sigma_0$ ] |                   |                   |                   |                   |                     |                   |  |  |
|---------------------------------|---------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|---------------------|-------------------|--|--|
| Channel                         | Task 1                                                                    | Task 2            | Task 3            | Task 4            | Task 5            | Task 6              | Task 7            |  |  |
| EEG-Fp1                         | $0.61 {\pm} 0.16$                                                         | $0.62{\pm}0.18$   | $0.48 {\pm} 0.28$ | $0.46 {\pm} 0.15$ | $0.68{\pm}0.27$   | $0.32{\pm}0.12$     | $0.31{\pm}0.10$   |  |  |
| EEG-F3                          | $0.65 {\pm} 0.15$                                                         | $0.68 {\pm} 0.24$ | $0.43{\pm}0.28$   | $0.43{\pm}0.15$   | $0.40{\pm}0.13$   | $0.22{\pm}0.13$     | $0.13{\pm}0.10$   |  |  |
| EEG-C3                          | $0.74{\pm}0.12$                                                           | $0.52{\pm}0.23$   | $0.52{\pm}0.27$   | $0.40{\pm}0.24$   | $0.44{\pm}0.06$   | $0.37{\pm}0.12$     | $0.11{\pm}0.10$   |  |  |
| EEG-T7                          | $0.83 {\pm} 0.15$                                                         | $0.61{\pm}0.22$   | $0.50{\pm}0.28$   | $0.43 {\pm} 0.13$ | $0.49 {\pm} 0.11$ | $0.33 {\pm} 0.14$   | $0.33 {\pm} 0.11$ |  |  |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | $0.71 \pm 0.19$                                                           | $0.71 {\pm} 0.14$ | $0.30{\pm}0.18$   | $0.53 {\pm} 0.11$ | $0.60{\pm}0.05$   | $0.47 {\pm} 0.14$   | $0.26{\pm}0.09$   |  |  |
| EEG-F4                          | $0.74{\pm}0.08$                                                           | $0.66 {\pm} 0.11$ | $0.29{\pm}0.19$   | $0.52{\pm}0.21$   | $0.65{\pm}0.10$   | $0.50 {\pm} 0.16$   | $0.22{\pm}0.08$   |  |  |
| EEG-C4                          | $0.80{\pm}0.13$                                                           | $0.50{\pm}0.11$   | $0.26 {\pm} 0.10$ | $0.22 {\pm} 0.14$ | $0.38{\pm}0.07$   | $0.23{\pm}0.09$     | $0.29{\pm}0.11$   |  |  |
| EEG-T8                          | $0.80 \pm 0.14$                                                           | $0.63 {\pm} 0.19$ | $0.48 {\pm} 0.23$ | $0.42 {\pm} 0.10$ | $0.49{\pm}0.11$   | $0.31{\pm}0.09$     | $0.31{\pm}0.09$   |  |  |
| Electrode                       | Si                                                                        | mulator/F         | light Tasks       | - Flight D        | S:GC1 [No         | $\mathbf{rmalized}$ | $\sigma_0^2$ ]    |  |  |
| Channel                         | Task 1                                                                    | Task 2            | Task 3            | Task 4            | Task 5            | Task 6              | Task 7            |  |  |
| EEG-Fp1                         | 0.02                                                                      | 0.03              | 0.08              | 0.02              | 0.07              | 0.01                | 0.01              |  |  |
| EEG-F3                          | 0.02                                                                      | 0.06              | 0.08              | 0.02              | 0.02              | 0.02                | 0.01              |  |  |
| EEG-C3                          | 0.01                                                                      | 0.06              | 0.07              | 0.06              | 0.00              | 0.01                | 0.01              |  |  |
| EEG-T7                          | 0.02                                                                      | 0.05              | 0.08              | 0.02              | 0.01              | 0.02                | 0.01              |  |  |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | 0.04                                                                      | 0.02              | 0.03              | 0.01              | 0.00              | 0.02                | 0.01              |  |  |
| EEG-F4                          | 0.01                                                                      | 0.01              | 0.04              | 0.05              | 0.01              | 0.03                | 0.01              |  |  |
| EEG-C4                          | 0.02                                                                      | 0.01              | 0.01              | 0.02              | 0.01              | 0.01                | 0.01              |  |  |
| EEG-T8                          | 0.02                                                                      | 0.04              | 0.05              | 0.01              | 0.01              | 0.01                | 0.01              |  |  |

TABLE 8.5.  $\mu_0$ ,  $\sigma_0$  and  $\sigma_0^2$  of  $\beta$ -band, 31-39Hz and 40Hz of the flight dataset GC1 (mid-level volunteer).

TABLE 8.6.  $\mu_0$ ,  $\sigma_0$  and  $\sigma_0^2$  of  $\beta$ -band, 31-39Hz and 40Hz of the flight dataset GC3 (mid-level volunteer).

| Electrode                       | Simulator/Flight Tasks - Flight DS:GC3 [Normalized $\mu_0 \pm \sigma_0$ ] |                   |                   |                   |                   |                   |                 |  |  |
|---------------------------------|---------------------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------|--|--|
| Channel                         | Task 1                                                                    | Task 2            | Task 3            | Task 4            | Task 5            | Task 6            | Task 7          |  |  |
| EEG-Fp1                         | $0.59 {\pm} 0.11$                                                         | $0.42{\pm}0.16$   | $0.59{\pm}0.19$   | $0.42{\pm}0.23$   | $0.68 {\pm} 0.26$ | $0.68 {\pm} 0.11$ | $0.59{\pm}0.07$ |  |  |
| EEG-F3                          | $0.64{\pm}0.11$                                                           | $0.45{\pm}0.23$   | $0.61 {\pm} 0.15$ | $0.45 {\pm} 0.19$ | $0.71{\pm}0.17$   | $0.59{\pm}0.12$   | $0.51{\pm}0.08$ |  |  |
| EEG-C3                          | $0.30 {\pm} 0.05$                                                         | $0.29{\pm}0.09$   | $0.38{\pm}0.10$   | $0.30{\pm}0.13$   | $0.61{\pm}0.27$   | $0.61{\pm}0.30$   | $0.20{\pm}0.11$ |  |  |
| EEG-T7                          | $0.68 {\pm} 0.10$                                                         | $0.46{\pm}0.27$   | $0.59{\pm}0.20$   | $0.47 {\pm} 0.21$ | $0.73 {\pm} 0.17$ | $0.49 {\pm} 0.10$ | $0.46{\pm}0.08$ |  |  |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | $0.74{\pm}0.22$                                                           | $0.48{\pm}0.23$   | $0.59{\pm}0.25$   | $0.49 {\pm} 0.19$ | $0.43 {\pm} 0.12$ | $0.48{\pm}0.07$   | $0.28{\pm}0.20$ |  |  |
| EEG-F4                          | $0.74{\pm}0.14$                                                           | $0.41 {\pm} 0.26$ | $0.53{\pm}0.18$   | $0.54{\pm}0.20$   | $0.54{\pm}0.06$   | $0.66{\pm}0.10$   | $0.30{\pm}0.11$ |  |  |
| EEG-C4                          | $0.60 {\pm} 0.10$                                                         | $0.44 {\pm} 0.18$ | $0.48{\pm}0.12$   | $0.49{\pm}0.26$   | $0.72{\pm}0.13$   | $0.58{\pm}0.13$   | $0.49{\pm}0.14$ |  |  |
| EEG-T8                          | $0.42 {\pm} 0.08$                                                         | $0.45{\pm}0.24$   | $0.58{\pm}0.10$   | $0.51{\pm}0.15$   | $0.70 {\pm} 0.14$ | $0.46{\pm}0.07$   | $0.39{\pm}0.11$ |  |  |
| Electrode                       | Si                                                                        | mulator/F         | light Tasks       | - Flight D        | S:GC3 [No         | ormalized a       | $\sigma_0^2$ ]  |  |  |
| Channel                         | Task 1                                                                    | Task 2            | Task 3            | Task 4            | Task 5            | Task 6            | Task 7          |  |  |
| EEG-Fp1                         | 0.01                                                                      | 0.03              | 0.04              | 0.05              | 0.07              | 0.01              | 0.01            |  |  |
| EEG-F3                          | 0.01                                                                      | 0.05              | 0.02              | 0.03              | 0.03              | 0.01              | 0.01            |  |  |
| EEG-C3                          | 0.00                                                                      | 0.01              | 0.01              | 0.02              | 0.07              | 0.09              | 0.01            |  |  |
| EEG-T7                          | 0.01                                                                      | 0.07              | 0.04              | 0.04              | 0.03              | 0.01              | 0.01            |  |  |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | 0.05                                                                      | 0.05              | 0.06              | 0.04              | 0.01              | 0.00              | 0.04            |  |  |
| EEG-F4                          | 0.02                                                                      | 0.07              | 0.03              | 0.04              | 0.00              | 0.01              | 0.01            |  |  |
| EEG-C4                          | 0.01                                                                      | 0.03              | 0.02              | 0.07              | 0.02              | 0.02              | 0.02            |  |  |
| EEG-T8                          | 0.01                                                                      | 0.06              | 0.01              | 0.02              | 0.02              | 0.00              | 0.01            |  |  |

| Electrode                       | Simul             | Simulator/Flight Tasks - Flight DS:LS1 [Normalized $\mu_0 \pm \sigma_0$ ] |                     |                   |                   |                      |        |  |  |  |
|---------------------------------|-------------------|---------------------------------------------------------------------------|---------------------|-------------------|-------------------|----------------------|--------|--|--|--|
| Channel                         | Task 1            | Task 2                                                                    | Task 3              | Task 4            | Task 5            | Task 6               | Task 7 |  |  |  |
| EEG-Fp1                         | $0.43 {\pm} 0.08$ | $0.61 {\pm} 0.19$                                                         | $0.51{\pm}0.18$     | $0.63 {\pm} 0.22$ | $0.40{\pm}0.23$   | $0.66 {\pm} 0.02$    | _      |  |  |  |
| EEG-F3                          | $0.39{\pm}0.06$   | $0.52{\pm}0.25$                                                           | $0.32{\pm}0.12$     | $0.42 {\pm} 0.09$ | $0.39{\pm}0.09$   | $0.29{\pm}0.03$      | _      |  |  |  |
| EEG-C3                          | $0.48 {\pm} 0.17$ | $0.55{\pm}0.21$                                                           | $0.55{\pm}0.16$     | $0.71{\pm}0.17$   | $0.46 {\pm} 0.12$ | $0.43 {\pm} 0.01$    | _      |  |  |  |
| EEG-T7                          | $0.48 {\pm} 0.15$ | $0.61{\pm}0.23$                                                           | $0.54{\pm}0.22$     | $0.74{\pm}0.13$   | $0.57{\pm}0.15$   | $0.47 {\pm} 0.04$    | _      |  |  |  |
| EEG-Fp2                         | $0.42 {\pm} 0.09$ | $0.63 {\pm} 0.21$                                                         | $0.45{\pm}0.13$     | $0.51{\pm}0.07$   | $0.25 {\pm} 0.14$ | $0.31{\pm}0.01$      | _      |  |  |  |
| EEG-F4                          | $0.33 {\pm} 0.11$ | $0.58{\pm}0.27$                                                           | $0.37{\pm}0.17$     | $0.49{\pm}0.12$   | $0.32{\pm}0.09$   | $0.34{\pm}0.01$      | _      |  |  |  |
| EEG-C4                          | $0.35 {\pm} 0.14$ | $0.52{\pm}0.23$                                                           | $0.46{\pm}0.16$     | $0.50{\pm}0.13$   | $0.34{\pm}0.14$   | $0.48{\pm}0.02$      | _      |  |  |  |
| EEG-T8                          | $0.31 {\pm} 0.13$ | $0.51{\pm}0.23$                                                           | $0.40{\pm}0.22$     | $0.29{\pm}0.10$   | $0.26{\pm}0.11$   | $0.31{\pm}0.02$      | _      |  |  |  |
| Electrode                       | Sin               | ulator/Fli                                                                | $ght Tasks$ $\cdot$ | - Flight DS       | S:LS1 [Nor        | malized $\sigma_0^2$ | ]      |  |  |  |
| Channel                         | Task 1            | Task 2                                                                    | Task 3              | Task 4            | Task 5            | Task 6               | Task 7 |  |  |  |
| EEG-Fp1                         | 0.01              | 0.04                                                                      | 0.03                | 0.05              | 0.05              | 0.00                 | _      |  |  |  |
| EEG-F3                          | 0.00              | 0.06                                                                      | 0.02                | 0.01              | 0.01              | 0.00                 | _      |  |  |  |
| EEG-C3                          | 0.03              | 0.04                                                                      | 0.03                | 0.03              | 0.01              | 0.00                 | _      |  |  |  |
| EEG-T7                          | 0.02              | 0.05                                                                      | 0.05                | 0.02              | 0.02              | 0.00                 | _      |  |  |  |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | 0.01              | 0.04                                                                      | 0.02                | 0.01              | 0.02              | 0.00                 | _      |  |  |  |
| EEG-F4                          | 0.01              | 0.07                                                                      | 0.03                | 0.02              | 0.01              | 0.00                 | _      |  |  |  |
|                                 | 0.01              | 0.01                                                                      | 0.00                | 0.02              | 0.01              | 0.00                 |        |  |  |  |
| EEG-C4                          | 0.01              | 0.07                                                                      | 0.03                | 0.02              | 0.02              | 0.00                 | _      |  |  |  |

TABLE 8.7.  $\mu_0$ ,  $\sigma_0$  and  $\sigma_0^2$  of  $\beta$ -band, 31-39Hz and 40Hz of the flight dataset LS1 (mid-level volunteer).

TABLE 8.8.  $\mu_0$ ,  $\sigma_0$  and  $\sigma_0^2$  of  $\beta$ -band, 31-39Hz and 40Hz of the flight dataset LS2 (mid-level volunteer).

| Electrode                       | Simulator/Flight Tasks - Flight DS:LS2 [Normalized $\mu_0 \pm \sigma_0$ ] |                   |                   |                 |                 |                         |                 |  |  |
|---------------------------------|---------------------------------------------------------------------------|-------------------|-------------------|-----------------|-----------------|-------------------------|-----------------|--|--|
| Channel                         | Task 1                                                                    | Task 2            | Task 3            | Task 4          | Task 5          | Task 6                  | Task 7          |  |  |
| EEG-Fp1                         | $0.45 \pm 0.22$                                                           | $0.75 {\pm} 0.16$ | $0.45 {\pm} 0.23$ | $0.53{\pm}0.22$ | $0.50{\pm}0.09$ | $0.35{\pm}0.13$         | $0.44{\pm}0.10$ |  |  |
| EEG-F3                          | $0.63 {\pm} 0.12$                                                         | $0.64{\pm}0.20$   | $0.58{\pm}0.15$   | $0.65{\pm}0.18$ | $0.51{\pm}0.07$ | $0.31{\pm}0.15$         | $0.23{\pm}0.09$ |  |  |
| EEG-C3                          | $0.32{\pm}0.12$                                                           | $0.48 {\pm} 0.11$ | $0.48{\pm}0.22$   | $0.42{\pm}0.16$ | $0.38{\pm}0.06$ | $0.22{\pm}0.08$         | $0.05{\pm}0.03$ |  |  |
| EEG-T7                          | $0.44{\pm}0.07$                                                           | $0.47 {\pm} 0.18$ | $0.39{\pm}0.27$   | $0.53{\pm}0.28$ | $0.64{\pm}0.14$ | $0.40 {\pm} 0.15$       | $0.38{\pm}0.09$ |  |  |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | $0.51 {\pm} 0.17$                                                         | $0.76 {\pm} 0.16$ | $0.46 {\pm} 0.26$ | $0.56{\pm}0.20$ | $0.34{\pm}0.08$ | $0.29{\pm}0.10$         | $0.33{\pm}0.06$ |  |  |
| EEG-F4                          | $0.50 {\pm} 0.07$                                                         | $0.74{\pm}0.11$   | $0.50{\pm}0.16$   | $0.53{\pm}0.19$ | $0.38{\pm}0.09$ | $0.36{\pm}0.15$         | $0.29{\pm}0.07$ |  |  |
| EEG-C4                          | $0.39{\pm}0.10$                                                           | $0.58{\pm}0.13$   | $0.51 {\pm} 0.19$ | $0.54{\pm}0.20$ | $0.40{\pm}0.08$ | $0.42 {\pm} 0.11$       | $0.11{\pm}0.08$ |  |  |
| EEG-T8                          | $0.26 {\pm} 0.13$                                                         | $0.59{\pm}0.23$   | $0.39{\pm}0.18$   | $0.37{\pm}0.11$ | $0.23{\pm}0.08$ | $0.45{\pm}0.17$         | $0.52{\pm}0.13$ |  |  |
| Electrode                       | Si                                                                        | mulator/F         | light Tasks       | s - Flight I    | DS:LS2 [No      | $\mathbf{rmalized} \ c$ | $r_0^2]$        |  |  |
| Channel                         | Task 1                                                                    | Task 2            | Task 3            | Task 4          | Task 5          | Task 6                  | Task 7          |  |  |
| EEG-Fp1                         | 0.05                                                                      | 0.02              | 0.05              | 0.05            | 0.01            | 0.02                    | 0.01            |  |  |
| EEG-F3                          | 0.01                                                                      | 0.04              | 0.02              | 0.03            | 0.00            | 0.02                    | 0.01            |  |  |
| EEG-C3                          | 0.02                                                                      | 0.01              | 0.05              | 0.03            | 0.00            | 0.01                    | 0.00            |  |  |
| EEG-T7                          | 0.00                                                                      | 0.03              | 0.07              | 0.08            | 0.02            | 0.02                    | 0.01            |  |  |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | 0.03                                                                      | 0.02              | 0.07              | 0.04            | 0.01            | 0.01                    | 0.00            |  |  |
| EEG-F4                          | 0.00                                                                      | 0.01              | 0.03              | 0.04            | 0.01            | 0.02                    | 0.01            |  |  |
| EEG-C4                          | 0.01                                                                      | 0.02              | 0.04              | 0.04            | 0.01            | 0.01                    | 0.01            |  |  |
| EEG-T8                          | 0.02                                                                      | 0.05              | 0.03              | 0.01            | 0.01            | 0.03                    | 0.02            |  |  |
| Electrode                       | Sim               | ılator/Flig       | ht Tasks -        | Flight DS:        | VC1 [Nori         | malized $\mu_0$      | $\pm \sigma_0$ ]  |
|---------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|
| Channel                         | Task 1            | Task 2            | Task 3            | Task 4            | Task 5            | Task 6               | Task 7            |
| EEG-Fp1                         | $0.55 \pm 0.14$   | $0.22 {\pm} 0.11$ | $0.45 {\pm} 0.06$ | $0.52{\pm}0.21$   | $0.85{\pm}0.03$   | $0.88 {\pm} 0.11$    | $0.48 {\pm} 0.09$ |
| EEG-F3                          | $0.77 \pm 0.14$   | $0.31{\pm}0.13$   | $0.42{\pm}0.09$   | $0.42 {\pm} 0.30$ | $0.92{\pm}0.07$   | $0.67{\pm}0.18$      | $0.31 {\pm} 0.11$ |
| EEG-C3                          | $0.47 \pm 0.04$   | $0.06 {\pm} 0.11$ | $0.14{\pm}0.14$   | $0.85{\pm}0.07$   | $0.78{\pm}0.08$   | $0.19{\pm}0.17$      | $0.29{\pm}0.13$   |
| EEG-T7                          | $0.59 {\pm} 0.09$ | $0.17 {\pm} 0.11$ | $0.38 {\pm} 0.14$ | $0.36{\pm}0.30$   | $0.84{\pm}0.04$   | $0.85{\pm}0.13$      | $0.47 {\pm} 0.13$ |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | $0.49 \pm 0.12$   | $0.21{\pm}0.09$   | $0.35{\pm}0.13$   | $0.38{\pm}0.21$   | $0.72 {\pm} 0.09$ | $0.88{\pm}0.07$      | $0.43 {\pm} 0.15$ |
| EEG-F4                          | $0.62 {\pm} 0.06$ | $0.38{\pm}0.17$   | $0.48 {\pm} 0.20$ | $0.49 {\pm} 0.31$ | $0.89{\pm}0.10$   | $0.61{\pm}0.22$      | $0.45 {\pm} 0.15$ |
| EEG-C4                          | $0.45 {\pm} 0.21$ | $0.48{\pm}0.31$   | $0.43 {\pm} 0.18$ | $0.40 {\pm} 0.12$ | $0.74{\pm}0.12$   | $0.58{\pm}0.21$      | $0.54{\pm}0.15$   |
| EEG-T8                          | $0.34{\pm}0.02$   | $0.29{\pm}0.13$   | $0.41{\pm}0.07$   | $0.45{\pm}0.23$   | $0.69{\pm}0.03$   | $0.80{\pm}0.10$      | $0.59 {\pm} 0.14$ |
| Electrode                       | Si                | mulator/F         | light Tasks       | - Flight D        | S:VC1 [No         | $\mathbf{prmalized}$ | $[\tau_0^2]$      |
| Channel                         | Task 1            | Task 2            | Task 3            | Task 4            | Task 5            | Task 6               | Task 7            |
| EEG-Fp1                         | 0.02              | 0.01              | 0.00              | 0.05              | 0.00              | 0.01                 | 0.01              |
| EEG-F3                          | 0.02              | 0.02              | 0.01              | 0.09              | 0.00              | 0.03                 | 0.01              |
| EEG-C3                          | 0.00              | 0.01              | 0.02              | 0.01              | 0.01              | 0.03                 | 0.02              |
| EEG-T7                          | 0.01              | 0.01              | 0.02              | 0.09              | 0.00              | 0.02                 | 0.02              |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | 0.01              | 0.01              | 0.02              | 0.04              | 0.01              | 0.00                 | 0.02              |
| EEG-F4                          | 0.00              | 0.03              | 0.04              | 0.10              | 0.01              | 0.05                 | 0.02              |
| EEG-C4                          | 0.04              | 0.10              | 0.03              | 0.02              | 0.02              | 0.04                 | 0.02              |
| EEG-T8                          | 0.00              | 0.02              | 0.01              | 0.05              | 0.00              | 0.01                 | 0.02              |

TABLE 8.9.  $\mu_0$ ,  $\sigma_0$  and  $\sigma_0^2$  of  $\beta$ -band, 31-39Hz and 40Hz of the flight dataset VC1 (experienced level volunteer).

TABLE 8.10.  $\mu_0$ ,  $\sigma_0$  and  $\sigma_0^2$  of  $\beta$ -band, 31-39Hz and 40Hz of the flight dataset VC2 (experienced level volunteer).

| Electrode                       | Sim               | ılator/Flig       | ht Tasks -        | Flight DS:        | VC2 [Nori         | malized $\mu_0$   | $\pm \sigma_0$ ]  |
|---------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Channel                         | Task 1            | Task 2            | Task 3            | Task 4            | Task 5            | Task 6            | Task 7            |
| EEG-Fp1                         | $0.19{\pm}0.08$   | $0.66 {\pm} 0.25$ | $0.52{\pm}0.20$   | $0.55 {\pm} 0.14$ | $0.26{\pm}0.05$   | $0.24{\pm}0.06$   | $0.17{\pm}0.08$   |
| EEG-F3                          | $0.55 {\pm} 0.03$ | $0.64{\pm}0.19$   | $0.61{\pm}0.22$   | $0.81 {\pm} 0.14$ | $0.61 {\pm} 0.04$ | $0.45{\pm}0.13$   | $0.10{\pm}0.06$   |
| EEG-C3                          | $0.74{\pm}0.05$   | $0.87{\pm}0.07$   | $0.84{\pm}0.09$   | $0.45 {\pm} 0.13$ | $0.47 {\pm} 0.21$ | $0.74{\pm}0.03$   | $0.27{\pm}0.22$   |
| EEG-T7                          | $0.33 {\pm} 0.08$ | $0.53 {\pm} 0.12$ | $0.62{\pm}0.26$   | $0.54{\pm}0.13$   | $0.09{\pm}0.07$   | $0.07 {\pm} 0.04$ | $0.15{\pm}0.07$   |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | $0.28 \pm 0.02$   | $0.69 {\pm} 0.24$ | $0.43 {\pm} 0.17$ | $0.49{\pm}0.21$   | $0.21{\pm}0.05$   | $0.23 {\pm} 0.04$ | $0.14 {\pm} 0.05$ |
| EEG-F4                          | $0.23 \pm 0.02$   | $0.45{\pm}0.17$   | $0.62{\pm}0.23$   | $0.67 {\pm} 0.09$ | $0.49{\pm}0.02$   | $0.34{\pm}0.07$   | $0.09{\pm}0.05$   |
| EEG-C4                          | $0.35 {\pm} 0.07$ | $0.32{\pm}0.11$   | $0.43 {\pm} 0.18$ | $0.77 {\pm} 0.06$ | $0.82 {\pm} 0.11$ | $0.46{\pm}0.16$   | $0.06{\pm}0.05$   |
| EEG-T8                          | $0.21 {\pm} 0.03$ | $0.67{\pm}0.21$   | $0.49{\pm}0.15$   | $0.59{\pm}0.18$   | $0.47{\pm}0.11$   | $0.51{\pm}0.08$   | $0.16{\pm}0.12$   |
| Electrode                       | Si                | mulator/F         | light Tasks       | s - Flight D      | OS:VC2 [No        | ormalized a       | $[\tau_0^2]$      |
| Channel                         | Task 1            | Task 2            | Task 3            | Task 4            | Task 5            | Task 6            | Task 7            |
| EEG-Fp1                         | 0.01              | 0.06              | 0.04              | 0.02              | 0.00              | 0.00              | 0.01              |
| EEG-F3                          | 0.00              | 0.04              | 0.05              | 0.02              | 0.00              | 0.02              | 0.00              |
| EEG-C3                          | 0.00              | 0.01              | 0.01              | 0.02              | 0.04              | 0.00              | 0.05              |
| EEG-T7                          | 0.01              | 0.02              | 0.07              | 0.02              | 0.00              | 0.00              | 0.00              |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | 0.00              | 0.06              | 0.03              | 0.04              | 0.00              | 0.00              | 0.00              |
| EEG-F4                          | 0.00              | 0.03              | 0.05              | 0.01              | 0.00              | 0.00              | 0.00              |
| EEG-C4                          | 0.00              | 0.01              | 0.03              | 0.00              | 0.01              | 0.03              | 0.00              |
| EEG-T8                          | 0.00              | 0.05              | 0.02              | 0.03              | 0.01              | 0.01              | 0.01              |

| Electrode                       | Simulator         | ·/Flight Ta                 | sks - Fl | ight DS  | :CR3 [N | lormalize | ed $\mu_0 \pm \sigma_0$ ] |
|---------------------------------|-------------------|-----------------------------|----------|----------|---------|-----------|---------------------------|
| Channel                         | Task 1            | Task 2                      | Task 3   | Task 4   | Task 5  | Task 6    | Task 7                    |
| EEG-Fp1                         | $0.49 {\pm} 0.14$ | $0.51{\pm}0.28$             | _        | _        | _       | _         | _                         |
| EEG-F3                          | $0.28 {\pm} 0.17$ | $0.54{\pm}0.36$             | _        | _        | —       | —         | —                         |
| EEG-C3                          | $0.70 {\pm} 0.26$ | $0.31{\pm}0.24$             | —        | _        | _       | _         | —                         |
| EEG-T7                          | $0.41 \pm 0.11$   | $0.38{\pm}0.32$             | _        | _        | _       | _         | —                         |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | $0.56 {\pm} 0.34$ | $0.27{\pm}0.25$             | —        | _        | _       | _         | —                         |
| EEG-F4                          | $0.56 {\pm} 0.18$ | $0.54{\pm}0.24$             | _        | _        | _       | _         | —                         |
| EEG-C4                          | $0.58 {\pm} 0.35$ | $0.31{\pm}0.27$             | —        | _        | _       | _         | —                         |
| EEG-T8                          | $0.62 {\pm} 0.28$ | $0.39{\pm}0.23$             | —        | _        | _       | _         | —                         |
| Electrode                       | Simulat           | $\operatorname{cor/Flight}$ | Tasks -  | Flight I | DS:CR3  | [Normal   | lized $\sigma_0^2$ ]      |
| Channel                         | Task 1            | Task 2                      | Task 3   | Task 4   | Task 5  | Task 6    | Task 7                    |
| EEG-Fp1                         | 0.02              | 0.08                        | _        | _        | —       | _         | —                         |
| EEG-F3                          | 0.03              | 0.13                        | _        | _        | _       | _         | —                         |
| EEG-C3                          | 0.07              | 0.06                        | _        | _        | —       | —         | —                         |
| EEG-T7                          | 0.01              | 0.10                        | _        | _        | _       | _         | —                         |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | 0.12              | 0.06                        | _        | _        | —       | —         | —                         |
| EEG-F4                          | 0.03              | 0.06                        | _        | _        | _       | _         | —                         |
| EEG-T8                          | 0.08              | 0.05                        | _        | _        | —       | —         | —                         |

TABLE 8.11.  $\mu_0$ ,  $\sigma_0$  and  $\sigma_0^2$  of  $\beta$ -band, 31-39Hz and 40Hz of the flight dataset CR3 (beginner level volunteer).

TABLE 8.12.  $\mu_0$ ,  $\sigma_0$  and  $\sigma_0^2$  of  $\beta$ -band, 31-39Hz and 40Hz of the flight dataset CLX (beginner level volunteer).

| Electrode                                                                                    | Simulator                                                                                                            | ·/Flight Ta                                                                         | sks - Fl                                                       | ight DS                                                         | :CLX [I                                                            | Vormaliz                                                      | zed $\mu_0 \pm \sigma_0$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Channel                                                                                      | Task 1                                                                                                               | Task 2                                                                              | Task 3                                                         | Task 4                                                          | Task 5                                                             | Task 6                                                        | Task 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| EEG-Fp1                                                                                      | $0.62 {\pm} 0.22$                                                                                                    | $0.76 {\pm} 0.09$                                                                   | _                                                              | _                                                               | _                                                                  | _                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| EEG-F3                                                                                       | $0.55 {\pm} 0.21$                                                                                                    | $0.66{\pm}0.32$                                                                     | _                                                              | _                                                               | _                                                                  | _                                                             | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EEG-C3                                                                                       | $0.58 {\pm} 0.26$                                                                                                    | $0.27 {\pm} 0.24$                                                                   | _                                                              | _                                                               | _                                                                  | —                                                             | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EEG-T7                                                                                       | $0.61 {\pm} 0.29$                                                                                                    | $0.48 {\pm} 0.23$                                                                   | _                                                              | _                                                               | _                                                                  | —                                                             | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EEG-Fp2                                                                                      | $0.70 {\pm} 0.25$                                                                                                    | $0.54{\pm}0.17$                                                                     | _                                                              | _                                                               | _                                                                  | _                                                             | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EEG-F4                                                                                       | $0.43 {\pm} 0.29$                                                                                                    | $0.73 {\pm} 0.26$                                                                   | _                                                              | _                                                               | _                                                                  | —                                                             | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EEG-C4                                                                                       | $0.74{\pm}0.24$                                                                                                      | $0.72 {\pm} 0.11$                                                                   | _                                                              | _                                                               | _                                                                  | —                                                             | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| EEG-T8                                                                                       | $0.68 {\pm} 0.28$                                                                                                    | $0.72 {\pm} 0.21$                                                                   | _                                                              | _                                                               | _                                                                  | —                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                              |                                                                                                                      |                                                                                     |                                                                |                                                                 |                                                                    |                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Electrode                                                                                    | Simulat                                                                                                              | cor/Flight                                                                          | Tasks -                                                        | Flight I                                                        | DS:CLX                                                             | [Norma                                                        | lized $\sigma_0^2$ ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Electrode<br>Channel                                                                         | Simulat<br>Task 1                                                                                                    | tor/Flight<br>Task 2                                                                | <b>Tasks -</b><br>Task 3                                       | Flight I<br>Task 4                                              | <b>DS:CLX</b><br>Task 5                                            | [Norma<br>Task 6                                              | $\begin{array}{c} \mathbf{lized} \ \sigma_0^2] \\ \mathrm{Task} \ 7 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Electrode<br>Channel<br>EEG-Fp1                                                              | Simulat<br>Task 1<br>0.05                                                                                            | tor/Flight<br>Task 2<br>0.01                                                        | Tasks -<br>Task 3<br>-                                         | Flight I<br>Task 4<br>–                                         | DS:CLX<br>Task 5<br>–                                              | [Norma<br>Task 6<br>–                                         | $\frac{\text{alized } \sigma_0^2]}{\text{Task 7}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Electrode<br>Channel<br>EEG-Fp1<br>EEG-F3                                                    | <b>Simulat</b><br>Task 1<br>0.05<br>0.04                                                                             | cor/Flight           Task 2           0.01           0.10                           | Tasks -<br>Task 3<br>—                                         | Flight I<br>Task 4<br>—<br>—                                    | DS:CLX<br>Task 5<br>—<br>—                                         | [Norma<br>Task 6<br>_                                         | $\frac{\text{alized } \sigma_0^2]}{\text{Task 7}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Electrode<br>Channel<br>EEG-Fp1<br>EEG-F3<br>EEG-C3                                          | Simulat<br>Task 1<br>0.05<br>0.04<br>0.07                                                                            | <b>cor/Flight</b><br>Task 2<br>0.01<br>0.10<br>0.06                                 | Tasks -<br>Task 3<br>_<br>_<br>_                               | Flight I<br>Task 4<br>—<br>—<br>—                               | DS:CLX<br>Task 5<br>—<br>—<br>—                                    | [Norma<br>Task 6<br>                                          | $\begin{array}{c} \mathbf{d} \mathbf{d} \mathbf{\sigma}_0^2 \\ \hline \mathbf{Task 7} \\ \hline \\ - \\ - \\ - \\ - \\ - \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Electrode<br>Channel<br>EEG-Fp1<br>EEG-F3<br>EEG-C3<br>EEG-T7                                | Simulat<br>Task 1<br>0.05<br>0.04<br>0.07<br>0.08                                                                    | <b>cor/Flight</b><br>Task 2<br>0.01<br>0.10<br>0.06<br>0.05                         | Tasks -<br>Task 3<br>-<br>-<br>-<br>-                          | Flight I<br>Task 4<br>—<br>—<br>—<br>—                          | DS:CLX<br>Task 5<br>—<br>—<br>—<br>—                               | [Norma<br>Task 6<br>—<br>—<br>—                               | $\begin{array}{c} \mathbf{d} \ \overline{\sigma_0^2]} \\ \hline \mathbf{Task} \ 7 \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ - \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Electrode<br>Channel<br>EEG-Fp1<br>EEG-F3<br>EEG-C3<br>EEG-T7<br>EEG-Fp2                     | $\begin{array}{c} {\bf Simulat} \\ \hline {\rm Task \ 1} \\ \hline 0.05 \\ 0.04 \\ 0.07 \\ 0.08 \\ 0.06 \end{array}$ | <b>or/Flight</b><br>Task 2<br>0.01<br>0.10<br>0.06<br>0.05<br>0.03                  | Tasks -<br>Task 3<br>-<br>-<br>-<br>-<br>-                     | Flight I<br>Task 4<br>—<br>—<br>—<br>—<br>—                     | DS:CLX<br>Task 5<br>—<br>—<br>—<br>—<br>—<br>—                     | [Norma<br>Task 6<br>—<br>—<br>—<br>—                          | $\begin{array}{c} \mathbf{hlized} \ \sigma_0^2] \\ \hline \\ Task \ 7 \\ \hline \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ \\ - \\ - \\ \\ - \\ - \\ \\ - \\ - \\ \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$ |
| Electrode<br>Channel<br>EEG-Fp1<br>EEG-F3<br>EEG-C3<br>EEG-T7<br>EEG-Fp2<br>EEG-F4           | Simulat<br>Task 1<br>0.05<br>0.04<br>0.07<br>0.08<br>0.06<br>0.08                                                    | <b>cor/Flight</b><br>Task 2<br>0.01<br>0.10<br>0.06<br>0.05<br>0.03<br>0.07         | Tasks -<br>Task 3<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-      | Flight I<br>Task 4<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>— | DS:CLX<br>Task 5<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>— | [Norma<br>Task 6<br>—<br>—<br>—<br>—<br>—<br>—                | $\begin{array}{c} \mathbf{dized} \ \sigma_0^2] \\ \hline \\ Task \ 7 \\ \hline \\ \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Electrode<br>Channel<br>EEG-Fp1<br>EEG-F3<br>EEG-C3<br>EEG-T7<br>EEG-Fp2<br>EEG-F4<br>EEG-C4 | Simulat<br>Task 1<br>0.05<br>0.04<br>0.07<br>0.08<br>0.06<br>0.08<br>0.06                                            | <b>cor/Flight</b><br>Task 2<br>0.01<br>0.10<br>0.06<br>0.05<br>0.03<br>0.07<br>0.01 | Tasks -<br>Task 3<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | Flight I<br>Task 4<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>— | DS:CLX<br>Task 5<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | [Norma<br>Task 6<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>—<br>— | $\begin{array}{c} \mathbf{d} \ \overline{\sigma_0^2]} \\ \hline \mathbf{Task} \ 7 \\ \hline \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

TABLE 8.13.  $\mu_0$ ,  $\sigma_0$  and  $\sigma_0^2$  of  $\beta$ -band, 31-39Hz and 40Hz of the flight dataset CL3 (beginner level volunteer).

| Electrode                       | Sim               | ulator/Flig       | ht Tasks -        | Flight DS:        | CL3 [Norr         | nalized $\mu_0$ :    | $\pm \sigma_0$ ]  |
|---------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|
| Channel                         | Task 1            | Task 2            | Task 3            | Task 4            | Task 5            | Task 6               | Task 7            |
| EEG-Fp1                         | $0.59 {\pm} 0.05$ | $0.51 {\pm} 0.20$ | $0.56 {\pm} 0.23$ | $0.59 {\pm} 0.20$ | $0.48{\pm}0.08$   | $0.51 {\pm} 0.06$    | $0.49 {\pm} 0.06$ |
| EEG-F3                          | $0.54{\pm}0.10$   | $0.46{\pm}0.22$   | $0.23 {\pm} 0.10$ | $0.49{\pm}0.17$   | $0.59{\pm}0.06$   | $0.81{\pm}0.11$      | $0.79 {\pm} 0.13$ |
| EEG-C3                          | $0.31 \pm 0.24$   | $0.69{\pm}0.18$   | $0.20{\pm}0.10$   | $0.55{\pm}0.19$   | $0.78 {\pm} 0.16$ | $0.73 {\pm} 0.15$    | $0.67 {\pm} 0.20$ |
| EEG-T7                          | $0.88 {\pm} 0.08$ | $0.54{\pm}0.25$   | $0.32{\pm}0.16$   | $0.41 {\pm} 0.15$ | $0.32{\pm}0.11$   | $0.49{\pm}0.10$      | $0.25 {\pm} 0.06$ |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | $0.53 {\pm} 0.09$ | $0.40{\pm}0.21$   | $0.45{\pm}0.27$   | $0.65 {\pm} 0.10$ | $0.64{\pm}0.23$   | $0.75 {\pm} 0.10$    | $0.49 {\pm} 0.26$ |
| EEG-F4                          | $0.80{\pm}0.10$   | $0.56 {\pm} 0.21$ | $0.45 {\pm} 0.16$ | $0.68 {\pm} 0.09$ | $0.47 {\pm} 0.09$ | $0.49{\pm}0.16$      | $0.66 {\pm} 0.09$ |
| EEG-C4                          | $0.78 {\pm} 0.12$ | $0.42{\pm}0.19$   | $0.30{\pm}0.09$   | $0.39{\pm}0.10$   | $0.39{\pm}0.09$   | $0.46{\pm}0.13$      | $0.53{\pm}0.08$   |
| EEG-T8                          | $0.77 \pm 0.18$   | $0.39{\pm}0.25$   | $0.27{\pm}0.12$   | $0.28{\pm}0.15$   | $0.36{\pm}0.11$   | $0.64{\pm}0.17$      | $0.58{\pm}0.15$   |
| Electrode                       | Si                | mulator/F         | light Tasks       | s - Flight D      | DS:CL3 [No        | $\mathbf{prmalized}$ | $\sigma_0^2$ ]    |
| Channel                         | Task 1            | Task 2            | Task 3            | Task 4            | Task 5            | Task 6               | Task 7            |
| EEG-Fp1                         | 0.00              | 0.04              | 0.05              | 0.04              | 0.01              | 0.00                 | 0.00              |
| EEG-F3                          | 0.01              | 0.05              | 0.01              | 0.03              | 0.00              | 0.01                 | 0.02              |
| EEG-C3                          | 0.06              | 0.03              | 0.01              | 0.04              | 0.03              | 0.02                 | 0.04              |
| EEG-T7                          | 0.01              | 0.06              | 0.03              | 0.02              | 0.01              | 0.01                 | 0.00              |
| $\mathbf{EEG}$ - $\mathbf{Fp2}$ | 0.01              | 0.04              | 0.07              | 0.01              | 0.05              | 0.01                 | 0.07              |
| EEG-F4                          | 0.01              | 0.04              | 0.03              | 0.01              | 0.01              | 0.03                 | 0.01              |
| EEG-C4                          | 0.01              | 0.04              | 0.01              | 0.01              | 0.01              | 0.02                 | 0.01              |
| EEG-T8                          | 0.03              | 0.06              | 0.01              | 0.02              | 0.01              | 0.03                 | 0.02              |

## CHAPTER 9

# **Result Analysis on Emotion Recognition**

This work presented a multimodal solution to recognize emotions from several physiological inputs, based on the bio-reactions of volunteers and flight simulation tasks. It is proposed as one way to contribute on emotion studies over the aviation context i.e., inside of the scope of aviation accidents caused by human failures.

The achieved results shown to be able to recognize emotions felt by each volunteer acting like pilots along the simulated flights, using the datasets of other volunteers, as reference. Several tests were executed in this work to try to find the better recognition results for each volunteer i.e., the best model possible to recognize these emotions. In datamining context, the test represents a portion of the used dataset, used to validate the produced model. The cross-validation was the method used to aim the emotions recognition process for each volunteer dataset obtained during each flight experiment.

The emotion recognition tasks were initially based on two different tests: tests without use of feature extraction (i.e. raw data applied directly over the ANN inputs, with some few treatment or preprocessing), and tests with the processed data based on feature extraction. Other aspects were also considered: different ANN architectures, number of training iteration, number of inputs and hidden neurons, and different flight datasets.

In every tests of emotion recognition, the cross validation was applied to support the emotion recognition felt by one volunteer in a single flight, according to the emotions already detected from another flights. In another words, in a total of 13 flights, the training was based on 12 flight datasets (N - 1 flights) to try to recognize the emotions of one single flight. The dataset having intensities of facial emotions (5 different emotions), was the reference or target of the ANN training.

The facial emotion reader software, presented several mistakes, detecting wrongly several emotions which some of them were not possible to be avoided; the consequence of these wrong matches was some errors under the regression models, outputted from each output neuron.

### 9.1. What Has Been Done So Far

The preprocessing was the first data treatment executed over the raw datasets. It was based on signal detrend, abrupt signal corrections, normalization, outliers removals, resampling (sampling rate equalization) and so on (Figure 9.1).



\*ACCM DS, means apply it under separated datasets, individually.

FIGURE 9.1. Preprocessing executed before the processing, feature extraction and tests.

Then, a data processing was executed, which it included a deeper analysis over the acquired datasets. It was based on drift removal (second detrend), frequency analysis, abrupt peaks detections, additional normalization and outlier removal, filtering and so on (Figure 9.2).



FIGURE 9.2. Processing executed before the feature extraction.

The feature extractions used on emotion recognition process, were executed over the processed datasets. Several features were considered such as: poincaré plots, statistical features, frequency-based features (e.g. wavelets), entropy, peaks detection among others. Some of these features were applied for one single type of biosignal as for instance, the peaks positions and wavelets, applied only over GSR and EEG datasets respectively. This work based its emotion recognition process over the extracted features. Then, the ANN and deep learning techniques were used to recognize emotions of each volunteer applying these features on to input neurons, 2 hidden layers and 5 output neurons (each neuron outputting a regression model i.e, one emotion intensity). Realtime outliers removal was also applied in this process. The errors from the emotion recognition process were analyzed and computed based on RMSE and MAE.

# 9.2. Description of the Recognition Tests

The main procedures applied on preprocessing, processing and feature extraction are shown in the tests sequence below. It were based on the features selection and data treatment. At least the data normalization and abrupt data correction were used, for the most of the tests.

In these tests (Table 9.1), all features were considered for each biosignal i.e., 11 features of HR, 7 features of GSR and 72 features of EEG ( $9 \times 8$ Ch). The best and worst features were applied on these recognition inputs.

|           | Prepro  | cessing  | Proc              | essing, | Featu  | re Extractio        | on and Recognition | I                 | Biosigna | als |
|-----------|---------|----------|-------------------|---------|--------|---------------------|--------------------|-------------------|----------|-----|
| Tests     | Detrend | Outliers | $\overline{FE^*}$ | SVD     | $CC^*$ | $\varphi_j(v_j(n))$ | Optimization       | $\mathbf{HR}^{-}$ | GSR      | EEG |
| Test 1    | _       | _        | _                 | —       | _      | sigmoid             | 'sgd'              | ×                 | ×        | ×   |
| Test 2    | —       | —        | —                 | —       | —      | sigmoid             | 'adam'             | ×                 | ×        | ×   |
| Test 3    | ×       | ×        | ×                 | _       | ×      | ReLU                | 'adam'             | Х                 | ×        | ×   |
| Test 4    | ×       | ×        | ×                 | —       | ×      | sigmoid             | 'sgd'              | ×                 | ×        | ×   |
| Test 5    | ×       | ×        | ×                 | —       | ×      | sigmoid             | 'adam'             | $\times$          | ×        | ×   |
| Test 6    | ×       | ×        | ×                 | —       | ×      | ReLU                | 'sgd'              | ×                 | ×        | ×   |
| Test 7    | ×       | ×        | ×                 | —       | ×      | ReLU                | 'adam'             | _                 | ×        | ×   |
| Test 8    | ×       | ×        | ×                 | _       | ×      | sigmoid             | 'sgd'              | _                 | ×        | ×   |
| Test 9    | ×       | ×        | ×                 | —       | ×      | sigmoid             | 'adam'             | —                 | ×        | ×   |
| Test $10$ | ×       | ×        | ×                 | —       | ×      | ReLU                | 'sgd'              | —                 | ×        | ×   |
| Test 11   | ×       | ×        | ×                 | —       | ×      | ReLU                | 'adam'             | ×                 | _        | ×   |
| Test 12   | ×       | ×        | ×                 | —       | ×      | sigmoid             | 'sgd'              | $\times$          | —        | ×   |
| Test 13   | ×       | ×        | ×                 | —       | ×      | sigmoid             | 'adam'             | $\times$          | —        | ×   |
| Test $14$ | ×       | ×        | ×                 | —       | ×      | ReLU                | 'sgd'              | ×                 | —        | ×   |
| Test 15   | ×       | ×        | ×                 | —       | ×      | ReLU                | 'adam'             | ×                 | ×        | _   |
| Test 16   | ×       | ×        | ×                 | —       | ×      | sigmoid             | 'sgd'              | $\times$          | ×        | —   |
| Test $17$ | ×       | ×        | ×                 | -       | ×      | sigmoid             | 'adam'             | ×                 | ×        | _   |
| Test 18   | ×       | ×        | ×                 | —       | ×      | ReLU                | 'sgd'              | ×                 | ×        | —   |

TABLE 9.1. Description of each execution test according to preprocessing, processing and feature extraction.

CC<sup>\*</sup>: Column Centering - Data centering for each biosignal. FE<sup>\*</sup>: Feature Extraction - Selected all features for each biosignal.

In the next tests, was considered the features selection based on SVD (i.e. the features are selected in order of its importance). It were 6 features of HR, 4 features of GSR and 40 ( $5 \times 8$  Channels) features of EEG, as shown in Table 9.2.

|         | Prepro  | cessing  | Pro           | cessing | , Feat                 | ture Extract        | tion and Recognition | Ε                 | Biosigna | als |
|---------|---------|----------|---------------|---------|------------------------|---------------------|----------------------|-------------------|----------|-----|
| Tests   | Detrend | Outliers | $\mathbf{FE}$ | SVD     | $\mathbf{C}\mathbf{C}$ | $\varphi_j(v_j(n))$ | Optimization         | $\mathbf{HR}^{-}$ | GSR      | EEG |
| Test 19 | ×       | ×        | ×             | ×       | ×                      | ReLU                | 'adam'               | ×                 | ×        | ×   |
| Test 20 | ×       | ×        | ×             | ×       | ×                      | sigmoid             | 'sgd'                | ×                 | ×        | ×   |
| Test 21 | ×       | ×        | ×             | ×       | ×                      | sigmoid             | 'adam'               | ×                 | ×        | ×   |
| Test 22 | ×       | ×        | ×             | ×       | ×                      | ReLU                | 'sgd'                | $\times$          | ×        | ×   |
| Test 23 | ×       | ×        | Х             | ×       | Х                      | ReLU                | 'adam'               | _                 | ×        | ×   |
| Test 24 | ×       | ×        | ×             | ×       | ×                      | sigmoid             | 'sgd'                | —                 | ×        | ×   |
| Test 25 | ×       | ×        | ×             | ×       | ×                      | sigmoid             | 'adam'               | —                 | ×        | ×   |
| Test 26 | ×       | ×        | ×             | ×       | ×                      | ReLU                | 'sgd'                | _                 | ×        | ×   |
| Test 27 | ×       | ×        | Х             | ×       | Х                      | ReLU                | 'adam'               | ×                 | _        | ×   |
| Test 28 | ×       | ×        | ×             | ×       | ×                      | sigmoid             | 'sgd'                | ×                 | —        | ×   |
| Test 29 | ×       | ×        | ×             | ×       | ×                      | sigmoid             | 'adam'               | ×                 | —        | ×   |
| Test 30 | ×       | ×        | ×             | ×       | ×                      | ReLU                | 'sgd'                | $\times$          | —        | ×   |
| Test 31 | ×       | ×        | Х             | ×       | Х                      | ReLU                | 'adam'               | ×                 | ×        | -   |
| Test 32 | ×       | ×        | ×             | ×       | ×                      | sigmoid             | 'sgd'                | $\times$          | ×        | -   |
| Test 33 | ×       | ×        | ×             | ×       | ×                      | sigmoid             | 'adam'               | $\times$          | ×        | -   |
| Test 34 | ×       | ×        | ×             | ×       | ×                      | ReLU                | 'sgd'                | ×                 | ×        | -   |

TABLE 9.2. Description of each execution test according to preprocessing, processing and feature selection.

### 9.2.1. Emotion Recognition Tests based on Raw Data - Test 1 and Test 2

In these tests of emotion recognition, no feature extractions and preprocessing were considered; all raw data were directly applied on the ANN input layer. The ANN activation function was the sigmoid and two different optimization algorithms: stochastic gradient descend ('sgd') and 'adam'. Its inputs were based on HR (1 input channel), GSR (1 input channel) and EEG (8 inputs channels).

Each of the 13 flights was tested individually based on 13-fold cross-validation; it was also considered a total of  $6 \times 10^3$  training iterations (epochs), adaptive learning rate and momentum, 10 neurons applied in input layer ( $N_i = 10$ ), 2 hidden layers having 10 neurons each one ( $N_h =$  $10 \times 2$ ), and 5 output neurons ( $N_o = 5$ ) on the last ANN layer. This was one perspective of ANN architecture which a regression model was produced for each output neuron, i.e. for each output emotion.

Table 9.3, presents a emotion recognition results using a raw data approach and no feature extraction. Its results show the importance of a feature extraction in a multimodal sensing system in which on the other hand, the recognition will get undesirable results and high execution time. The MARD, RMSE and MAE were used to compare the output regression models with the emotions from the flight datasets.

#### 9.2.2. Emotion Recognition Tests based on Feature Extraction - Test 3 to 34

All tests between 3 to 34, considered the feature extraction over the raw input data. In details, between the tests 3 to 18, 90 features were extracted, in including good and bad quality features. Between the tests 19 to 34, the SVD was applied to select the best features to be used.

The accuracy of the major match procedure, i.e. the correct match in each sample regarding to the higher emotion amplitude (between 5 emotions), presented worst values on recognition from flight dataset CLX, having no matches on the most recognition. Table 9.4 to Table 9.19 present the tests results, based on feature extraction and also feature selection. The analysis of all these tests are presented on the next section, comparing each one and describing the achievements after some improvements.

### 9.3. Emotion Recognition Analysis

Figure 9.3, presents the barplots correspondent to the errors results from tests 3 to 6, with feature extraction but without feature selection and considering all three biosignals; these tests were executed according to the Table 9.1, presented before. It is also important to inform, that these tests were executed over all 13 datasets, as defined in Chapter 3.



FIGURE 9.3. Errors results (RMSE+MAE) from tests 3 to 6 (with feature extraction).

It is possible to see that in the tests 3 to 6, the emotion *surprised*, presented a better recognition accuracy, having the smallest error level. The *happy* and *scared* were the emotions which also presented low errors. Nevertheless, these errors levels can be improved if the train datasets are more coherent. The emotions *sad* and *angry*, presented the worst error levels; it is probably due the misclassifications from the face emotion detection software, which sometimes confused situations of angry and disappointed rather than sadness.

If we compare all tests (from test 3 to 34), it is possible to note that again, the *surprised* emotion kept with best recognition values (low errors), as shown in Figures 9.4 and 9.5, which it presents all considered errors along the tests.



FIGURE 9.4. Errors results (RMSE) comparison from tests 3 to 34 (with feature extraction).

The worst recognition results were reached when the EEG datasets were omitted in different tests (tests 15 to 18 and tests 31 to 34), showing that in these tests, the recognition results were better when all biosignals were considered; when GSR datasets were omitted, the results presented good recognition levels too (tests 11 to 14 and tests 27 to 30). The application of feature selection based on SVD and the omission of GSR datasets, returned the less recognition errors (tests 27 to 30). The *sad* emotion got the worst error levels when HR datasets were omitted (tests 7 to 10), as like as the *happy* emotion got the worst error levels when the EEG datasets were omitted.

In resume, all tests shown that the lowest recognition errors were reached when all biosignal datasets were considered or when the GSR dataset were omitted of the model training. It also shown that the emotion *surprised* was easier to recognize, having a mean value of RMSE of 0.13 and mean value of MAE of 0.01; the worst recognition levels were found to emotion *sad*, having a mean value of RMSE of 0.82 and mean value of MAE of 0.08.



FIGURE 9.5. Errors results (MAE) comparison from tests 3 to 34 (with feature extraction).

## 9.3.1. Improvements Coming from the Feature Extraction

In prior discussion, was presented the need to use features extraction in a very dense or huge datasets. One direct benefit of it is the execution time. Obviously, with the feature extraction, the dataset is sampled to fractions of data which it must to continue to represent all raw data with more or equal meaning. For this reason, a featured dataset is smaller if compared to its raw dataset. Another benefit of feature extraction, is that it can bring hide information from a dataset, in statistical or frequency context, e.g. data variances and other tiny patterns of frequency domain.

Figure 9.6, shows the errors levels between the use of raw datasets (tests 1 and 2) and featured datasets (tests 3 to 34). Analyzing the RMSE values (left barplot), it is possible to see that the improvements were considerable over all emotions when feature extraction was used. The emotion *happy* presented an improvement of 89.66% (prior 3.06/actual 0.31); *sad* of 84.58% (5.38/0.82); *angry* of 86.75% (3.84/0.50); *surprised* of 93.89% (2.19/0.13); and *scared* of 88.67% (3.18/0.36). Analyzing the MAE values (right barplot), it is possible to see that the improvements were good over 4 emotions of 5 (emotion *sad* wasn't improved on MAE values), when feature extraction was used. The emotion *happy* presented an improvement of 26.04% (prior 0.06/actual 0.04); *angry* of 4.32% (0.065/0.062); *surprised* of 60.15% (0.04/0.01); and *scared* of 18.75% (0.05/0.04).



FIGURE 9.6. Errors results comparison between RMSE and MAE from tests 1 to 34 (with feature extraction).

## 9.3.2. Considering the Higher Emotion Intensities

The higher intensities of facial emotions by time (between 5 emotion intensities), were also computed and its number of matches were also analyzed, comparing the correct matches between its higher emotion (from the face dataset) with the higher output from the 5 neurons (output layer), as shown in Chapter 4 (Section 4.5).

The benefit to also consider these major values, is to understand if the regression models from each output neuron, is following correctively the original emotions intensities related to the other emotions. In case of some output major values present wrong label, it does not mean that it is a critical error. The high fluctuations of emotions intensities are common to happen presenting, in several times, very close intensities values between them which it is hard to separate perfectly. On the other hand, if an outputted regression model of each neuron fits perfectly with the neuron output, both error levels (RMSA and MAE) and major emotion values will converge or improve together.

The corrected number of matches between these emotions and its relations, are shown in Figure 9.7, presenting the case of tests 3 to 6. Some datasets presented a very low number of matches during all tests as for instance, GC1, LS1, VC1, CLX and CL3. These low accuracies are probably due the high misclassification of emotions from the pilots' faces as also presented on prior errors values based o RMSE and MAE. However, if considers the possibility to improve these results, the next tests can omit these datasets with low accuracies, to get better general results.



FIGURE 9.7. Major emotion accuracies from the tests 3 to 6 (with feature extraction).

When comparing all the matches (from test 3 to 34) regarding to the major emotion values, it is possible to see that the accuracy of the dataset CLX continues to present the worst accuracies and the dataset GC3 the best accuracies values.

Figure 9.8, shows a comparison of all accuracies, regarding to the major emotions from the tests 3 to 34 (top plots) and from tests 1 to 34 (bottom plot). Note that on the top plot, shows that six datasets kept the major emotion accuracies less than 50%.

The top-left plot, presents the relation between the mean of the raw dataset accuracies (tests 1 and 2) over the featured datasets accuracies (tests 3 to 34), which the raw data tests seems to have better accuracies over the featured dataset. It not necessarily means that the emotion recognition based on raw datasets was the best solution in this proposed work; going back to Section 9.3.1 and observe the error levels during the tests based on raw datasets, it is possible to see that it was extremely bad compared to the others tests based on featured dataset; this way, it can easily note that actually, a good regression models, must be based on a combination of low error levels and good major emotions accuracies.

Analyzing the bottom plot, it is possible to note that when the activation function was the sigmoid together with the gradient descend optimization, the general accuracies presented a constant behaviour along the executed tests. The activation function rectified unit, presented the worst major emotion accuracies in this work.



FIGURE 9.8. All major emotion accuracies from the tests 1 to 34. All accuracies (left); mean of all accuracies (right).

## 9.3.3. Results Improvements

To improve these results, these work shows that is strongly recommended, to first, to optimize the emotions detection from the face. It were undoubtedly, the main reason for several undesirable recognition error levels. Another way to improve it, is to omit some datasets which presented not good recognition levels; it surely will improve the general predications or emotion recognition.

However, some results were already improved during this work. For instance, when looking to the learning tasks, absolute improvements, were applied, changing the traditional learning techniques by the deep learning techniques. These last improvements optimized the recognition results in accuracies of recognition and in execution time.

Figure 9.9, shows the improvement due the use of deep learning techniques, regarding to the number of correct matches of the major emotions values, between all emotions considered in this work. It is possible to see, that the dataset CLX kept with worst accuracy also on traditional learning.



FIGURE 9.9. Traditional learning versus deep learning (DP). Improvement applied in this work, regarding to the major value emotions when applying the traditional learning and deep learning (no feature extraction).

Regarding the the accuracies of the major value emotions based on 100 training iteration of the traditional learning, the improvement happened in 11 flight datasets from 13: RC1 was improved in 69.52% (prior 15.39/actual 50.50); RC2 72.71% (22.41/82.13); RC3 of 68.97% (18.25/58.83); GC1 of 80.97% (4.48/23.55); GC3 of 89.88% (10.08/99.65); LS1 of 73.63% (5.93/22.49); LS2 of 70.96% (20.16/69.43); VC2 of 37.08% (18.95/30.12); CR1 of 91.40%(7.95/92.47); CR3 of 89.39% (7.87/74.18); and CL3 of 12.13% (13.68/15.57). The higher and lower improvements happened for dataset CR1 and CL3 respectively.

Considering the traditional learning using 1,000 training iteration, the improvement happened in 11 flight datasets from 13, as in prior situation: RC1 was improved in 70.77% (14.76/50.50); RC2 of 54.25% (37.57/82.13); RC3 of 45.31% (32.17/58.83); GC1 of 47.77% (12.30/23.55); GC3 of 82.00% (17.93/99.65); LS1 of 68.25% (7.14/22.49); LS2 of 81.17% (12.69/69.43); VC2 of 92.19% (2.35/30.12); CR1 of 73.36% (24.63/92.47); CR3 of 98.53% (1.09/74.18); and CL3 of 5.20% (14.76/15.57). The higher and lower improvements happened for dataset CR3 and CL3 respectively.

The improvement of accuracies over the major emotion values at 100 training iterations were higher, because the execution with 1,000 training iterations presented better accuracies (i.e. less difference from deep learning); however, due the very high exponential execution time of the tradition learning, it discouraged the execution of it traditional manner, using the same training iteration used with the deep learning (6,000 training iterations), which it can takes days or weeks.

Considering the improvements over the execution time, the use of deep learning instead the traditional methods, it produced an optimization of 92.17%, having 4,406.32 seconds (mean of the deep learning applied on tests 1 and 2) instead of 56,321.40 seconds (traditional learning), even when the number of training iteration was 60 times less, i.e. 100 over 6,000 from deep learning. When the training interaction of the traditional learning was increased to 1,000, the

improvement with the use of deep learning was 99.09%, having 4,406.32 seconds (deep learning) instead of 484,586.47 seconds from traditional learning, even using 6 times less training iterations.

Another way to improve the final results, is to execute more flight tests, increasing the amount of data in the dataset. Also, applying personal dataset concept, which the emotion recognition should also be based on personal characteristics of each pilot.

|                                                                                                                                                               | Test                                                                                                                                                                  | 1 - Emot                                                                                                                                  | tion Red                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cognition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + RTO                                                                                                                                                                                                                                                                                                         | <b>R</b> - $\varphi_j(v_j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | j(n)) = signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gmoid, op                                                                                                                                                                                                                                   | t='sgd'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $N_h = 10$                                                                                                                                                                                                                  | $\times 2, N_o =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5 - [ Ex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cec. Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e: 4325.2                                                                                                                                                                                      | 8s ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{Flight}$                                                                                                                                             |                                                                                                                                                                       | Happy                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sad                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Angry                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\mathbf{S}$                                                                                                                                                                                                                | urprised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Scared                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Match                                                                                                                                                                                                                                                                                             |
| Dataset                                                                                                                                                       | MARD                                                                                                                                                                  | RMSE                                                                                                                                      | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | RMSE                                                                                                                                                                                                                                                                                                          | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RMSE                                                                                                                                                                                                                                        | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MARD                                                                                                                                                                                                                        | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RMSE                                                                                                                                                                                           | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Accuracy (%)                                                                                                                                                                                                                                                                                      |
| DS:RC1                                                                                                                                                        | *                                                                                                                                                                     | 3.64                                                                                                                                      | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.14                                                                                                                                                                                                                                                                                                          | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.83                                                                                                                                                                                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                           | 3.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.08                                                                                                                                                                                           | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>50.50</b> (1854/3671)                                                                                                                                                                                                                                                                          |
| DS:RC2                                                                                                                                                        | *                                                                                                                                                                     | 4.34                                                                                                                                      | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 49.35%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.72                                                                                                                                                                                                                                                                                                          | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.59                                                                                                                                                                                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                           | 3.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.88                                                                                                                                                                                           | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>82.13</b> ( <b>3488</b> /4247)                                                                                                                                                                                                                                                                 |
| DS:RC3                                                                                                                                                        | *                                                                                                                                                                     | 3.88                                                                                                                                      | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.58                                                                                                                                                                                                                                                                                                          | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.78                                                                                                                                                                                                                                        | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                           | 3.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.57                                                                                                                                                                                           | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>58.83</b> ( <b>2342</b> /3981)                                                                                                                                                                                                                                                                 |
| DS:GC1                                                                                                                                                        | *                                                                                                                                                                     | 5.68                                                                                                                                      | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.46                                                                                                                                                                                                                                                                                                          | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.34                                                                                                                                                                                                                                        | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                           | 4.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.79                                                                                                                                                                                           | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>23.55</b> ( <b>961</b> /4081)                                                                                                                                                                                                                                                                  |
| DS:GC3                                                                                                                                                        | *                                                                                                                                                                     | 5.63                                                                                                                                      | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7.45                                                                                                                                                                                                                                                                                                          | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7.41                                                                                                                                                                                                                                        | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                           | 5.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.84                                                                                                                                                                                           | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>99.65</b> ( <b>4240</b> /4255)                                                                                                                                                                                                                                                                 |
| DS:LS1                                                                                                                                                        | *                                                                                                                                                                     | 5.70                                                                                                                                      | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 6.22                                                                                                                                                                                                                                                                                                          | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 52.55%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3.46                                                                                                                                                                                                                                        | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                           | 5.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 6.20                                                                                                                                                                                           | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>22.49</b> (1250/5558)                                                                                                                                                                                                                                                                          |
| DS:LS2                                                                                                                                                        | *                                                                                                                                                                     | 5.52                                                                                                                                      | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84.69%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.68                                                                                                                                                                                                                                                                                                          | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 85.52%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.93                                                                                                                                                                                                                                        | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                           | 5.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.42                                                                                                                                                                                           | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>69.43</b> ( <b>2844</b> /4096)                                                                                                                                                                                                                                                                 |
| DS:VC1                                                                                                                                                        | *                                                                                                                                                                     | 3.98                                                                                                                                      | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.38                                                                                                                                                                                                                                                                                                          | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.40                                                                                                                                                                                                                                        | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                           | 3.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 70.25%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4.79                                                                                                                                                                                           | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>15.63</b> ( <b>408</b> /2611)                                                                                                                                                                                                                                                                  |
| DS:VC2                                                                                                                                                        | *                                                                                                                                                                     | 3.76                                                                                                                                      | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.89                                                                                                                                                                                                                                                                                                          | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.27                                                                                                                                                                                                                                        | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                           | 2.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.53                                                                                                                                                                                           | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>30.12</b> ( <b>615</b> /2042)                                                                                                                                                                                                                                                                  |
| DS:CR1                                                                                                                                                        | *                                                                                                                                                                     | 4.46                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 76.31%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.54                                                                                                                                                                                                                                                                                                         | 0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68.30%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.00                                                                                                                                                                                                                                        | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                           | 3.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 41.14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.64                                                                                                                                                                                           | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>92.47</b> ( <b>3697</b> /3998)                                                                                                                                                                                                                                                                 |
| DS:CR3                                                                                                                                                        | *                                                                                                                                                                     | 1.69                                                                                                                                      | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53.28%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.66                                                                                                                                                                                                                                                                                                          | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.16                                                                                                                                                                                                                                        | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                           | 1.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 47.65%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.28                                                                                                                                                                                           | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>74.18</b> ( <b>339</b> /457)                                                                                                                                                                                                                                                                   |
| DS:CLX                                                                                                                                                        | 58.25%                                                                                                                                                                | 4.45                                                                                                                                      | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48.35%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.00                                                                                                                                                                                                                                                                                                          | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 49.14%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.73                                                                                                                                                                                                                                        | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                           | 1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 33.47%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.54                                                                                                                                                                                           | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>0.00</b> ( <b>0</b> /518)                                                                                                                                                                                                                                                                      |
| DS:CL3                                                                                                                                                        | *                                                                                                                                                                     | 3.27                                                                                                                                      | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.49%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.07                                                                                                                                                                                                                                                                                                          | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 37.38%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.58                                                                                                                                                                                                                                        | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                                                                                                           | 5.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.76                                                                                                                                                                                           | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>15.57</b> ( <b>735</b> /4722)                                                                                                                                                                                                                                                                  |
|                                                                                                                                                               |                                                                                                                                                                       |                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 67                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                               |                                                                                                                                                                       | 11                                                                                                                                        | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 05                                                                                                                                                                                                                                                                                                            | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 77                                                                                                                                                                                                                                          | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                             | 29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92                                                                                                                                                                                             | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                               |                                                                                                                                                                       | -                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.6                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ÷                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n 100 100 100 100 100 100 100 100 100 10                                                                                                                                                                                                                                                          |
|                                                                                                                                                               |                                                                                                                                                                       | ++                                                                                                                                        | *<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>x</b>                                                                                                                                                                                                                                                                                                      | +6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | +6                                                                                                                                                                                                                                          | 4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                             | -++<br>x0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ×<br>×                                                                                                                                                                                         | 4<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 81                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                               |                                                                                                                                                                       | 1.3                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.9                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.1                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                             | ×.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.1                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u>8</u>                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                               |                                                                                                                                                                       | ~                                                                                                                                         | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                               | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                           | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                             | ••                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                               | Test 9                                                                                                                                                                | 2 - Emoti                                                                                                                                 | on Reco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ognition .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\perp$ <b>BTOR</b>                                                                                                                                                                                                                                                                                           | - 10:(2):1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (n)) - sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | moid ont                                                                                                                                                                                                                                    | _'adam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $N_{L} = 10$                                                                                                                                                                                                                | $) \times 2 N$ -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -5-[F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | lvec Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1/187                                                                                                                                                                                          | 365 ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                 |
| Flight                                                                                                                                                        | Test 2                                                                                                                                                                | 2 - Emoti<br>Happy                                                                                                                        | on Reco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ognition -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + RTOR<br>Sad                                                                                                                                                                                                                                                                                                 | - $\varphi_j(v_j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $(n)) = signature{}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | moid, opt                                                                                                                                                                                                                                   | ='adam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $N_h = 10$                                                                                                                                                                                                                  | $) \times 2, N_o =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = <u>5</u> - [ <b>E</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Exec. Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ne: 4487.3<br>Scared                                                                                                                                                                           | 36s ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Match                                                                                                                                                                                                                                                                                             |
| Flight<br>Dataset                                                                                                                                             | Test 2                                                                                                                                                                | 2 - Emoti<br>Happy<br>BMSE                                                                                                                | on Reco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ognition -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + <b>RTOR</b><br><b>Sad</b><br><i>RMSE</i>                                                                                                                                                                                                                                                                    | $-\varphi_j(v_j)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (n)) = sign                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | moid, opt                                                                                                                                                                                                                                   | ='adam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $N_h = 10$ $S$ $MARD$                                                                                                                                                                                                       | $() \times 2, N_o =$<br>urprised<br>BMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $= 5 - [\mathbf{E}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Exec. Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ne: 4487.3<br>Scared<br>BMSE                                                                                                                                                                   | 36s ]<br>MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Match                                                                                                                                                                                                                                                                                             |
| Flight<br>Dataset                                                                                                                                             | Test 2<br>MARD                                                                                                                                                        | 2 - Emoti<br>Happy<br>RMSE                                                                                                                | on Reco<br>MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ognition -<br>MARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | + RTOR<br>Sad<br>RMSE                                                                                                                                                                                                                                                                                         | $-\varphi_j(v_j)$ $MAE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (n)) = sign<br>MARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | moid, opt<br>Angry<br>RMSE                                                                                                                                                                                                                  | ='adam<br>MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $N_h = 10$<br>S<br>MARD                                                                                                                                                                                                     | $0 \times 2, N_o =$<br>urprised<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $= 5 - [\mathbf{F}]$ $MAE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Xec. Tin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ne: 4487.3<br>Scared<br><i>RMSE</i>                                                                                                                                                            | 36s ]<br>MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Match<br>Accuracy (%)                                                                                                                                                                                                                                                                             |
| Flight<br>Dataset<br>DS:RC1                                                                                                                                   | Test 2<br><i>MARD</i> * *                                                                                                                                             | 2 - Emoti<br>Happy<br><i>RMSE</i><br>1.19                                                                                                 | on Reco<br>MAE<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | + <b>RTOR</b><br>Sad<br><i>RMSE</i><br>5.44                                                                                                                                                                                                                                                                   | $-\varphi_j(v_j)$ $MAE$ $0.08$ $0.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (n)) = sign<br>MARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | moid, opt<br>Angry<br>RMSE<br>3.63                                                                                                                                                                                                          | ='adam<br><u>MAE</u><br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $N_h = 10$<br><b>S</b><br><i>MARD</i><br>34.50%<br>45.22%                                                                                                                                                                   | $0 \times 2, N_o =$<br>urprised<br>RMSE<br>0.79<br>1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $= 5 - [\mathbf{F}]$<br>$\underline{MAE}$<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>Exec. Tin</b> <i>MARD</i> * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ne: 4487.3<br>Scared<br><i>RMSE</i><br>1.76                                                                                                                                                    | <b>36s</b> ]<br><u>MAE</u><br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Match<br>Accuracy (%)<br>50.50 (1854/3671)                                                                                                                                                                                                                                                        |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2                                                                                                                         | Test 2<br>MARD<br>*<br>*                                                                                                                                              | 2 - Emoti<br>Happy<br><i>RMSE</i><br>1.19<br>1.26<br>4.06                                                                                 | on Reco           MAE           0.02           0.02           0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | mathematical           MARD           *           47.39%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | + RTOR<br>Sad<br><i>RMSE</i><br>5.44<br>5.77                                                                                                                                                                                                                                                                  | $-\varphi_j(v_j)$ $MAE$ $0.08$ $0.07$ $0.12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (n)) = sign $MARD$ $*$ 94.12%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | moid, opt<br>Angry<br>RMSE<br>3.63<br>2.41<br>4.81                                                                                                                                                                                          | ='adam<br><u>MAE</u><br>0.05<br>0.03<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $N_h = 10$ <b>S</b> <i>MARD</i> 34.50% 45.23% 28.65%                                                                                                                                                                        | $0 \times 2, N_o =$<br>urprised<br>RMSE<br>0.79<br>1.02<br>0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $= 5 - [ \mathbf{E}$ $MAE$ $0.01$ $0.01$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>Exec. Tin</b> <i>MARD</i> * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ne: 4487.3<br>Scared<br><i>RMSE</i><br>1.76<br>1.73                                                                                                                                            | <b>36s</b> ]<br><u>MAE</u><br>0.03<br>0.03<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Match<br>Accuracy (%)<br>50.50 (1854/3671)<br>82.13 (3488/4247)<br>59.82 (2249/2021)                                                                                                                                                                                                              |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3                                                                                                               | Test 2<br>MARD<br>*<br>*<br>*                                                                                                                                         | 2 - Emoti<br>Happy<br><i>RMSE</i><br>1.19<br>1.26<br>4.96<br>0.64                                                                         | MAE           0.02           0.02           0.06           0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mathematical         MARD           *         47.39%           *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + RTOR<br>Sad<br><i>RMSE</i><br>5.44<br>5.77<br>9.14                                                                                                                                                                                                                                                          | - $\varphi_j(v_j)$<br><u>MAE</u><br>0.08<br>0.07<br>0.12<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | (n)) = sign $MARD$ $*$ 94.12% $*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | moid, opt<br>Angry<br>RMSE<br>3.63<br>2.41<br>4.81<br>2.90                                                                                                                                                                                  | <b>MAE</b> 0.05 0.03 0.07 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $N_h = 10$ $S$ $MARD$ $34.50\%$ $45.23\%$ $38.65\%$ $46.70\%$                                                                                                                                                               | $0 \times 2, N_o =$<br>urprised<br>RMSE<br>0.79<br>1.02<br>0.73<br>0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $= 5 - [ \mathbf{E}$ $MAE$ 0.01 0.01 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Exec. Tin</b> <i>MARD</i> * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ne: 4487.3<br>Scared<br><i>RMSE</i><br>1.76<br>1.73<br>3.44                                                                                                                                    | <b>36s</b> ]<br><u>MAE</u><br>0.03<br>0.03<br>0.05<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Match<br>Accuracy (%)<br>50.50 (1854/3671)<br>82.13 (3488/4247)<br>58.83 (2342/3981)<br>28.55 (201/4091)                                                                                                                                                                                          |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC1                                                                                           | Test 2<br>MARD<br>*<br>*<br>*<br>*                                                                                                                                    | <b>2 - Emoti</b><br><b>Happy</b><br><i>RMSE</i><br>1.19<br>1.26<br>4.96<br>0.64<br>0.62                                                   | on Reco           MAE           0.02           0.02           0.06           0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | matrix           MARD           *           47.39%           *           *           *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + RTOR<br>Sad<br><i>RMSE</i><br>5.44<br>5.77<br>9.14<br>3.97<br>2.60                                                                                                                                                                                                                                          | $- \varphi_{j}(v_{j})$ $MAE$ $0.08$ $0.07$ $0.12$ $0.06$ $0.96$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (n)) = sign $MARD$ $*$ 94.12% $*$ *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | moid, opt<br>Angry<br>RMSE<br>3.63<br>2.41<br>4.81<br>2.96<br>2.34                                                                                                                                                                          | ='adam<br><i>MAE</i><br>0.05<br>0.03<br>0.07<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \textbf{', } N_h = 10\\ \hline \textbf{S}\\ MARD\\ \hline 34.50\%\\ 45.23\%\\ 38.65\%\\ 46.72\%\\ \ast \end{array}$                                                                                       | $0 \times 2, N_o =$<br>urprised<br>RMSE<br>0.79<br>1.02<br>0.73<br>0.64<br>0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $= 5 - [ \mathbf{F} \\ MAE \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ $ | <b>Exec. Tin</b> <i>MARD</i> * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ne: 4487.3<br>Scared<br><i>RMSE</i><br>1.76<br>1.73<br>3.44<br>0.74<br>0.84                                                                                                                    | <b>36s</b> ]<br><i>MAE</i><br>0.03<br>0.03<br>0.05<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Match<br>Accuracy (%)<br>50.50 (1854/3671)<br>82.13 (3488/4247)<br>58.83 (2342/3981)<br>23.55 (961/4081)<br>09.65 (4240/4255)                                                                                                                                                                     |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:GC3                                                                                 | Test 2<br>MARD<br>*<br>*<br>*<br>*<br>*                                                                                                                               | 2 - Emoti<br>Happy<br><i>RMSE</i><br>1.19<br>1.26<br>4.96<br>0.64<br>0.63<br>0.60                                                         | on Reco           MAE           0.02           0.02           0.02           0.06           0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mathematical         mathematical<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + <b>RTOR</b><br><b>Sad</b><br><i>RMSE</i><br>5.44<br>5.77<br>9.14<br>3.97<br>3.69<br>1.71                                                                                                                                                                                                                    | $- \varphi_{j}(v_{j})$ $MAE$ $0.08$ $0.07$ $0.12$ $0.06$ $0.06$ $0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (n)) = sign $MARD$ $*$ $94.12%$ $*$ $*$ $*$ $*$ $*$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | moid, opt<br>Angry<br><i>RMSE</i><br>3.63<br>2.41<br>4.81<br>2.96<br>3.34<br>2.47                                                                                                                                                           | <b>*</b> adam<br><i>MAE</i><br>0.05<br>0.03<br>0.07<br>0.05<br>0.05<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $N_h = 10$ <b>S</b> <i>MARD</i> $34.50\%$ $45.23\%$ $38.65\%$ $46.72\%$ * $60.65\%$                                                                                                                                         | $(x + 2) \times 2, N_o = 0$<br>urprised<br>RMSE<br>0.79<br>1.02<br>0.73<br>0.64<br>0.34<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $= 5 - [ \mathbf{F} \\ MAE \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ $ | MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ne: 4487.:<br>Scared<br><i>RMSE</i><br>1.76<br>1.73<br>3.44<br>0.74<br>0.84<br>0.25                                                                                                            | MAE           0.03           0.03           0.05           0.01           0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Match<br>Accuracy (%)<br>50.50 (1854/3671)<br>82.13 (3488/4247)<br>58.83 (2342/3981)<br>23.55 (961/4081)<br>99.65 (4240/4255)<br>22.40 (1250/5559)                                                                                                                                                |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS1                                                                       | Test 2           MARD           *           *           *           *           *           *           *           *           *           *           *           * | 2 - Emoti<br>Happy<br><i>RMSE</i><br>1.19<br>1.26<br>4.96<br>0.64<br>0.63<br>0.69<br>0.40                                                 | MAE           0.02           0.02           0.02           0.06           0.01           0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mathematical         mathematical<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + RTOR<br>Sad<br><i>RMSE</i><br>5.44<br>5.77<br>9.14<br>3.97<br>3.69<br>1.71<br>2.62                                                                                                                                                                                                                          | $- \varphi_{j}(v_{j}(v_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j})))))))))))))))))))))))))))))))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (n)) = sign<br>MARD<br>*<br>94.12%<br>*<br>*<br>37.75%<br>52.61%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | moid, opt<br>Angry<br><i>RMSE</i><br>3.63<br>2.41<br>4.81<br>2.96<br>3.34<br>3.47<br>2.00                                                                                                                                                   | <b>A A B A A B C C C C C C C C C C</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \textbf{', } N_h = 10\\ \textbf{S}\\ \hline \textbf{MARD}\\ \hline 34.50\%\\ 45.23\%\\ 38.65\%\\ 46.72\%\\ *\\ 60.65\%\\ * \end{array}$                                                                   | $\begin{array}{c} \hline >>2, \ N_o = \\ \hline \mathbf{urprised} \\ \hline \mathbf{RMSE} \\ \hline 0.79 \\ 1.02 \\ 0.73 \\ 0.64 \\ 0.34 \\ 0.97 \\ 0.44 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $= 5 - [ \mathbf{F} \\ MAE \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ $ | MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ne: 4487.:<br>Scared<br><i>RMSE</i><br>1.76<br>1.73<br>3.44<br>0.74<br>0.84<br>0.84<br>0.35<br>0.27                                                                                            | MAE           0.03           0.03           0.05           0.01           0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Match<br>Accuracy (%)<br>50.50 (1854/3671)<br>82.13 (3488/4247)<br>58.83 (2342/3981)<br>23.55 (961/4081)<br>99.65 (4240/4255)<br>22.49 (1250/5558)<br>60.42 (2844/4006)                                                                                                                           |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:LS2                                                             | Test 2<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                                                     | 2 - Emoti<br>Happy<br><i>RMSE</i><br>1.19<br>1.26<br>4.96<br>0.64<br>0.63<br>0.69<br>0.49<br>0.49                                         | MAE           0.02           0.02           0.02           0.06           0.01           0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mathematical         mathematical<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $+ \begin{array}{c} \textbf{RTOR} \\ \hline \textbf{Sad} \\ \hline RMSE \\ \hline 5.44 \\ 5.77 \\ 9.14 \\ 3.97 \\ 3.69 \\ 1.71 \\ 3.63 \\ 2.20 \\ \end{array}$                                                                                                                                                | $- \varphi_{j}(v_{j}(v_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}))))))))))))))))))))))))))))))))))))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (n)) = sign<br>MARD<br>*<br>94.12%<br>*<br>*<br>37.75%<br>52.61%<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | moid, opt<br>Angry<br><i>RMSE</i><br>3.63<br>2.41<br>4.81<br>2.96<br>3.34<br>3.47<br>2.99<br>2.20                                                                                                                                           | <b>*</b> adam<br><i>MAE</i><br>0.05<br>0.03<br>0.07<br>0.05<br>0.05<br>0.04<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \textbf{', } N_h = 10\\ \textbf{S}\\ \hline \textbf{MARD}\\ \hline 34.50\%\\ 45.23\%\\ 38.65\%\\ 46.72\%\\ *\\ 60.65\%\\ *\\ 25.78\%\end{array}$                                                          | $\begin{array}{c} \hline > \times 2, \ N_o = \\ \hline \mathbf{urprised} \\ \hline \mathbf{RMSE} \\ \hline 0.79 \\ 1.02 \\ 0.73 \\ 0.64 \\ 0.34 \\ 0.97 \\ 0.44 \\ 0.20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $= 5 - [ \mathbf{F} \\ MAE \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ $ | MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *           *      *      *      *      *      *      *      *      *      *      *      *      *      *      *      *      *      *     *     *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ne: 4487.:<br>Scared<br><i>RMSE</i><br>1.76<br>1.73<br>3.44<br>0.74<br>0.84<br>0.35<br>0.27<br>7.67                                                                                            | MAE           0.03           0.03           0.05           0.01           0.01           0.00           0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Match<br>Accuracy (%)<br>50.50 (1854/3671)<br>82.13 (3488/4247)<br>58.83 (2342/3981)<br>23.55 (961/4081)<br>99.65 (4240/4255)<br>22.49 (1250/5558)<br>69.43 (2844/4096)<br>15.62 (408/2011)                                                                                                       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC1                                                   | Test 2<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                                                | 2 - Emoti<br>Happy<br><i>RMSE</i><br>1.19<br>1.26<br>4.96<br>0.64<br>0.63<br>0.69<br>0.49<br>0.81<br>0.81                                 | MAE           0.02           0.02           0.02           0.06           0.01           0.01           0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | matrix           MARD           *           47.39%           *           *           56.03%           44.02%           80.20%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $+ \begin{array}{c} \textbf{RTOR} \\ \hline \textbf{Sad} \\ \hline RMSE \\ \hline 5.44 \\ 5.77 \\ 9.14 \\ 3.97 \\ 3.69 \\ 1.71 \\ 3.63 \\ 2.20 \\ 1.76 \end{array}$                                                                                                                                           | $- \varphi_{j}(v_{j}(v_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}(w_{j}))))))))))))))))))))))))))))))))))))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (n)) = sign (n) = si | moid, opt<br>Angry<br><i>RMSE</i><br>3.63<br>2.41<br>4.81<br>2.96<br>3.34<br>3.47<br>2.99<br>2.39<br>1.07                                                                                                                                   | <b>*</b> adam<br><i>MAE</i><br>0.05<br>0.03<br>0.07<br>0.05<br>0.05<br>0.04<br>0.04<br>0.04<br>0.04<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \textbf{', } N_h = 10\\ \textbf{S}\\ \hline \textbf{MARD}\\ \hline \textbf{34.50\%}\\ 45.23\%\\ 38.65\%\\ 46.72\%\\ *\\ 60.65\%\\ *\\ 25.78\%\\ 77.60\% \end{array}$                                      | $\begin{array}{c} \hline >>2, \ N_o = \\ \hline \mathbf{urprised} \\ \hline \mathbf{RMSE} \\ \hline 0.79 \\ 1.02 \\ 0.73 \\ 0.64 \\ 0.34 \\ 0.97 \\ 0.44 \\ 0.39 \\ 0.96 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 5 - [F] $MAE$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *           *      *         *      *         *      *         *      *         *      *         *      *         *      *         *      *         *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ne: 4487.:<br>Scared<br><i>RMSE</i><br>1.76<br>1.73<br>3.44<br>0.74<br>0.84<br>0.35<br>0.27<br>7.67<br>4.68                                                                                    | MAE           0.03           0.03           0.05           0.01           0.001           0.00           0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Match<br>Accuracy (%)<br>50.50 (1854/3671)<br>82.13 (3488/4247)<br>58.83 (2342/3981)<br>23.55 (961/4081)<br>99.65 (4240/4255)<br>22.49 (1250/5558)<br>69.43 (2844/4096)<br>15.63 (408/2611)<br>20.19 (615 (2042)                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2                                         | Test 2<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                                      | 2 - Emoti<br>Happy<br><i>RMSE</i><br>1.19<br>1.26<br>4.96<br>0.64<br>0.63<br>0.69<br>0.49<br>0.81<br>0.28<br>2.49                         | MAE           0.02           0.02           0.02           0.06           0.01           0.01           0.01           0.01           0.01           0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | matrix         matrix <thmatrix< th=""> <thmatrix< th=""> <thmatrix< td="" th<=""><td>+ RTOR<br/>Sad<br/><i>RMSE</i><br/>5.44<br/>5.77<br/>9.14<br/>3.97<br/>3.69<br/>1.71<br/>3.63<br/>2.20<br/>1.76<br/>1.65</td><td><math display="block">\begin{array}{c} - \varphi_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}))))))))))))))))))))))))))))))))))))</math></td><td>(n)) = sign (n) = si</td><td>moid, opt<br/>Angry<br/><i>RMSE</i><br/>3.63<br/>2.41<br/>4.81<br/>2.96<br/>3.34<br/>3.47<br/>2.99<br/>2.39<br/>1.07<br/>5.07</td><td><b>*</b>adam<br/><i>MAE</i><br/>0.05<br/>0.03<br/>0.07<br/>0.05<br/>0.05<br/>0.04<br/>0.04<br/>0.04<br/>0.04<br/>0.02<br/>0.07</td><td><math display="block">\begin{array}{c} \textbf{', } N_h = 10\\ \textbf{S}\\ \hline \textbf{MARD}\\ \hline \textbf{34.50\%}\\ 45.23\%\\ 38.65\%\\ 46.72\%\\ \textbf{*}\\ 60.65\%\\ \textbf{*}\\ 25.78\%\\ 77.69\%\\ 41.59\%\end{array}</math></td><td><math display="block">\begin{array}{c} &gt;&gt; 2, \ N_o = \\ \textbf{urprised} \\ \hline \textbf{RMSE} \\ \hline 0.79 \\ 1.02 \\ 0.73 \\ 0.64 \\ 0.34 \\ 0.97 \\ 0.44 \\ 0.39 \\ 0.96 \\ 0.96 \\ 0.67 \end{array}</math></td><td>= 5 - [F] <math display="block">MAE</math> <math display="block">0.01</math> <math display="block">0.02</math> <math display="block">0.01</math></td><td>MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *           *      *      *      *      *      *      *      *      *      *      *      *      *      *     *     *     *     *     *     *     *     * * * * <!--</td--><td>ne: 4487.:<br/>Scared<br/><i>RMSE</i><br/>1.76<br/>1.73<br/>3.44<br/>0.74<br/>0.84<br/>0.35<br/>0.27<br/>7.67<br/>4.68<br/>102</td><td>MAE           0.03           0.03           0.05           0.01           0.00           0.01           0.00           0.01           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00</td><td>Match<br/>Accuracy (%)<br/>50.50 (1854/3671)<br/>82.13 (3488/4247)<br/>58.83 (2342/3981)<br/>23.55 (961/4081)<br/>99.65 (4240/4255)<br/>22.49 (1250/5558)<br/>69.43 (2844/4096)<br/>15.63 (408/2611)<br/>30.12 (615/2042)<br/>09.47 (2007/2009)</td></td></thmatrix<></thmatrix<></thmatrix<> | + RTOR<br>Sad<br><i>RMSE</i><br>5.44<br>5.77<br>9.14<br>3.97<br>3.69<br>1.71<br>3.63<br>2.20<br>1.76<br>1.65                                                                                                                                                                                                  | $\begin{array}{c} - \varphi_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}))))))))))))))))))))))))))))))))))))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (n)) = sign (n) = si | moid, opt<br>Angry<br><i>RMSE</i><br>3.63<br>2.41<br>4.81<br>2.96<br>3.34<br>3.47<br>2.99<br>2.39<br>1.07<br>5.07                                                                                                                           | <b>*</b> adam<br><i>MAE</i><br>0.05<br>0.03<br>0.07<br>0.05<br>0.05<br>0.04<br>0.04<br>0.04<br>0.04<br>0.02<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \textbf{', } N_h = 10\\ \textbf{S}\\ \hline \textbf{MARD}\\ \hline \textbf{34.50\%}\\ 45.23\%\\ 38.65\%\\ 46.72\%\\ \textbf{*}\\ 60.65\%\\ \textbf{*}\\ 25.78\%\\ 77.69\%\\ 41.59\%\end{array}$           | $\begin{array}{c} >> 2, \ N_o = \\ \textbf{urprised} \\ \hline \textbf{RMSE} \\ \hline 0.79 \\ 1.02 \\ 0.73 \\ 0.64 \\ 0.34 \\ 0.97 \\ 0.44 \\ 0.39 \\ 0.96 \\ 0.96 \\ 0.67 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 5 - [F] $MAE$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *           *      *      *      *      *      *      *      *      *      *      *      *      *      *     *     *     *     *     *     *     *     * * * * </td <td>ne: 4487.:<br/>Scared<br/><i>RMSE</i><br/>1.76<br/>1.73<br/>3.44<br/>0.74<br/>0.84<br/>0.35<br/>0.27<br/>7.67<br/>4.68<br/>102</td> <td>MAE           0.03           0.03           0.05           0.01           0.00           0.01           0.00           0.01           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00</td> <td>Match<br/>Accuracy (%)<br/>50.50 (1854/3671)<br/>82.13 (3488/4247)<br/>58.83 (2342/3981)<br/>23.55 (961/4081)<br/>99.65 (4240/4255)<br/>22.49 (1250/5558)<br/>69.43 (2844/4096)<br/>15.63 (408/2611)<br/>30.12 (615/2042)<br/>09.47 (2007/2009)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ne: 4487.:<br>Scared<br><i>RMSE</i><br>1.76<br>1.73<br>3.44<br>0.74<br>0.84<br>0.35<br>0.27<br>7.67<br>4.68<br>102                                                                             | MAE           0.03           0.03           0.05           0.01           0.00           0.01           0.00           0.01           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00           0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Match<br>Accuracy (%)<br>50.50 (1854/3671)<br>82.13 (3488/4247)<br>58.83 (2342/3981)<br>23.55 (961/4081)<br>99.65 (4240/4255)<br>22.49 (1250/5558)<br>69.43 (2844/4096)<br>15.63 (408/2611)<br>30.12 (615/2042)<br>09.47 (2007/2009)                                                              |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1<br>DS:CP3                     | Test 2<br>MARD<br>* * * * * * * * * * * * * * * * * *                                                                                                                 | 2 - Emoti<br>Happy<br><i>RMSE</i><br>1.19<br>1.26<br>4.96<br>0.64<br>0.63<br>0.69<br>0.49<br>0.81<br>0.28<br>2.48<br>1.02                 | $\begin{array}{c c} \textbf{On Recc} \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.06 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.04 \\ 0.07 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | matrix         matrix<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + RTOR Sad RMSE 5.44 5.77 9.14 3.97 3.69 1.71 3.63 2.20 1.76 16.56 2.82                                                                                                                                                                                                                                       | $\begin{array}{c} - \varphi_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}))))))))))))))))))))))))))))))))))))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (n)) = sign (n) = si | moid, opt<br>Angry<br><i>RMSE</i><br>3.63<br>2.41<br>4.81<br>2.96<br>3.34<br>3.47<br>2.99<br>2.39<br>1.07<br>5.05<br>1.24                                                                                                                   | <b>*</b> adam<br><i>MAE</i><br>0.05<br>0.03<br>0.07<br>0.05<br>0.05<br>0.04<br>0.04<br>0.04<br>0.04<br>0.02<br>0.07<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \textbf{', } N_h = 10\\ \hline \textbf{S}\\ \hline \textbf{MARD}\\ \hline 34.50\%\\ 45.23\%\\ 38.65\%\\ 46.72\%\\ *\\ 60.65\%\\ *\\ 25.78\%\\ 77.69\%\\ 41.52\%\\ *\\ \end{array}$                        | $\begin{array}{c} >> 2, \ N_o = \\ \hline \ urprised \\ RMSE \\ \hline \\ 0.79 \\ 1.02 \\ 0.73 \\ 0.64 \\ 0.34 \\ 0.97 \\ 0.44 \\ 0.39 \\ 0.96 \\ 0.67 \\ 0.48 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 5 - [F] $MAE$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.02$ $0.01$ $0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *           *      *      *      *      *      *      *      *      *      *      *      *      *      *     *     *     *     *     *     * *  *** </td <td>ne: 4487.:<br/>Scared<br/><i>RMSE</i><br/>1.76<br/>1.73<br/>3.44<br/>0.74<br/>0.84<br/>0.35<br/>0.27<br/>7.67<br/>4.68<br/>1.93<br/>1.75</td> <td>MAE           0.03           0.03           0.05           0.01           0.00           0.01           0.00           0.01           0.00           0.01           0.00           0.00           0.00           0.00           0.00           0.03           0.03           0.03           0.03           0.03           0.04</td> <td>Match<br/>Accuracy (%)<br/>50.50 (1854/3671)<br/>82.13 (3488/4247)<br/>58.83 (2342/3981)<br/>23.55 (961/4081)<br/>99.65 (4240/4255)<br/>22.49 (1250/5558)<br/>69.43 (2844/4096)<br/>15.63 (408/2611)<br/>30.12 (615/2042)<br/>92.47 (3697/3998)<br/>74.18 (290/457)</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ne: 4487.:<br>Scared<br><i>RMSE</i><br>1.76<br>1.73<br>3.44<br>0.74<br>0.84<br>0.35<br>0.27<br>7.67<br>4.68<br>1.93<br>1.75                                                                    | MAE           0.03           0.03           0.05           0.01           0.00           0.01           0.00           0.01           0.00           0.01           0.00           0.00           0.00           0.00           0.00           0.03           0.03           0.03           0.03           0.03           0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Match<br>Accuracy (%)<br>50.50 (1854/3671)<br>82.13 (3488/4247)<br>58.83 (2342/3981)<br>23.55 (961/4081)<br>99.65 (4240/4255)<br>22.49 (1250/5558)<br>69.43 (2844/4096)<br>15.63 (408/2611)<br>30.12 (615/2042)<br>92.47 (3697/3998)<br>74.18 (290/457)                                           |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX                     | Test 2<br>MARD<br>* * * * * * * * * * * * * * * * * *                                                                                                                 | 2 - Emoti<br>Happy<br><i>RMSE</i><br>1.19<br>1.26<br>4.96<br>0.64<br>0.63<br>0.69<br>0.49<br>0.81<br>0.28<br>2.48<br>1.03<br>5.66         | MAE           0.02           0.02           0.02           0.06           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mathematical         mathematical<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + RTOR Sad RMSE 5.44 5.77 9.14 3.97 3.69 1.71 3.63 2.20 1.76 16.56 2.83 0.02                                                                                                                                                                                                                                  | $\begin{array}{c} - \varphi_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}))))))))))))))))))))))))))))))))))))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (n)) = sign<br>MARD<br>*<br>94.12%<br>*<br>*<br>37.75%<br>52.61%<br>*<br>68.04%<br>*<br>50.80%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | moid, opt<br>Angry<br><i>RMSE</i><br>3.63<br>2.41<br>4.81<br>2.96<br>3.34<br>3.47<br>2.99<br>2.39<br>1.07<br>5.05<br>1.34<br>2.7                                                                                                            | <b>*</b> adam<br><i>MAE</i><br>0.05<br>0.03<br>0.07<br>0.05<br>0.04<br>0.04<br>0.04<br>0.04<br>0.02<br>0.07<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \textbf{', } N_h = 10\\ \hline \textbf{S}\\ \hline \textbf{MARD}\\ \hline \textbf{34.50\%}\\ 45.23\%\\ 38.65\%\\ 46.72\%\\ *\\ 60.65\%\\ *\\ 25.78\%\\ 77.69\%\\ 41.52\%\\ *\\ *\\ \end{array}$           | $\begin{array}{c} >>2, \ N_{o} = \\ \textbf{urprised} \\ \hline \textbf{RMSE} \\ \hline 0.79 \\ 1.02 \\ 0.73 \\ 0.64 \\ 0.34 \\ 0.97 \\ 0.44 \\ 0.39 \\ 0.96 \\ 0.67 \\ 0.48 \\ 0.20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 5 - [F] $MAE$ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *           *      *         *      *         *      *         *      *         *      *         *      *         *      *         *      *         *      *         *      *         *      *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \text{ne:} \ 4487.;\\ \textbf{Scared}\\ RMSE \\ \hline 1.76\\ 1.73\\ 3.44\\ 0.74\\ 0.84\\ 0.35\\ 0.27\\ 7.67\\ 4.68\\ 1.93\\ 1.75\\ 1.08 \end{array}$                        | MAE           0.03           0.03           0.05           0.01           0.00           0.01           0.00           0.01           0.00           0.01           0.00           0.03           0.04           0.05           0.01           0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Match<br>Accuracy (%)<br>50.50 (1854/3671)<br>82.13 (3488/4247)<br>58.83 (2342/3981)<br>23.55 (961/4081)<br>99.65 (4240/4255)<br>22.49 (1250/5558)<br>69.43 (2844/4096)<br>15.63 (408/2611)<br>30.12 (615/2042)<br>92.47 (3697/3998)<br>74.18 (339/457)                                           |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX                     | Test 2<br>MARD<br>* * * * * * * * * * * * * * * * * *                                                                                                                 | 2 - Emoti<br>Happy<br><i>RMSE</i><br>1.19<br>1.26<br>4.96<br>0.64<br>0.63<br>0.69<br>0.49<br>0.81<br>0.28<br>2.48<br>1.03<br>5.66<br>2.40 | MAE           0.02           0.02           0.02           0.06           0.01           0.01           0.01           0.01           0.01           0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mathematical         mathematical<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + RTOR  Sad  RMSE  5.44  5.77  9.14  3.97  3.69  1.71  3.63  2.20  1.76  16.56  2.83  0.92  4.57                                                                                                                                                                                                              | $\begin{array}{c} - \varphi_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}))))))))))))))))))))))))))))))))))))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (n)) = sign<br>MARD<br>*<br>94.12%<br>*<br>*<br>37.75%<br>52.61%<br>*<br>68.04%<br>*<br>59.82%<br>77.91%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | moid, opt           Angry           RMSE           3.63           2.41           4.81           2.96           3.34           3.47           2.99           2.39           1.07           5.05           1.34           2.27           2.99 | <b>*</b> adam<br><i>MAE</i><br>0.05<br>0.03<br>0.07<br>0.05<br>0.04<br>0.04<br>0.04<br>0.02<br>0.07<br>0.05<br>0.09<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} \textbf{', } N_h = 10\\ \hline \textbf{S}\\ \hline \textbf{MARD}\\ \hline \textbf{34.50\%}\\ 45.23\%\\ 38.65\%\\ 46.72\%\\ *\\ 60.65\%\\ *\\ 25.78\%\\ 77.69\%\\ 41.52\%\\ *\\ *\\ 80.70\%\\ \end{array}$ | $\begin{array}{c} >> 2, \ N_o = \\ \hline \textbf{urprised} \\ RMSE \\ \hline 0.79 \\ 1.02 \\ 0.73 \\ 0.64 \\ 0.34 \\ 0.97 \\ 0.44 \\ 0.39 \\ 0.96 \\ 0.67 \\ 0.48 \\ 0.32 \\ 0.90 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 5 - [F] $MAE$ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *           *      *         *      *         *      *         *      *         *      *         *      *         *      *         *      *         *      *         *      *     *      *     <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \textbf{ne: } 4487.;\\ \textbf{Scared}\\ RMSE\\ \hline 1.76\\ 1.73\\ 3.44\\ 0.74\\ 0.84\\ 0.35\\ 0.27\\ 7.67\\ 4.68\\ 1.93\\ 1.75\\ 1.08\\ 1.75\\ 1.08\\ 2.24\\ \end{array}$ | $\begin{array}{c} \textbf{MAE} \\ \hline \textbf{MAE} \\ \hline \textbf{0.03} \\ \textbf{0.03} \\ \textbf{0.05} \\ \textbf{0.01} \\ \textbf{0.01} \\ \textbf{0.01} \\ \textbf{0.00} \\ \textbf{0.00} \\ \textbf{0.00} \\ \textbf{0.03} \\ \textbf{0.06} \\ \textbf{0.05} \\ \textbf{0.02} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Match<br>Accuracy (%)<br>50.50 (1854/3671)<br>82.13 (3488/4247)<br>58.83 (2342/3981)<br>23.55 (961/4081)<br>99.65 (4240/4255)<br>22.49 (1250/5558)<br>69.43 (2844/4096)<br>15.63 (408/2611)<br>30.12 (615/2042)<br>92.47 (3697/3998)<br>74.18 (339/457)<br>0.00 (0/518)                           |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR3<br>DS:CL3           | Test 2<br><i>MARD</i><br>* * * * * * * * * * * * * * * * * *                                                                                                          | 2 - Emoti<br>Happy<br><i>RMSE</i><br>1.19<br>1.26<br>4.96<br>0.64<br>0.63<br>0.69<br>0.49<br>0.81<br>0.28<br>2.48<br>1.03<br>5.66<br>3.49 | $\begin{array}{c c} \mathbf{OO} & \mathbf{Recc} \\ \hline \\ \hline \\ MAE \\ \hline \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.22 \\ 0.04 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \textbf{pgnition} & - \\ \hline MARD \\ & * \\ 47.39\% \\ & * \\ & * \\ & * \\ & 56.03\% \\ 44.02\% \\ 80.20\% \\ & * \\ 76.79\% \\ 55.34\% \\ 44.11\% \\ 39.31\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | + RTOR  Sad  RMSE  5.44  5.77  9.14  3.97  3.69  1.71  3.63  2.20  1.76  16.56  2.83  0.92  4.57                                                                                                                                                                                                              | $\begin{array}{c} - \varphi_j(v_j(v_j(MAE) \\ \hline MAE \\ 0.08 \\ 0.07 \\ 0.12 \\ 0.06 \\ 0.06 \\ 0.02 \\ 0.04 \\ 0.03 \\ 0.23 \\ 0.12 \\ 0.04 \\ 0.05 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (n)) = sign<br>MARD<br>*<br>94.12%<br>*<br>*<br>37.75%<br>52.61%<br>*<br>68.04%<br>*<br>59.82%<br>77.21%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | moid, opt<br>Angry<br><i>RMSE</i><br>3.63<br>2.41<br>4.81<br>2.96<br>3.34<br>3.47<br>2.99<br>2.39<br>1.07<br>5.05<br>1.34<br>2.27<br>9.82                                                                                                   | <b>*</b> adam<br><i>MAE</i><br>0.05<br>0.03<br>0.07<br>0.05<br>0.05<br>0.04<br>0.04<br>0.04<br>0.02<br>0.07<br>0.05<br>0.09<br>0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \textbf{', } N_h = 10\\ \hline \textbf{S}\\ \hline \textbf{MARD}\\ \hline \textbf{34.50\%}\\ 45.23\%\\ 38.65\%\\ 46.72\%\\ *\\ 60.65\%\\ *\\ 25.78\%\\ 77.69\%\\ 41.52\%\\ *\\ *\\ 23.79\% \end{array}$   | $\begin{array}{c} >>2, \ N_o = \\ \textbf{urprised} \\ RMSE \\ \hline 0.79 \\ 1.02 \\ 0.73 \\ 0.64 \\ 0.34 \\ 0.97 \\ 0.44 \\ 0.39 \\ 0.96 \\ 0.67 \\ 0.48 \\ 0.32 \\ 0.20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 5 - [F] $MAE$ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \hline \textbf{MARD} \\ \hline \textbf{MARD} \\ \hline \textbf{*} \\ \textbf{*} \\ \textbf{*} \\ \textbf{*} \\ \textbf{*} \\ \textbf{*} \\ \textbf{79.73\%} \\ \textbf{*} \\ \textbf{84.33\%} \\ \textbf{84.13\%} \\ \textbf{34.39\%} \\ \textbf{46.39\%} \\ \textbf{62.98\%} \\ \textbf{71.54\%} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \textbf{ne: } 4487.\\ \textbf{Scared}\\ RMSE\\ \hline 1.76\\ 1.73\\ 3.44\\ 0.74\\ 0.84\\ 0.35\\ 0.27\\ 7.67\\ 4.68\\ 1.93\\ 1.75\\ 1.08\\ 2.24\\ \hline \end{array}$         | $\begin{array}{c} \textbf{MAE} \\ \hline \textbf{MAE} \\ \hline \textbf{0.03} \\ \textbf{0.03} \\ \textbf{0.05} \\ \textbf{0.01} \\ \textbf{0.01} \\ \textbf{0.00} \\ \textbf{0.00} \\ \textbf{0.00} \\ \textbf{0.03} \\ \textbf{0.06} \\ \textbf{0.05} \\ \textbf{0.03} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Match<br>Accuracy (%)<br>50.50 (1854/3671)<br>82.13 (3488/4247)<br>58.83 (2342/3981)<br>23.55 (961/4081)<br>99.65 (4240/4255)<br>22.49 (1250/5558)<br>69.43 (2844/4096)<br>15.63 (408/2611)<br>30.12 (615/2042)<br>92.47 (3697/3998)<br>74.18 (339/457)<br>0.00 (0/518)<br>15.57 (735/4722)       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR3<br>DS:CL3           | Test 2<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                       | 2 - Emoti<br>Happy<br><i>RMSE</i><br>1.19<br>1.26<br>4.96<br>0.64<br>0.63<br>0.69<br>0.49<br>0.81<br>0.28<br>2.48<br>1.03<br>5.66<br>3.49 | MAE           0.02           0.02           0.02           0.02           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mathematical         mathematical<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $+ RTOR  Sad  RMSE  5.44  5.77  9.14  3.97  3.69  1.71  3.63  2.20  1.76  16.56  2.83  0.92  4.57  \infty$                                                                                                                                                                                                    | $\begin{array}{c} - \varphi_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}))))))))))))))))))))))))))))))))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (n)) = sign<br>MARD<br>*<br>94.12%<br>*<br>*<br>37.75%<br>52.61%<br>*<br>68.04%<br>*<br>59.82%<br>77.21%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | moid, opt<br>Angry<br><i>RMSE</i><br>3.63<br>2.41<br>4.81<br>2.96<br>3.34<br>3.47<br>2.99<br>2.39<br>1.07<br>5.05<br>1.34<br>2.27<br>9.82<br><b>x</b>                                                                                       | <b>a</b> 'adam<br><u>MAE</u><br>0.05<br>0.03<br>0.07<br>0.05<br>0.04<br>0.04<br>0.04<br>0.04<br>0.02<br>0.07<br>0.05<br>0.09<br>0.13<br><b>x</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \textbf{', } N_h = 10\\ \textbf{S}\\ \textbf{MARD}\\ \hline \textbf{34.50\%}\\ 45.23\%\\ 38.65\%\\ 46.72\%\\ *\\ 60.65\%\\ *\\ 25.78\%\\ 77.69\%\\ 41.52\%\\ *\\ *\\ 23.79\% \end{array}$                 | $\begin{array}{c} >>2, \ N_o = \\ \textbf{urprised} \\ RMSE \\ \hline 0.79 \\ 1.02 \\ 0.73 \\ 0.64 \\ 0.34 \\ 0.97 \\ 0.44 \\ 0.39 \\ 0.96 \\ 0.67 \\ 0.48 \\ 0.32 \\ 0.20 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 5 - [F] $MAE$ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \hline \textbf{MARD} \\ \hline \textbf{MARD} \\ \hline \textbf{*} \\ \textbf{79.73\%} \\ \textbf{*} \\ \textbf{84.33\%} \\ \textbf{84.13\%} \\ \textbf{34.39\%} \\ \textbf{46.39\%} \\ \textbf{62.98\%} \\ \textbf{71.54\%} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ne: $4487.5$<br>Scared<br>RMSE<br>1.76<br>1.73<br>3.44<br>0.74<br>0.84<br>0.35<br>0.27<br>7.67<br>4.68<br>1.93<br>1.75<br>1.08<br>2.24                                                         | $\begin{array}{c} \textbf{36s} \end{array}] \\ \hline \textbf{MAE} \\ \hline 0.03 \\ 0.03 \\ 0.05 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.03 \\ 0.06 \\ 0.05 \\ 0.03 \\ \hline \textbf{0}.03 \\ \hline \textbf{0}.03 \\ \hline \textbf{0}.05 \\ 0.03 \\ \hline \textbf{0}.03 \\ \hline \textbf{0}.05 \\ \hline \textbf{0}.03 \\ \hline \textbf{0}.03 \\ \hline \textbf{0}.05 \\ \hline \textbf$ | Match<br>Accuracy (%)<br>50.50 (1854/3671)<br>82.13 (3488/4247)<br>58.83 (2342/3981)<br>23.55 (961/4081)<br>99.65 (4240/4255)<br>22.49 (1250/5558)<br>69.43 (2844/4096)<br>15.63 (408/2611)<br>30.12 (615/2042)<br>92.47 (3697/3998)<br>74.18 (339/457)<br>0.00 (0/518)<br>15.57 (735/4722)<br>\$ |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CL3 | Test 2<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                       | 2 - Emoti<br>Happy<br><i>RMSE</i><br>1.19<br>1.26<br>4.96<br>0.64<br>0.63<br>0.69<br>0.49<br>0.81<br>0.28<br>2.48<br>1.03<br>5.66<br>3.49 | MAE           0.02           0.02           0.02           0.02           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.01           0.02           0.04           Incolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mathematical         mathematical<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + RTOR<br>Sad<br><i>RMSE</i><br>5.44<br>5.77<br>9.14<br>3.97<br>3.69<br>1.71<br>3.63<br>2.20<br>1.76<br>16.56<br>2.83<br>0.92<br>4.57<br><b>8</b><br><b>8</b><br><b>9</b><br><b>9</b><br><b>9</b><br><b>9</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b> | $\begin{array}{c} - \varphi_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}(v_{j}))))))))))))))))))))))))))))))))))))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (n)) = sign<br>MARD<br>*<br>94.12%<br>*<br>*<br>37.75%<br>52.61%<br>*<br>68.04%<br>*<br>59.82%<br>77.21%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | moid, opt<br>Angry<br><i>RMSE</i><br>3.63<br>2.41<br>4.81<br>2.96<br>3.34<br>3.47<br>2.99<br>2.39<br>1.07<br>5.05<br>1.34<br>2.27<br>9.82<br><b>°</b>                                                                                       | <b>*</b> adam<br><u>MAE</u><br>0.05<br>0.03<br>0.07<br>0.05<br>0.04<br>0.04<br>0.04<br>0.04<br>0.02<br>0.07<br>0.05<br>0.09<br>0.13<br><b>C</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \textbf{', } N_h = 10\\ \textbf{S}\\ \textbf{MARD}\\ \hline \textbf{34.50\%}\\ 45.23\%\\ 38.65\%\\ 46.72\%\\ *\\ 60.65\%\\ *\\ 25.78\%\\ 77.69\%\\ 41.52\%\\ *\\ *\\ 23.79\% \end{array}$                 | ) × 2, N <sub>o</sub> =<br>urprised<br>RMSE<br>0.79<br>1.02<br>0.73<br>0.64<br>0.34<br>0.97<br>0.44<br>0.39<br>0.96<br>0.67<br>0.48<br>0.32<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 5 - [F] $MAE$ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \hline \textbf{MARD} \\ \hline \textbf{MARD} \\ \hline \textbf{*} \\ & \ast \\ & \ast \\ & \ast \\ & \ast \\ & 79.73\% \\ & \ast \\ & 84.33\% \\ & 84.13\% \\ & 34.39\% \\ & 46.39\% \\ & 62.98\% \\ & 71.54\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ne: 4487.:<br>Scared<br><i>RMSE</i><br>1.76<br>1.73<br>3.44<br>0.74<br>0.84<br>0.35<br>0.27<br>7.67<br>4.68<br>1.93<br>1.75<br>1.08<br>2.24                                                    | 36s ]<br>MAE<br>0.03<br>0.03<br>0.05<br>0.01<br>0.01<br>0.00<br>0.00<br>0.00<br>0.03<br>0.06<br>0.05<br>0.03<br>E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Match<br>Accuracy (%)<br>50.50 (1854/3671)<br>82.13 (3488/4247)<br>58.83 (2342/3981)<br>23.55 (961/4081)<br>99.65 (4240/4255)<br>22.49 (1250/5558)<br>69.43 (2844/4096)<br>15.63 (408/2611)<br>30.12 (615/2042)<br>92.47 (3697/3998)<br>74.18 (339/457)<br>0.00 (0/518)<br>15.57 (735/4722)       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CL3 | Test 2<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                       | 2 - Emoti<br>Happy<br><i>RMSE</i><br>1.19<br>1.26<br>4.96<br>0.64<br>0.63<br>0.69<br>0.49<br>0.81<br>0.28<br>2.48<br>1.03<br>5.66<br>3.49 | on Reco<br>MAE<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.0 | matrix           MARD           *           47.39%           *           *           56.03%           44.02%           80.20%           *           76.79%           55.34%           44.11%           39.31%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | + RTOR<br>Sad<br><i>RMSE</i><br>5.44<br>5.77<br>9.14<br>3.97<br>3.69<br>1.71<br>3.63<br>2.20<br>1.76<br>16.56<br>2.83<br>0.92<br>4.57<br>8<br>6<br>€<br>                                                                                                                                                      | - <i>φ<sub>j</sub></i> ( <i>v<sub>j</sub></i> (<br><i>MAE</i><br>0.08<br>0.07<br>0.12<br>0.06<br>0.02<br>0.04<br>0.02<br>0.04<br>0.03<br>0.23<br>0.12<br>0.04<br>0.05<br><b>'GOO</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (n)) = sign<br>MARD<br>*<br>94.12%<br>*<br>*<br>37.75%<br>52.61%<br>*<br>68.04%<br>*<br>59.82%<br>77.21%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | moid, opt<br>Angry<br>RMSE<br>3.63<br>2.41<br>4.81<br>2.96<br>3.34<br>3.47<br>2.99<br>2.39<br>1.07<br>5.05<br>1.34<br>2.27<br>9.82<br><b>E</b><br><b>E</b><br><b>E</b><br><b>E</b><br><b>E</b><br><b>E</b><br><b>E</b><br><b>E</b>          | ='adam<br><u>MAE</u><br>0.05<br>0.03<br>0.07<br>0.05<br>0.05<br>0.04<br>0.04<br>0.04<br>0.04<br>0.02<br>0.07<br>0.05<br>0.09<br>0.13<br><b>C00</b><br>0<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \textbf{', } N_h = 10\\ \textbf{S}\\ \textbf{MARD}\\ \hline \textbf{34.50\%}\\ 45.23\%\\ 38.65\%\\ 46.72\%\\ *\\ 60.65\%\\ *\\ 25.78\%\\ 77.69\%\\ 41.52\%\\ *\\ *\\ 23.79\%\end{array}$                  | ) × 2, N <sub>o</sub> =<br>urprised<br><u>RMSE</u><br>0.79<br>1.02<br>0.73<br>0.64<br>0.34<br>0.97<br>0.44<br>0.39<br>0.96<br>0.67<br>0.48<br>0.32<br>0.20<br><b>9</b><br><b>7</b><br><b>0</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 5 - [F] $MAE$ 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \hline \textbf{MARD} \\ \hline \textbf{MARD} \\ \hline \textbf{*} \\ \textbf{*} \\ \textbf{*} \\ \textbf{*} \\ \textbf{*} \\ \textbf{*} \\ \textbf{79.73\%} \\ \textbf{*} \\ \textbf{84.33\%} \\ \textbf{84.13\%} \\ \textbf{34.39\%} \\ \textbf{46.39\%} \\ \textbf{62.98\%} \\ \textbf{71.54\%} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ne: 4487.:<br>Scared<br><i>RMSE</i><br>1.76<br>1.73<br>3.44<br>0.74<br>0.84<br>0.35<br>0.27<br>7.67<br>4.68<br>1.93<br>1.75<br>1.08<br>2.24                                                    | 36s ]<br>MAE<br>0.03<br>0.03<br>0.05<br>0.01<br>0.01<br>0.00<br>0.00<br>0.00<br>0.03<br>0.06<br>0.05<br>0.03<br>80.03<br>80.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Match<br>Accuracy (%)<br>50.50 (1854/3671)<br>82.13 (3488/4247)<br>58.83 (2342/3981)<br>23.55 (961/4081)<br>99.65 (4240/4255)<br>22.49 (1250/5558)<br>69.43 (2844/4096)<br>15.63 (408/2611)<br>30.12 (615/2042)<br>92.47 (3697/3998)<br>74.18 (339/457)<br>0.00 (0/518)<br>15.57 (735/4722)       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR3<br>DS:CL3           | Test 2<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                       | 2 - Emoti<br>Happy<br><i>RMSE</i><br>1.19<br>1.26<br>4.96<br>0.64<br>0.63<br>0.69<br>0.49<br>0.81<br>0.28<br>2.48<br>1.03<br>5.66<br>3.49 | on Reco<br>MAE<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.01<br>0.01<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.0 | mathematical         mathematical<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | + RTOR<br>Sad<br><i>RMSE</i><br>5.44<br>5.77<br>9.14<br>3.97<br>3.69<br>1.71<br>3.63<br>2.20<br>1.76<br>16.56<br>2.83<br>0.92<br>4.57<br>8<br>6<br>6<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8                                                                                    | - φ <sub>j</sub> (v <sub>j</sub> (<br><u>MAE</u><br>0.08<br>0.07<br>0.12<br>0.06<br>0.02<br>0.04<br>0.03<br>0.23<br>0.12<br>0.04<br>0.05<br><b>\$0.07</b><br><b>\$0.07</b><br><b>\$0.08</b><br>0.07<br>0.12<br>0.06<br>0.02<br>0.04<br>0.03<br>0.23<br>0.12<br>0.04<br>0.05<br><b>\$0.07</b><br><b>\$0.08</b><br><b>\$0.07</b><br>0.12<br>0.06<br>0.02<br>0.04<br>0.03<br>0.02<br>0.04<br>0.05<br><b>\$0.07</b><br>0.12<br>0.06<br>0.02<br>0.04<br>0.05<br><b>\$0.07</b><br>0.12<br>0.06<br>0.02<br>0.04<br>0.05<br><b>\$0.012</b><br>0.04<br>0.05<br><b>\$0.02</b><br>0.04<br>0.05<br><b>\$0.02</b><br>0.04<br>0.05<br><b>\$0.02</b><br>0.04<br>0.05<br><b>\$0.02</b><br>0.04<br>0.05<br><b>\$0.02</b><br>0.04<br>0.05<br><b>\$0.02</b><br>0.04<br>0.05<br><b>\$0.04</b><br>0.05<br><b>\$0.05</b><br><b>\$0.05</b><br><b>\$0.05</b><br><b>\$0.06</b><br>0.02<br>0.04<br>0.05<br><b>\$0.05</b><br><b>\$0.05</b><br><b>\$0.06</b><br>0.05<br><b>\$0.06</b><br>0.05<br><b>\$0.07</b><br><b>\$0.06</b><br>0.05<br><b>\$0.06</b><br>0.05<br><b>\$0.06</b><br>0.05<br><b>\$0.07</b><br><b>\$0.06</b><br>0.05<br><b>\$0.06</b><br>0.05<br><b>\$0.07</b><br><b>\$0.07</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.02</b><br>0.04<br>0.05<br><b>\$0.05</b><br><b>\$0.05</b><br><b>\$0.05</b><br><b>\$0.06</b><br><b>\$0.05</b><br><b>\$0.06</b><br><b>\$0.05</b><br><b>\$0.06</b><br><b>\$0.05</b><br><b>\$0.06</b><br><b>\$0.05</b><br><b>\$0.06</b><br><b>\$0.05</b><br><b>\$0.06</b><br><b>\$0.05</b><br><b>\$0.06</b><br><b>\$0.05</b><br><b>\$0.06</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.07</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.07</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.07</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b><br><b>\$0.06</b> | (n)) = sign<br>MARD<br>*<br>94.12%<br>*<br>*<br>37.75%<br>52.61%<br>*<br>68.04%<br>*<br>59.82%<br>77.21%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | moid, opt<br>Angry<br><i>RMSE</i><br>3.63<br>2.41<br>4.81<br>2.96<br>3.34<br>3.47<br>2.99<br>2.39<br>1.07<br>5.05<br>1.34<br>2.27<br>9.82<br><b>E</b><br><b>E</b><br><b>E</b><br><b>E</b><br><b>E</b><br><b>E</b><br><b>E</b><br><b>E</b>   | ='adam<br><u>MAE</u><br>0.05<br>0.03<br>0.07<br>0.05<br>0.05<br>0.04<br>0.04<br>0.04<br>0.04<br>0.02<br>0.07<br>0.05<br>0.09<br>0.13<br><b>C0:0</b><br><b>0</b> ,07<br><b>0</b> ,05<br><b>0</b> ,03<br><b>0</b> ,07<br><b>0</b> ,05<br><b>0</b> ,04<br><b>0</b> ,04<br><b>0</b> ,02<br><b>0</b> ,07<br><b>0</b> ,05<br><b>0</b> ,04<br><b>0</b> ,07<br><b>0</b> ,05<br><b>0</b> ,04<br><b>0</b> ,04<br><b>0</b> ,07<br><b>0</b> ,05<br><b>0</b> ,04<br><b>0</b> ,04<br><b>0</b> ,02<br><b>0</b> ,07<br><b>0</b> ,05<br><b>0</b> ,07<br><b>0</b> ,05<br><b>0</b> ,04<br><b>0</b> ,04<br><b>0</b> ,02<br><b>0</b> ,07<br><b>0</b> ,05<br><b>0</b> ,07<br><b>0</b> ,05<br><b>0</b> ,04<br><b>0</b> ,02<br><b>0</b> ,07<br><b>0</b> ,05<br><b>0</b> ,07<br><b>0</b> ,05<br><b>0</b> ,04<br><b>0</b> ,04<br><b>0</b> ,02<br><b>0</b> ,07<br><b>0</b> ,05<br><b>0</b> ,07<br><b>0</b> ,05<br><b>0</b> ,07<br><b>0</b> ,05<br><b>0</b> ,04<br><b>0</b> ,04<br><b>0</b> ,02<br><b>0</b> ,07<br><b>0</b> ,05<br><b>0</b> ,09<br><b>0</b> ,13<br><b>7</b> ,99<br><b>1</b> | $\begin{array}{c} \textbf{', } N_h = 10\\ \textbf{S}\\ \textbf{MARD}\\ \hline \textbf{34.50\%}\\ 45.23\%\\ 38.65\%\\ 46.72\%\\ *\\ 60.65\%\\ *\\ 25.78\%\\ 77.69\%\\ 41.52\%\\ *\\ *\\ 23.79\% \end{array}$                 | ) × 2, N <sub>o</sub> =<br>urprised<br><u>RMSE</u><br>0.79<br>1.02<br>0.73<br>0.64<br>0.34<br>0.97<br>0.44<br>0.39<br>0.96<br>0.67<br>0.48<br>0.32<br>0.20<br>97.04<br>1.92<br>97.04<br>1.92<br>97.04<br>1.92<br>97.04<br>1.92<br>97.04<br>1.92<br>97.05<br>1.92<br>97.05<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1.92<br>1 | $= 5 - [ H \\ MAE \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.0$       | $\begin{array}{c} \hline \textbf{MARD} \\ \hline \textbf{MARD} \\ \hline \textbf{*} \\ \textbf{*}$ | he: 4487.:<br>Scared<br><i>RMSE</i><br>1.76<br>1.73<br>3.44<br>0.74<br>0.84<br>0.35<br>0.27<br>7.67<br>4.68<br>1.93<br>1.75<br>1.08<br>2.24<br>↓<br>61                                         | 36s ]<br>MAE<br>0.03<br>0.03<br>0.03<br>0.05<br>0.01<br>0.00<br>0.00<br>0.00<br>0.00<br>0.03<br>0.06<br>0.05<br>0.03<br>80.00<br>14<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Match<br>Accuracy (%)<br>50.50 (1854/3671)<br>82.13 (3488/4247)<br>58.83 (2342/3981)<br>23.55 (961/4081)<br>99.65 (4240/4255)<br>22.49 (1250/5558)<br>69.43 (2844/4096)<br>15.63 (408/2611)<br>30.12 (615/2042)<br>92.47 (3697/3998)<br>74.18 (339/457)<br>0.00 (0/518)<br>15.57 (735/4722)       |

TABLE 9.3. Emotion recognition results tests 1 and 2. ANN with  $6 \times 10^3$  train epochs and raw data (no features).

|                                                                                                                                                               |                                                                                                     | '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Test 3 -                                                                                                                                                                                                                                                                                                                                                           | Emotion                                                                                                                    | Recogni                                                                                                                                                                                                                                | ition $+$                                                                                                                                                                                                                                                                                                                             | RTOR -                                                                         | $\varphi_j(v_j(n))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = ReLU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , opt='ac                                                                                                                                           | lam', $N_h$                                                                                                                                                                                                                           | $=90 \times 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $N_o = 5$                                                                                                                            |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{Flight}$                                                                                                                                             |                                                                                                     | Нарру                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                            | Sad                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                       |                                                                                | Angry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\mathbf{S}$                                                                                                                                        | urprised                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                      | Scared                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Match                                                                                                                                                                                                                                           |
| Dataset                                                                                                                                                       | MARD                                                                                                | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAE                                                                                                                                                                                                                                                                                                                                                                | MARD                                                                                                                       | RMSE                                                                                                                                                                                                                                   | MAE                                                                                                                                                                                                                                                                                                                                   | MARD                                                                           | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MARD                                                                                                                                                | RMSE                                                                                                                                                                                                                                  | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MARD                                                                                                                                 | RMSE                                                                                                                                                                                  | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Accuracy (%)                                                                                                                                                                                                                                    |
| DS:RC1                                                                                                                                                        | *                                                                                                   | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.02                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                          | 0.98                                                                                                                                                                                                                                   | 0.10                                                                                                                                                                                                                                                                                                                                  | *                                                                              | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 37.63%                                                                                                                                              | 0.11                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                                    | 0.82                                                                                                                                                                                  | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>38.80</b> ( <b>26</b> /67)                                                                                                                                                                                                                   |
| DS:RC2                                                                                                                                                        | *                                                                                                   | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.03                                                                                                                                                                                                                                                                                                                                                               | 76.88%                                                                                                                     | 0.97                                                                                                                                                                                                                                   | 0.09                                                                                                                                                                                                                                                                                                                                  | *                                                                              | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 45.63%                                                                                                                                              | 0.14                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                                    | 0.31                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $46.15\ (36/78)$                                                                                                                                                                                                                                |
| DS:RC3                                                                                                                                                        | 37.72%                                                                                              | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                          | 1.66                                                                                                                                                                                                                                   | 0.14                                                                                                                                                                                                                                                                                                                                  | 72.50%                                                                         | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.55%                                                                                                                                               | 0.10                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                                    | 0.56                                                                                                                                                                                  | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $41.09 \; (30/73)$                                                                                                                                                                                                                              |
| DS:GC1                                                                                                                                                        | *                                                                                                   | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                          | 1.71                                                                                                                                                                                                                                   | 0.18                                                                                                                                                                                                                                                                                                                                  | *                                                                              | 0.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                   | 0.11                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                                    | 0.35                                                                                                                                                                                  | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.66 (14/75)                                                                                                                                                                                                                                   |
| DS:GC3                                                                                                                                                        | *                                                                                                   | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.02                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                          | 1.05                                                                                                                                                                                                                                   | 0.10                                                                                                                                                                                                                                                                                                                                  | *                                                                              | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                   | 0.19                                                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                                    | 0.48                                                                                                                                                                                  | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>84.61</b> ( <b>66</b> /78)                                                                                                                                                                                                                   |
| DS:LS1                                                                                                                                                        | *                                                                                                   | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                          | 1.21                                                                                                                                                                                                                                   | 0.10                                                                                                                                                                                                                                                                                                                                  | *                                                                              | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76.55%                                                                                                                                              | 0.10                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                                    | 0.30                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>25.49</b> ( <b>26</b> /102)                                                                                                                                                                                                                  |
| DS:LS2                                                                                                                                                        | *                                                                                                   | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.04                                                                                                                                                                                                                                                                                                                                                               | 47.68%                                                                                                                     | 0.45                                                                                                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                  | 56.47%                                                                         | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                   | 0.14                                                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                                    | 0.19                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>34.66</b> ( <b>26</b> /75)                                                                                                                                                                                                                   |
| DS:VC1                                                                                                                                                        | *                                                                                                   | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                               | 69.21%                                                                                                                     | 0.33                                                                                                                                                                                                                                   | 0.03                                                                                                                                                                                                                                                                                                                                  | *                                                                              | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 46.04%                                                                                                                                              | 0.06                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97.80%                                                                                                                               | 1.11                                                                                                                                                                                  | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.75 (9/48)                                                                                                                                                                                                                                    |
| DS:VC2                                                                                                                                                        | *                                                                                                   | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.04                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                          | 0.68                                                                                                                                                                                                                                   | 0.08                                                                                                                                                                                                                                                                                                                                  | *                                                                              | 0.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 33.75%                                                                                                                                              | 0.06                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 79.71%                                                                                                                               | 0.60                                                                                                                                                                                  | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>7.89</b> ( <b>3</b> /38)                                                                                                                                                                                                                     |
| DS:CR1                                                                                                                                                        | *                                                                                                   | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                                                                                               | 74.01%                                                                                                                     | 2.45                                                                                                                                                                                                                                   | 0.25                                                                                                                                                                                                                                                                                                                                  | 62.22%                                                                         | 0.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 38.10%                                                                                                                                              | 0.12                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 94.20%                                                                                                                               | 0.57                                                                                                                                                                                  | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>64.38</b> ( <b>47</b> /73)                                                                                                                                                                                                                   |
| DS:CR3                                                                                                                                                        | *                                                                                                   | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.02                                                                                                                                                                                                                                                                                                                                                               | 75.32%                                                                                                                     | 0.64                                                                                                                                                                                                                                   | 0.18                                                                                                                                                                                                                                                                                                                                  | *                                                                              | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 29.12%                                                                                                                                              | 0.02                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 60.91%                                                                                                                               | 0.30                                                                                                                                                                                  | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44.44(4/9)                                                                                                                                                                                                                                      |
| DS:CLX                                                                                                                                                        | 84.30%                                                                                              | 0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.20                                                                                                                                                                                                                                                                                                                                                               | 57.03%                                                                                                                     | 0.18                                                                                                                                                                                                                                   | 0.05                                                                                                                                                                                                                                                                                                                                  | 81.75%                                                                         | 0.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                   | 0.04                                                                                                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 73.93%                                                                                                                               | 0.19                                                                                                                                                                                  | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>20.00</b> $(2/10)$                                                                                                                                                                                                                           |
| DS:CL3                                                                                                                                                        | 68.59%                                                                                              | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.03                                                                                                                                                                                                                                                                                                                                                               | 88.37%                                                                                                                     | 1.06                                                                                                                                                                                                                                   | 0.08                                                                                                                                                                                                                                                                                                                                  | 43.26%                                                                         | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                   | 0.17                                                                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 66.09%                                                                                                                               | 0.28                                                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 16.27 (14/86)                                                                                                                                                                                                                                   |
|                                                                                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                            |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                       |                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                     |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                      |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                                                                                                                                                                                                                               |
|                                                                                                                                                               |                                                                                                     | ŝ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            | 00                                                                                                                                                                                                                                     | 90                                                                                                                                                                                                                                                                                                                                    |                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                     | 4                                                                                                                                                                                                                                     | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                      | ŝ                                                                                                                                                                                     | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.6                                                                                                                                                                                                                                             |
|                                                                                                                                                               |                                                                                                     | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            | 0.6                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                   |                                                                                | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                     | 0.0                                                                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      | 0.2                                                                                                                                                                                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | +3                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                                                                                     | Ť                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ÷                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            | Ĥ                                                                                                                                                                                                                                      | Ĥ                                                                                                                                                                                                                                                                                                                                     |                                                                                | -H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ĥ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                     | Ĥ                                                                                                                                                                                                                                     | Ĥ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                      | Ĥ                                                                                                                                                                                     | Ĥ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                               |
|                                                                                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | .04                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            | 30.                                                                                                                                                                                                                                    | Ξ.                                                                                                                                                                                                                                                                                                                                    |                                                                                | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                     | .10                                                                                                                                                                                                                                   | -00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                      | 4                                                                                                                                                                                     | -05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.4                                                                                                                                                                                                                                             |
|                                                                                                                                                               |                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                            | -                                                                                                                                                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                     |                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                     | 0                                                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                      | 0                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3                                                                                                                                                                                                                                               |
|                                                                                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>T</b>                                                                                                                                                                                                                                                                                                                                                           | <b>T</b> /•                                                                                                                | Ъ                                                                                                                                                                                                                                      | • . • .                                                                                                                                                                                                                                                                                                                               | DTOD                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                     | 19 37                                                                                                                                                                                                                                 | 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AT 17                                                                                                                                |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                 |
|                                                                                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Test 4 -                                                                                                                                                                                                                                                                                                                                                           | Emotion                                                                                                                    | n Recogn                                                                                                                                                                                                                               | ition $+$                                                                                                                                                                                                                                                                                                                             | RTOR -                                                                         | $\varphi_j(v_j(n))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = sigma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oid, opt='                                                                                                                                          | sgd', $N_h$                                                                                                                                                                                                                           | $=90 \times 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $, N_o = 5$                                                                                                                          | a 1                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                 |
| Flight                                                                                                                                                        |                                                                                                     | Happy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Test 4 -                                                                                                                                                                                                                                                                                                                                                           | Emotion                                                                                                                    | a Recogn<br>Sad                                                                                                                                                                                                                        | ition +                                                                                                                                                                                                                                                                                                                               | RTOR -                                                                         | $\varphi_j(v_j(n))$ <b>Angry</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = sigma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | id, opt='                                                                                                                                           | sgd', $N_h$<br>urprised                                                                                                                                                                                                               | $= 90 \times 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $N_o = 5$                                                                                                                            | Scared                                                                                                                                                                                | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Match                                                                                                                                                                                                                                           |
| Flight<br>Dataset                                                                                                                                             | MARD                                                                                                | Happy<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Test 4 -</b>                                                                                                                                                                                                                                                                                                                                                    | Emotion                                                                                                                    | a Recogn<br>Sad<br>RMSE                                                                                                                                                                                                                | ition + $MAE$                                                                                                                                                                                                                                                                                                                         | RTOR -                                                                         | $\varphi_j(v_j(n))$<br><b>Angry</b><br><i>RMSE</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = sigma<br>MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pid, opt='<br>S<br>MARD                                                                                                                             | sgd', $N_h$ :<br>urprised<br>RMSE                                                                                                                                                                                                     | $= 90 \times 2$ $MAE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $N_o = 5$ $MARD$                                                                                                                     | Scared<br>RMSE                                                                                                                                                                        | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Match<br>Accuracy (%)                                                                                                                                                                                                                           |
| Flight<br>Dataset<br>DS:RC1                                                                                                                                   | MARD<br>*                                                                                           | <b>Happy</b><br><i>RMSE</i><br>0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAE           0.02                                                                                                                                                                                                                                                                                                                                                 | • Emotion<br>MARD                                                                                                          | a Recogn<br>Sad<br>RMSE<br>0.42                                                                                                                                                                                                        | ition +<br><u>MAE</u><br>0.04<br>0.05                                                                                                                                                                                                                                                                                                 | <b>RTOR -</b><br><i>MARD</i><br>79.81%                                         | $ \begin{array}{c} \varphi_j(v_j(n)) \\ \mathbf{Angry} \\ RMSE \\ 0.50 \\ 0.20 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = sigma $MAE$ 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | oid, opt='<br>S<br>MARD<br>49.75%                                                                                                                   | sgd', $N_h$<br>urprised<br>RMSE<br>0.10                                                                                                                                                                                               | $= 90 \times 2$ $MAE$ 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $N_o = 5$ $MARD$ *                                                                                                                   | Scared<br>RMSE                                                                                                                                                                        | <i>MAE</i><br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)                                                                                                                                                                                                          |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2                                                                                                                         | MARD<br>*                                                                                           | Happy<br><i>RMSE</i><br>0.17<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAE           0.02           0.02                                                                                                                                                                                                                                                                                                                                  | • Emotion<br><i>MARD</i><br>*<br>81.50%                                                                                    | Recogn<br>Sad<br>RMSE<br>0.42<br>0.82                                                                                                                                                                                                  | <u>MAE</u><br>0.04<br>0.07                                                                                                                                                                                                                                                                                                            | <b>RTOR -</b><br><i>MARD</i><br>79.81%<br>71.64%                               | $\frac{\varphi_j(v_j(n))}{\mathbf{Angry}}$ $\frac{RMSE}{0.50}$ $0.29$ $0.20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = sigma $MAE$ $0.04$ $0.03$ $0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <i>iid</i> , <b>opt='</b><br><b>S</b><br><i>MARD</i><br>49.75%<br>63.83%                                                                            | <b>sgd'</b> , N <sub>h</sub> =<br><b>urprised</b><br><i>RMSE</i><br>0.10<br>0.12                                                                                                                                                      | $= 90 \times 2$ $\underline{MAE}$ $0.01$ $0.01$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{N_o = 5}{MARD}$                                                                                                               | Scared<br><i>RMSE</i><br>0.30<br>0.38<br>0.27                                                                                                                                         | MAE<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)                                                                                                                                                                                         |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3                                                                                                               | MARD * * *                                                                                          | Happy<br>RMSE<br>0.17<br>0.22<br>0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MAE           0.02           0.02           0.06                                                                                                                                                                                                                                                                                                                   | Emotion<br><i>MARD</i><br>*<br>81.50%<br>91.27%                                                                            | Recogn           Sad           RMSE           0.42           0.82           1.37                                                                                                                                                       | ition +           MAE           0.04           0.07           0.11                                                                                                                                                                                                                                                                    | <b>RTOR -</b><br><i>MARD</i><br>79.81%<br>71.64%<br>63.93%                     | $\varphi_j(v_j(n))$ <b>Angry</b> <i>RMSE</i> 0.50 0.29 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = sigma $MAE$ $0.04$ $0.03$ $0.03$ $0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>vid</i> , <b>opt='</b><br><b>S</b><br><i>MARD</i><br>49.75%<br>63.83%<br>47.90%                                                                  | $sgd', N_h$<br>urprised<br>RMSE<br>0.10<br>0.12<br>0.11<br>0.20                                                                                                                                                                       | $= 90 \times 2$<br><u>MAE</u><br>0.01<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $N_o = 5$ $MARD$ $*$ $*$ $*$                                                                                                         | Scared<br><i>RMSE</i><br>0.30<br>0.38<br>0.35<br>0.35                                                                                                                                 | MAE<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)                                                                                                                                                                        |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1                                                                                                     | MARD * * * *                                                                                        | Happy<br><i>RMSE</i><br>0.17<br>0.22<br>0.67<br>0.35<br>0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAE           0.02           0.02           0.02           0.04                                                                                                                                                                                                                                                                                                    | Emotion<br><i>MARD</i><br>*<br>81.50%<br>91.27%<br>*                                                                       | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96                                                                                                                                        | ition +           MAE           0.04           0.07           0.11           0.11                                                                                                                                                                                                                                                     | RTOR -<br>MARD<br>79.81%<br>71.64%<br>63.93%<br>*                              | $\varphi_j(v_j(n))$ <b>Angry</b> <i>RMSE</i> 0.50 0.29 0.29 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = sigma<br>MAE<br>0.04<br>0.03<br>0.03<br>0.03<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <i>vid</i> , <b>opt='</b><br><b>S</b><br><i>MARD</i><br>49.75%<br>63.83%<br>47.90%<br>*                                                             | $sgd', N_h$<br>urprised<br>RMSE<br>0.10<br>0.12<br>0.11<br>0.20<br>0.20                                                                                                                                                               | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.02 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $N_o = 5$ $MARD$ $*$ $*$ $*$ $*$                                                                                                     | Scared<br><i>RMSE</i><br>0.30<br>0.38<br>0.35<br>0.37<br>0.32                                                                                                                         | MAE<br>0.04<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)                                                                                                                                                       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3                                                                                           | MARD * * * * * *                                                                                    | Happy<br><i>RMSE</i><br>0.17<br>0.22<br>0.67<br>0.35<br>0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAE           0.02           0.02           0.02           0.02           0.04           0.04                                                                                                                                                                                                                                                                      | Emotion<br>*<br>81.50%<br>91.27%<br>*<br>*                                                                                 | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82                                                                                                                         | ition +           MAE           0.04           0.07           0.11           0.11           0.09                                                                                                                                                                                                                                      | RTOR -<br><i>MARD</i><br>79.81%<br>71.64%<br>63.93%<br>*<br>*                  | $\varphi_j(v_j(n))$ <b>Angry</b> <i>RMSE</i> 0.50 0.29 0.29 0.69 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = sigma<br>MAE<br>0.04<br>0.03<br>0.03<br>0.08<br>0.08<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nid, opt='<br>S<br>MARD<br>49.75%<br>63.83%<br>47.90%<br>*<br>*                                                                                     | $\begin{array}{c} {\bf sgd', \ N_h} \\ {\bf urprised} \\ \hline {RMSE} \\ \hline 0.10 \\ 0.12 \\ 0.11 \\ 0.20 \\ 0.31 \\ \hline \end{array}$                                                                                          | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.02 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $N_o = 5$ $MARD$ $*$ $*$ $*$ $*$ $*$ $*$                                                                                             | Scared<br><i>RMSE</i><br>0.30<br>0.38<br>0.35<br>0.37<br>0.38                                                                                                                         | MAE<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)                                                                                                                                     |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1                                                                                 | MARD * * * * * * *                                                                                  | Happy<br><i>RMSE</i><br>0.17<br>0.22<br>0.67<br>0.35<br>0.35<br>0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAE           0.02           0.02           0.02           0.04           0.03                                                                                                                                                                                                                                                                                     | Emotion<br>*<br>81.50%<br>91.27%<br>*<br>*                                                                                 | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64                                                                                                          | ition +           MAE           0.04           0.07           0.11           0.11           0.09           0.06                                                                                                                                                                                                                       | RTOR -<br><i>MARD</i><br>79.81%<br>71.64%<br>63.93%<br>*<br>*<br>*             | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \textbf{Angry} \\ RMSE \\ 0.50 \\ 0.29 \\ 0.29 \\ 0.69 \\ 0.70 \\ 0.30 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = sigma<br>MAE<br>0.04<br>0.03<br>0.03<br>0.08<br>0.08<br>0.08<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nd, opt='<br>S<br><u>MARD</u><br>49.75%<br>63.83%<br>47.90%<br>*<br>*                                                                               | $\begin{array}{c} {\bf sgd', \ N_h :} \\ {\bf urprised} \\ \hline RMSE \\ \hline 0.10 \\ 0.12 \\ 0.11 \\ 0.20 \\ 0.31 \\ 0.22 \end{array}$                                                                                            | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.02 0.04 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , N <sub>o</sub> = 5<br>MARD<br>*<br>*<br>*<br>*<br>*                                                                                | Scared<br><i>RMSE</i><br>0.30<br>0.38<br>0.35<br>0.37<br>0.38<br>0.36                                                                                                                 | $\frac{MAE}{0.04}\\ 0.04\\ 0.04\\ 0.04\\ 0.04\\ 0.04\\ 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)                                                                                                                   |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2                                                                       | MARD * * * * * * * *                                                                                | Happy<br><i>RMSE</i><br>0.17<br>0.22<br>0.67<br>0.35<br>0.35<br>0.30<br>0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAE           0.02           0.02           0.02           0.04           0.03           0.04                                                                                                                                                                                                                                                                      | Emotion<br>*<br>81.50%<br>91.27%<br>*<br>*<br>59.57%                                                                       | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64           0.38                                                                                           | $\begin{array}{c} \textbf{ition +} \\ \hline MAE \\ 0.04 \\ 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \end{array}$                                                                                                                                                                                                                 | RTOR -<br><i>MARD</i><br>79.81%<br>71.64%<br>63.93%<br>*<br>*<br>*<br>40.52%   | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \textbf{Angry} \\ RMSE \\ 0.50 \\ 0.29 \\ 0.29 \\ 0.69 \\ 0.70 \\ 0.30 \\ 0.22 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $= sigma \\ MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 $                                                                                                                                                                                                                                                                                                                           | nd, opt='<br>S<br>MARD<br>49.75%<br>63.83%<br>47.90%<br>*<br>*<br>*                                                                                 | $\begin{array}{c} {\bf sgd', \ N_h} \\ {\bf urprised} \\ \hline RMSE \\ \hline 0.10 \\ 0.12 \\ 0.11 \\ 0.20 \\ 0.31 \\ 0.22 \\ 0.26 \end{array}$                                                                                      | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.02 0.04 0.02 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $N_o = 5$<br><i>MARD</i><br>*<br>*<br>*<br>*<br>*<br>*                                                                               | Scared<br><i>RMSE</i><br>0.30<br>0.38<br>0.35<br>0.37<br>0.38<br>0.36<br>0.32                                                                                                         | $\begin{array}{c} MAE \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)                                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1                                                             | MARD * * * * * * * * *                                                                              | Happy<br><i>RMSE</i><br>0.17<br>0.22<br>0.67<br>0.35<br>0.35<br>0.30<br>0.33<br>0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAE           0.02           0.02           0.02           0.04           0.03           0.04                                                                                                                                                                                                                                                                      | Emotion<br>*<br>81.50%<br>91.27%<br>*<br>*<br>59.57%<br>81.08%                                                             | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64           0.38           0.31                                                                            | $\begin{array}{c} \textbf{ition +} \\ \hline MAE \\ 0.04 \\ 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.04 \end{array}$                                                                                                                                                                                                         | RTOR -<br><i>MARD</i><br>79.81%<br>71.64%<br>63.93%<br>*<br>*<br>40.52%<br>*   | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \textbf{Angry} \\ RMSE \\ 0.50 \\ 0.29 \\ 0.29 \\ 0.69 \\ 0.70 \\ 0.30 \\ 0.22 \\ 0.35 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $= sigma \\ MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nd, opt='<br>S<br>MARD<br>49.75%<br>63.83%<br>47.90%<br>*<br>*<br>*<br>*                                                                            | $\begin{array}{c} {\bf sgd', \ N_h} \\ {\bf urprised} \\ \hline {RMSE} \\ \hline 0.10 \\ 0.12 \\ 0.11 \\ 0.20 \\ 0.31 \\ 0.22 \\ 0.26 \\ 0.13 \\ \end{array}$                                                                         | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.02 0.04 0.02 0.03 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $N_o = 5$<br>MARD<br>* * * * * * * * * 68.24%                                                                                        | Scared<br><i>RMSE</i><br>0.30<br>0.38<br>0.35<br>0.37<br>0.38<br>0.36<br>0.32<br>0.90                                                                                                 | $\begin{array}{c} MAE \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.11 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2                                                   | MARD * * * * * * * * * *                                                                            | Happy<br><i>RMSE</i><br>0.17<br>0.22<br>0.67<br>0.35<br>0.35<br>0.30<br>0.33<br>0.21<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAE           0.02           0.02           0.02           0.04           0.03           0.04                                                                                                                                                                                                                                                                      | Emotion<br>*<br>81.50%<br>91.27%<br>*<br>*<br>59.57%<br>81.08%<br>*                                                        | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64           0.38           0.31           0.42                                                             | $\begin{array}{c} \textbf{ition +} \\ \hline MAE \\ \hline 0.04 \\ 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.04 \\ 0.06 \end{array}$                                                                                                                                                                                          | RTOR -<br><i>MARD</i> 79.81% 71.64% 63.93% * * 40.52% * *                      | $\begin{array}{c} \varphi_j(v_j(n)) \\ \textbf{Angry} \\ RMSE \\ 0.50 \\ 0.29 \\ 0.29 \\ 0.69 \\ 0.70 \\ 0.30 \\ 0.22 \\ 0.35 \\ 0.36 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $= sigma \\ MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | nd, opt='<br>S<br>MARD<br>49.75%<br>63.83%<br>47.90%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                    | $\begin{array}{c} {\bf sgd', \ N_h = } \\ {\bf urprised} \\ \hline {\bf RMSE} \\ \hline 0.10 \\ 0.12 \\ 0.11 \\ 0.20 \\ 0.31 \\ 0.22 \\ 0.26 \\ 0.13 \\ 0.10 \\ \end{array}$                                                          | $= 90 \times 2$ $MAE$ 0.01 0.01 0.02 0.04 0.02 0.03 0.02 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $N_o = 5$<br>MARD * * * * * * * 68.24% 63.14%                                                                                        | Scared<br><i>RMSE</i><br>0.30<br>0.38<br>0.35<br>0.37<br>0.38<br>0.36<br>0.32<br>0.90<br>0.48                                                                                         | $\begin{array}{c} MAE \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.11 \\ 0.06 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)                                                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1                                         | MARD * * * * * * * * * * * * * *                                                                    | Happy<br><i>RMSE</i><br>0.17<br>0.22<br>0.67<br>0.35<br>0.35<br>0.30<br>0.33<br>0.21<br>0.22<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAE           0.02           0.02           0.02           0.04           0.03           0.04           0.03           0.04           0.03           0.04                                                                                                                                                                                                          | Emotion<br><i>MARD</i><br>*<br>81.50%<br>91.27%<br>*<br>*<br>59.57%<br>81.08%<br>*<br>75.30%                               | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58                                              | $\begin{array}{c} \textbf{ition +} \\ \hline MAE \\ \hline 0.04 \\ 0.07 \\ 0.11 \\ 0.01 \\ 0.01 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.04 \\ 0.06 \\ 0.26 \end{array}$                                                                                                                                                                          | RTOR -<br><i>MARD</i> 79.81% 71.64% 63.93% * * 40.52% * 66.07%                 | $\begin{array}{c} \varphi_j(v_j(n)) \\ \textbf{Angry} \\ RMSE \\ 0.50 \\ 0.29 \\ 0.29 \\ 0.69 \\ 0.70 \\ 0.30 \\ 0.22 \\ 0.35 \\ 0.36 \\ 0.90 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $= sigma \\ MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nd, opt='<br>S<br>MARD<br>49.75%<br>63.83%<br>47.90%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | $\begin{array}{c} {\bf sgd', \ N_h = } \\ {\bf urprised} \\ \hline {\bf RMSE} \\ \hline 0.10 \\ 0.12 \\ 0.11 \\ 0.20 \\ 0.31 \\ 0.22 \\ 0.26 \\ 0.13 \\ 0.10 \\ 0.10 \\ 0.10 \end{array}$                                             | $= 90 \times 2$ $MAE$ 0.01 0.01 0.02 0.04 0.02 0.03 0.02 0.01 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $N_o = 5$<br>MARD<br>* * * * * * 68.24% 63.14% 38.14%                                                                                | Scared<br><i>RMSE</i><br>0.30<br>0.38<br>0.35<br>0.37<br>0.38<br>0.36<br>0.32<br>0.90<br>0.48<br>0.28                                                                                 | $\begin{array}{c} MAE \\ \hline 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.11 \\ 0.06 \\ 0.03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)                                                |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3                               | MARD * * * * * * * * * * * * * * * *                                                                | Happy<br><i>RMSE</i><br>0.17<br>0.22<br>0.67<br>0.35<br>0.35<br>0.30<br>0.33<br>0.21<br>0.22<br>0.22<br>0.22<br>0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAE           0.02           0.02           0.02           0.02           0.03           0.04           0.03           0.04           0.03           0.04           0.03           0.04                                                                                                                                                                            | Emotion<br>*<br>81.50%<br>91.27%<br>*<br>*<br>59.57%<br>81.08%<br>*<br>75.30%<br>52.57%                                    | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55                               | $\begin{array}{c} \textbf{ition +} \\ \hline MAE \\ \hline 0.04 \\ 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.06 \\ 0.26 \\ 0.15 \end{array}$                                                                                                                                                                                  | RTOR -<br><i>MARD</i> 79.81% 71.64% 63.93% * * 40.52% * 66.07% *               | $\begin{array}{c} \varphi_j(v_j(n)) \\ \textbf{Angry} \\ RMSE \\ \hline 0.50 \\ 0.29 \\ 0.29 \\ 0.69 \\ 0.70 \\ 0.30 \\ 0.30 \\ 0.22 \\ 0.35 \\ 0.36 \\ 0.90 \\ 0.17 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $= sigma \\ MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 $                                                                                                                                                                                                                                                                                                                           | nd, opt='<br>S<br>MARD<br>49.75%<br>63.83%<br>47.90%<br>*<br>*<br>*<br>*<br>*<br>*<br>80.59%<br>44.30%<br>86.42%                                    | $\begin{array}{c} {\bf sgd', \ N_h = } \\ {\bf urprised} \\ \hline {\bf RMSE} \\ \hline 0.10 \\ 0.12 \\ 0.11 \\ 0.20 \\ 0.31 \\ 0.22 \\ 0.26 \\ 0.13 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.05 \end{array}$                                     | $= 90 \times 2$ $MAE$ 0.01 0.01 0.02 0.04 0.02 0.03 0.02 0.01 0.01 0.01 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $N_o = 5$<br>MARD<br>* * * * * * 68.24% 63.14% 38.14% 51.41%                                                                         | Scared<br><i>RMSE</i><br>0.30<br>0.38<br>0.35<br>0.37<br>0.38<br>0.36<br>0.32<br>0.90<br>0.48<br>0.28<br>0.26                                                                         | $\begin{array}{c} MAE \\ \hline 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.11 \\ 0.06 \\ 0.03 \\ 0.07 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX                     | MARD * * * * * * * * * * * * * * * * * * *                                                          | Happy<br><i>RMSE</i><br>0.17<br>0.22<br>0.67<br>0.35<br>0.35<br>0.30<br>0.33<br>0.21<br>0.22<br>0.22<br>0.22<br>0.09<br>0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAE           0.02           0.02           0.02           0.02           0.04           0.03           0.04           0.03           0.04           0.02                                                                                                                                                                                                          | Emotion<br>MARD<br>*<br>81.50%<br>91.27%<br>*<br>*<br>59.57%<br>81.08%<br>*<br>75.30%<br>52.57%<br>19.94%                  | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06                | $\begin{array}{c} \textbf{ition +} \\ \hline MAE \\ \hline 0.04 \\ 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.06 \\ 0.26 \\ 0.15 \\ 0.02 \end{array}$                                                                                                                                                                          | RTOR -<br><i>MARD</i> 79.81% 71.64% 63.93% * * 40.52% * 66.07% * 55.09%        | $\begin{array}{c} \varphi_j(v_j(n)) \\ \textbf{Angry} \\ RMSE \\ \hline 0.50 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.69 \\ 0.70 \\ 0.30 \\ 0.22 \\ 0.35 \\ 0.36 \\ 0.90 \\ 0.17 \\ 0.36 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = sigma $MAE$ 0.04 0.03 0.03 0.08 0.08 0.02 0.02 0.02 0.05 0.06 0.09 0.05 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nd, opt='<br>S<br>MARD<br>49.75%<br>63.83%<br>47.90%<br>*<br>*<br>*<br>*<br>*<br>*<br>80.59%<br>44.30%<br>86.42%<br>*                               | $\begin{array}{c} {\bf sgd', \ N_h} \\ {\bf urprised} \\ \hline {\bf RMSE} \\ \hline 0.10 \\ 0.12 \\ 0.11 \\ 0.20 \\ 0.31 \\ 0.22 \\ 0.26 \\ 0.13 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.05 \\ 0.06 \end{array}$                                | $= 90 \times 2$ $MAE$ 0.01 0.01 0.02 0.04 0.02 0.03 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $N_o = 5$<br>MARD<br>* * * * * * 68.24% 63.14% 38.14% 51.41% 39.71%                                                                  | Scared<br><i>RMSE</i><br>0.30<br>0.38<br>0.35<br>0.37<br>0.38<br>0.36<br>0.32<br>0.90<br>0.48<br>0.28<br>0.26<br>0.10                                                                 | $\begin{array}{c} MAE \\ \hline 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.11 \\ 0.06 \\ 0.03 \\ 0.07 \\ 0.03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | Happy<br><i>RMSE</i><br>0.17<br>0.22<br>0.67<br>0.35<br>0.35<br>0.30<br>0.33<br>0.21<br>0.22<br>0.22<br>0.09<br>0.72<br>0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAE           0.02           0.02           0.02           0.02           0.04           0.03           0.04           0.03           0.04           0.03           0.04           0.03           0.04           0.03           0.03           0.03           0.20           0.03                                                                                  | Emotion<br>MARD<br>*<br>81.50%<br>91.27%<br>*<br>*<br>59.57%<br>81.08%<br>*<br>75.30%<br>52.57%<br>19.94%<br>28.61%        | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06           0.39 | $\begin{array}{c} \textbf{ition +} \\ \hline MAE \\ \hline 0.04 \\ 0.07 \\ 0.11 \\ 0.01 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.06 \\ 0.26 \\ 0.15 \\ 0.02 \\ 0.03 \end{array}$                                                                                                                                                                  | RTOR -<br><i>MARD</i> 79.81% 71.64% 63.93% * * 40.52% * 66.07% * 55.09% 58.28% | $\begin{array}{c} \varphi_j(v_j(n)) \\ \textbf{Angry} \\ RMSE \\ \hline 0.50 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.69 \\ 0.70 \\ 0.30 \\ 0.22 \\ 0.35 \\ 0.36 \\ 0.90 \\ 0.17 \\ 0.36 \\ 1.07 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $= sigma \\ MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.05 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 $                                                                                                                                                                                                                                                                                                                           | nd, opt='<br>S<br>MARD<br>49.75%<br>63.83%<br>47.90%<br>*<br>*<br>*<br>*<br>*<br>80.59%<br>44.30%<br>86.42%<br>*                                    | $\begin{array}{c} {\bf sgd', \ N_h} \\ {\bf urprised} \\ \hline {\bf RMSE} \\ \hline 0.10 \\ 0.12 \\ 0.11 \\ 0.20 \\ 0.31 \\ 0.22 \\ 0.26 \\ 0.13 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.05 \\ 0.06 \\ 0.28 \end{array}$                        | $= 90 \times 2$ $MAE$ 0.01 0.01 0.02 0.04 0.02 0.03 0.02 0.01 0.01 0.02 0.02 0.02 0.02 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} N_{o}=5\\ \hline MARD\\ *\\ *\\ *\\ *\\ *\\ 68.24\%\\ 63.14\%\\ 38.14\%\\ 51.41\%\\ 39.71\%\\ 45.08\% \end{array}$ | Scared<br><i>RMSE</i><br>0.30<br>0.38<br>0.35<br>0.37<br>0.38<br>0.36<br>0.32<br>0.90<br>0.48<br>0.28<br>0.26<br>0.10<br>0.16                                                         | $\begin{array}{c} MAE \\ \hline 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.11 \\ 0.06 \\ 0.03 \\ 0.07 \\ 0.03 \\ 0.01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | Happy<br><i>RMSE</i><br>0.17<br>0.22<br>0.67<br>0.35<br>0.35<br>0.30<br>0.33<br>0.21<br>0.22<br>0.22<br>0.22<br>0.09<br>0.72<br>0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAE           0.02           0.02           0.02           0.02           0.04           0.03           0.04           0.02           0.03           0.20           0.03           0.20           0.03                                                                                                                                                             | Emotion<br>MARD<br>*<br>81.50%<br>91.27%<br>*<br>*<br>59.57%<br>81.08%<br>*<br>75.30%<br>52.57%<br>19.94%<br>28.61%        | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06           0.39 | $\begin{array}{c} \textbf{ition} \ + \\ \hline MAE \\ \hline 0.04 \\ 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.04 \\ 0.06 \\ 0.26 \\ 0.15 \\ 0.02 \\ 0.03 \end{array}$                                                                                                                                                        | RTOR -<br><i>MARD</i> 79.81% 71.64% 63.93% * * 40.52% * 66.07% * 55.09% 58.28% | $\begin{array}{c} \varphi_j(v_j(n)) \\ \textbf{Angry} \\ RMSE \\ \hline 0.50 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.69 \\ 0.70 \\ 0.30 \\ 0.22 \\ 0.35 \\ 0.36 \\ 0.90 \\ 0.17 \\ 0.36 \\ 1.07 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = sigma $MAE$ 0.04 0.03 0.03 0.03 0.08 0.02 0.02 0.02 0.05 0.06 0.09 0.05 0.10 0.10 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | nd, opt='<br>S<br>MARD<br>49.75%<br>63.83%<br>47.90%<br>*<br>*<br>*<br>*<br>80.59%<br>44.30%<br>86.42%<br>*<br>*                                    | $\begin{array}{c} {\bf sgd', \ N_h} \\ {\bf urprised} \\ \hline {\bf RMSE} \\ \hline 0.10 \\ 0.12 \\ 0.11 \\ 0.20 \\ 0.31 \\ 0.22 \\ 0.26 \\ 0.13 \\ 0.10 \\ 0.10 \\ 0.10 \\ 0.05 \\ 0.06 \\ 0.28 \\ \hline {\bf \infty} \end{array}$ | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.02 0.04 0.02 0.03 0.02 0.01 0.01 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.0 | $, N_o = 5$ $MARD$ * * * * * * 68.24% 63.14% 38.14% 51.41% 39.71% 45.08%                                                             | Scared<br><i>RMSE</i><br>0.30<br>0.38<br>0.35<br>0.37<br>0.38<br>0.36<br>0.32<br>0.90<br>0.48<br>0.28<br>0.26<br>0.10<br>0.16                                                         | $\begin{array}{c} MAE \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.11 \\ 0.06 \\ 0.03 \\ 0.07 \\ 0.03 \\ 0.01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:CR3<br>DS:CR3<br>DS:CLX<br>DS:CL3 | MARD * * * * * * * * * * * * * * * * * * *                                                          | Happy<br><i>RMSE</i><br>0.17<br>0.22<br>0.67<br>0.35<br>0.35<br>0.30<br>0.33<br>0.21<br>0.22<br>0.22<br>0.22<br>0.09<br>0.72<br>0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAE           0.02           0.02           0.02           0.02           0.02           0.04           0.03           0.04           0.02           0.03           0.04           0.03           0.03           0.03           0.03                                                                                                                               | Emotion<br>MARD<br>*<br>81.50%<br>91.27%<br>*<br>*<br>59.57%<br>81.08%<br>*<br>75.30%<br>52.57%<br>19.94%<br>28.61%        | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06           0.39 | ition +           MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.04           0.05           0.06           0.04           0.05           0.06           0.07           0.03                                                                                | RTOR -<br><i>MARD</i> 79.81% 71.64% 63.93% * * 40.52% * 66.07% * 55.09% 58.28% | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \textbf{Angry} \\ RMSE \\ \hline 0.50 \\ 0.29 \\ 0.29 \\ 0.69 \\ 0.70 \\ 0.30 \\ 0.22 \\ 0.35 \\ 0.36 \\ 0.90 \\ 0.17 \\ 0.36 \\ 1.07 \\ \hline \textbf{8} \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = sigme<br>MAE<br>0.04<br>0.03<br>0.03<br>0.03<br>0.03<br>0.08<br>0.02<br>0.02<br>0.02<br>0.02<br>0.05<br>0.06<br>0.09<br>0.05<br>0.10<br>0.10<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nd, opt='<br>S<br>MARD<br>49.75%<br>63.83%<br>47.90%<br>*<br>*<br>*<br>*<br>*<br>80.59%<br>44.30%<br>86.42%<br>*<br>*                               | sgd', N <sub>h</sub><br>urprised<br><u>RMSE</u><br>0.10<br>0.12<br>0.11<br>0.20<br>0.31<br>0.22<br>0.26<br>0.13<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.28<br><b>20</b>                                                          | $= 90 \times 2$ $MAE$ 0.01 0.01 0.02 0.04 0.02 0.03 0.02 0.01 0.01 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.0 | $, N_o = 5$ $MARD$ * * * * * * 68.24% 63.14% 38.14% 51.41% 39.71% 45.08%                                                             | Scared<br><i>RMSE</i><br>0.30<br>0.38<br>0.35<br>0.37<br>0.38<br>0.36<br>0.32<br>0.90<br>0.48<br>0.28<br>0.26<br>0.10<br>0.16<br><b>20</b>                                            | MAE<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.01<br>0.06<br>0.03<br>0.07<br>0.03<br>0.01<br><b>S</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * *                                                          | Happy<br><i>RMSE</i><br>0.17<br>0.22<br>0.67<br>0.35<br>0.35<br>0.30<br>0.33<br>0.21<br>0.22<br>0.22<br>0.22<br>0.09<br>0.72<br>0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAE         0.02         0.02         0.02         0.02         0.04         0.03         0.04         0.02         0.03         0.04         0.03         0.03         0.04         0.03         0.04         0.03         0.04         0.03         0.04         0.03         0.04         0.05         0.06                                                     | Emotion<br>MARD<br>*<br>81.50%<br>91.27%<br>*<br>*<br>59.57%<br>81.08%<br>*<br>75.30%<br>52.57%<br>19.94%<br>28.61%        | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06           0.39 | ition +           MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.05           0.06           0.04           0.05           0.06           0.04           0.05           0.06           0.06           0.07           0.08           0.09           0.03     | RTOR -<br><i>MARD</i> 79.81% 71.64% 63.93% * * 40.52% * 66.07% 55.09% 58.28%   | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \textbf{Angry} \\ RMSE \\ \hline 0.50 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.69 \\ 0.70 \\ 0.30 \\ 0.22 \\ 0.35 \\ 0.36 \\ 0.90 \\ 0.17 \\ 0.36 \\ 1.07 \\ \hline \textbf{97.0} \\ \textbf$ | = sigmo<br>MAE<br>0.04<br>0.03<br>0.03<br>0.03<br>0.08<br>0.08<br>0.02<br>0.02<br>0.02<br>0.05<br>0.06<br>0.09<br>0.05<br>0.10<br>0.10<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nd, opt='<br>S<br>MARD<br>49.75%<br>63.83%<br>47.90%<br>*<br>*<br>*<br>*<br>80.59%<br>44.30%<br>86.42%<br>*<br>*                                    | sgd', N <sub>h</sub> :<br>urprised<br><u>RMSE</u><br>0.10<br>0.12<br>0.11<br>0.20<br>0.31<br>0.22<br>0.26<br>0.13<br>0.10<br>0.10<br>0.10<br>0.10<br>0.05<br>0.06<br>0.28<br><b>80</b><br>0<br>H                                      | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.02 0.04 0.02 0.03 0.02 0.01 0.01 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.02 0.04 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $, N_o = 5$ $MARD$ * * * * * * 68.24% 63.14% 63.14% 51.41% 39.71% 45.08%                                                             | Scared<br><i>RMSE</i><br>0.30<br>0.38<br>0.35<br>0.37<br>0.38<br>0.36<br>0.32<br>0.90<br>0.48<br>0.28<br>0.26<br>0.10<br>0.16<br>81<br>0.16                                           | MAE<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.03<br>0.07<br>0.03<br>0.01<br><b>CO</b> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CL3                     | MARD * * * * * * * * * * * * * * * * * * *                                                          | Happy<br><i>RMSE</i><br>0.17<br>0.22<br>0.67<br>0.35<br>0.35<br>0.30<br>0.33<br>0.21<br>0.22<br>0.22<br>0.22<br>0.22<br>0.29<br><b>L</b> I:<br>0.4<br><b>L</b> I:<br><b>L</b> | MAE         0.02         0.02         0.02         0.02         0.02         0.04         0.03         0.04         0.02         0.03         0.04         0.03         0.04         0.03         0.04         0.03         0.04         0.03         0.04         0.03         0.04         0.05         0.06         0.07         0.08         0.09         0.03 | Emotion<br><i>MARD</i><br>*<br>81.50%<br>91.27%<br>*<br>*<br>59.57%<br>81.08%<br>*<br>75.30%<br>52.57%<br>19.94%<br>28.61% | n Recogn<br>Sad<br><i>RMSE</i><br>0.42<br>0.82<br>1.37<br>0.96<br>0.82<br>0.64<br>0.38<br>0.31<br>0.42<br>2.58<br>0.55<br>0.06<br>0.39<br><b>19</b><br>••••<br>••••<br>••••<br>•••••<br>•••••<br>•••••<br>••••••                       | $\begin{array}{c} \textbf{ition} + \\ \hline MAE \\ \hline 0.04 \\ 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.06 \\ 0.04 \\ 0.06 \\ 0.26 \\ 0.15 \\ 0.02 \\ 0.03 \end{array}$                                                                                                                                                  | RTOR -<br><i>MARD</i> 79.81% 71.64% 63.93% * * 40.52% * 66.07% 55.09% 58.28%   | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \textbf{Angry} \\ RMSE \\ 0.50 \\ 0.29 \\ 0.29 \\ 0.29 \\ 0.69 \\ 0.70 \\ 0.30 \\ 0.22 \\ 0.35 \\ 0.36 \\ 0.90 \\ 0.17 \\ 0.36 \\ 1.07 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = sigma<br>MAE<br>0.04<br>0.03<br>0.03<br>0.03<br>0.08<br>0.02<br>0.02<br>0.02<br>0.05<br>0.06<br>0.09<br>0.05<br>0.10<br>0.10<br>0.10<br><b>CO</b> .04<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.05<br>0.05<br>0.05<br>0.010<br>0.05<br>0.05<br>0.010<br>0.05<br>0.05<br>0.05<br>0.100<br>0.05<br>0.100<br>0.05<br>0.100<br>0.100<br>0.05<br>0.100<br>0.100<br>0.05<br>0.100<br>0.100<br>0.05<br>0.100<br>0.100<br>0.100<br>0.05<br>0.100<br>0.100<br>0.100<br>0.05<br>0.100<br>0.100<br>0.100<br>0.100<br>0.05<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.100<br>0.1000<br>0.1000<br>0.100<br>0.100<br>0.1000<br>0.1000<br>0.1000<br>0.100 | nd, opt='<br>S<br>MARD<br>49.75%<br>63.83%<br>47.90%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>80.59%<br>44.30%<br>86.42%<br>*<br>*                     | sgd', N <sub>h</sub> :         urprised         RMSE         0.10         0.12         0.11         0.20         0.31         0.22         0.26         0.13         0.10         0.10         0.28                                   | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.02 0.04 0.02 0.03 0.02 0.01 0.01 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.0 | $, N_o = 5$ $MARD$ * * * * * * 68.24% 63.14% 38.14% 51.41% 39.71% 45.08%                                                             | Scared<br><i>RMSE</i><br>0.30<br>0.38<br>0.35<br>0.37<br>0.38<br>0.36<br>0.32<br>0.90<br>0.48<br>0.28<br>0.26<br>0.10<br>0.16<br>810<br>100<br>100<br>100<br>100<br>100<br>100<br>100 | MAE<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.03<br>0.07<br>0.03<br>0.01<br><b>CO</b> .04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.05<br>0.05<br>0.05<br>0.07<br>0.03<br>0.01<br>0.04<br>0.04<br>0.04<br>0.05<br>0.03<br>0.07<br>0.03<br>0.01<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.05<br>0.03<br>0.07<br>0.03<br>0.01<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.5<br>0. | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR3<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * *                                                          | Happy<br><i>RMSE</i><br>0.17<br>0.22<br>0.67<br>0.35<br>0.35<br>0.30<br>0.33<br>0.21<br>0.22<br>0.22<br>0.22<br>0.09<br>0.72<br>0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAE         0.02         0.02         0.02         0.02         0.02         0.04         0.03         0.04         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03         0.03                                                                                                         | Emotion<br><i>MARD</i><br>*<br>81.50%<br>91.27%<br>*<br>*<br>59.57%<br>81.08%<br>*<br>75.30%<br>52.57%<br>19.94%<br>28.61% | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06           0.39 | ition +           MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.05           0.06           0.04           0.05           0.06           0.04           0.05           0.06           0.15           0.026           0.03           90:04           *800:0 | RTOR -<br><i>MARD</i> 79.81% 71.64% 63.93% * * 40.52% * 66.07% 55.09% 58.28%   | $\begin{array}{c} \varphi_j(v_j(n))\\ \textbf{Angry}\\ RMSE\\ 0.50\\ 0.29\\ 0.29\\ 0.69\\ 0.70\\ 0.30\\ 0.22\\ 0.35\\ 0.36\\ 0.90\\ 0.17\\ 0.36\\ 1.07\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = sigma<br>MAE<br>0.04<br>0.03<br>0.03<br>0.03<br>0.08<br>0.02<br>0.02<br>0.02<br>0.05<br>0.06<br>0.09<br>0.05<br>0.10<br>0.10<br>0.10<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nd, opt='<br>S<br>MARD<br>49.75%<br>63.83%<br>47.90%<br>*<br>*<br>*<br>*<br>*<br>80.59%<br>44.30%<br>86.42%<br>*                                    | sgd', N <sub>h</sub><br>urprised<br>RMSE<br>0.10<br>0.12<br>0.11<br>0.20<br>0.31<br>0.22<br>0.26<br>0.13<br>0.10<br>0.10<br>0.10<br>0.10<br>0.10<br>0.28<br>8000<br>H<br>911<br>C                                                     | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.02 0.04 0.02 0.03 0.02 0.01 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.0 | $, N_o = 5$ $MARD$ * * * * * * * 68.24% 63.14% 38.14% 51.41% 39.71% 45.08%                                                           | Scared<br><i>RMSE</i><br>0.30<br>0.38<br>0.35<br>0.37<br>0.38<br>0.36<br>0.32<br>0.90<br>0.48<br>0.26<br>0.10<br>0.16<br><b>Strong</b>                                                | <i>MAE</i><br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |

TABLE 9.4. Emotion recognition results tests 3 and 4. ANN with  $6 \times 10^3$  train epochs and input data with feature extraction.

|                                                                                                                                                               |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Test 5 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Emotion                                                                                                                                                                                                               | n Recogn                                                                                                                                                                                                                               | ition $+$                                                                                                                                                                                                                                                                                                                                    | RTOR -                                                                                                                 | $\varphi_j(v_j(n))$                                                                                                                                                                                                                                       | = sigma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | oid, $opt = $                                                                                                                                                                                       | sgd', $N_h$                                                                                                                                                                                                                                                                   | $= 90 \times 2$                                                                     | $N_o = 5$                                                                                                                                                  |                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{Flight}$                                                                                                                                             |                                            | Нарру                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                       | Sad                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                              |                                                                                                                        | Angry                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S                                                                                                                                                                                                   | urprised                                                                                                                                                                                                                                                                      |                                                                                     |                                                                                                                                                            | Scared                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                   | Match                                                                                                                                                                                                                                           |
| Dataset                                                                                                                                                       | MARD                                       | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MARD                                                                                                                                                                                                                  | RMSE                                                                                                                                                                                                                                   | MAE                                                                                                                                                                                                                                                                                                                                          | MARD                                                                                                                   | RMSE                                                                                                                                                                                                                                                      | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MARD                                                                                                                                                                                                | RMSE                                                                                                                                                                                                                                                                          | MAE                                                                                 | MARD                                                                                                                                                       | RMSE                                                                                                                                                                                                                          | MAE                                                                                                                                                                                                                                                                               | Accuracy (%)                                                                                                                                                                                                                                    |
| DS:RC1                                                                                                                                                        | *                                          | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                     | 0.91                                                                                                                                                                                                                                   | 0.08                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                      | 0.61                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.72%                                                                                                                                                                                              | 0.11                                                                                                                                                                                                                                                                          | 0.01                                                                                | *                                                                                                                                                          | 0.23                                                                                                                                                                                                                          | 0.03                                                                                                                                                                                                                                                                              | <b>43.28</b> ( <b>29</b> /67)                                                                                                                                                                                                                   |
| DS:RC2                                                                                                                                                        | *                                          | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83.83%                                                                                                                                                                                                                | 0.88                                                                                                                                                                                                                                   | 0.08                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                      | 0.42                                                                                                                                                                                                                                                      | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 42.18%                                                                                                                                                                                              | 0.12                                                                                                                                                                                                                                                                          | 0.01                                                                                | *                                                                                                                                                          | 0.23                                                                                                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                              | <b>58.97</b> ( <b>46</b> /78)                                                                                                                                                                                                                   |
| DS:RC3                                                                                                                                                        | *                                          | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 87.21%                                                                                                                                                                                                                | 1.52                                                                                                                                                                                                                                   | 0.13                                                                                                                                                                                                                                                                                                                                         | 54.73%                                                                                                                 | 0.32                                                                                                                                                                                                                                                      | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.95%                                                                                                                                                                                               | 0.15                                                                                                                                                                                                                                                                          | 0.02                                                                                | *                                                                                                                                                          | 0.14                                                                                                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                              | <b>57.53</b> ( <b>42</b> /73)                                                                                                                                                                                                                   |
| DS:GC1                                                                                                                                                        | *                                          | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                     | 2.25                                                                                                                                                                                                                                   | 0.23                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                      | 0.71                                                                                                                                                                                                                                                      | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85.11%                                                                                                                                                                                              | 0.09                                                                                                                                                                                                                                                                          | 0.01                                                                                | *                                                                                                                                                          | 0.29                                                                                                                                                                                                                          | 0.03                                                                                                                                                                                                                                                                              | <b>22.66</b> (17/75)                                                                                                                                                                                                                            |
| DS:GC3                                                                                                                                                        | *                                          | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                     | 0.30                                                                                                                                                                                                                                   | 0.03                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                      | 0.28                                                                                                                                                                                                                                                      | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                                                                   | 0.12                                                                                                                                                                                                                                                                          | 0.01                                                                                | *                                                                                                                                                          | 0.23                                                                                                                                                                                                                          | 0.03                                                                                                                                                                                                                                                                              | <b>100.00</b> ( <b>78</b> /78)                                                                                                                                                                                                                  |
| DS:LS1                                                                                                                                                        | *                                          | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                     | 1.41                                                                                                                                                                                                                                   | 0.12                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                      | 0.41                                                                                                                                                                                                                                                      | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 76.14%                                                                                                                                                                                              | 0.10                                                                                                                                                                                                                                                                          | 0.01                                                                                | *                                                                                                                                                          | 0.20                                                                                                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                              | <b>23.53</b> ( <b>24</b> /102)                                                                                                                                                                                                                  |
| DS:LS2                                                                                                                                                        | *                                          | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53.61%                                                                                                                                                                                                                | 0.42                                                                                                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                         | 76.71%                                                                                                                 | 0.41                                                                                                                                                                                                                                                      | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                                                                   | 0.13                                                                                                                                                                                                                                                                          | 0.01                                                                                | *                                                                                                                                                          | 0.23                                                                                                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                              | 42.66 (32/75)                                                                                                                                                                                                                                   |
| DS:VC1                                                                                                                                                        | *                                          | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 51.96%                                                                                                                                                                                                                | 0.28                                                                                                                                                                                                                                   | 0.03                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                      | 0.21                                                                                                                                                                                                                                                      | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25.42%                                                                                                                                                                                              | 0.05                                                                                                                                                                                                                                                                          | 0.01                                                                                | 84.89%                                                                                                                                                     | 1.04                                                                                                                                                                                                                          | 0.13                                                                                                                                                                                                                                                                              | <b>16.66</b> (8/48)                                                                                                                                                                                                                             |
| DS:VC2                                                                                                                                                        | *                                          | 0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                     | 0.77                                                                                                                                                                                                                                   | 0.09                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                      | 0.48                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.10%                                                                                                                                                                                              | 0.06                                                                                                                                                                                                                                                                          | 0.01                                                                                | 65.38%                                                                                                                                                     | 0.54                                                                                                                                                                                                                          | 0.07                                                                                                                                                                                                                                                                              | <b>23.68</b> (9/38)                                                                                                                                                                                                                             |
| DS:CR1                                                                                                                                                        | *                                          | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74.46%                                                                                                                                                                                                                | 2.48                                                                                                                                                                                                                                   | 0.25                                                                                                                                                                                                                                                                                                                                         | 62.64%                                                                                                                 | 0.84                                                                                                                                                                                                                                                      | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 39.67%                                                                                                                                                                                              | 0.13                                                                                                                                                                                                                                                                          | 0.01                                                                                | 75.12%                                                                                                                                                     | 0.47                                                                                                                                                                                                                          | 0.05                                                                                                                                                                                                                                                                              | <b>72.60</b> ( <b>53</b> /73)                                                                                                                                                                                                                   |
| DS:CR3                                                                                                                                                        | *                                          | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 75.77%                                                                                                                                                                                                                | 0.65                                                                                                                                                                                                                                   | 0.19                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                      | 0.21                                                                                                                                                                                                                                                      | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17.65%                                                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                          | 0.00                                                                                | 61.55%                                                                                                                                                     | 0.26                                                                                                                                                                                                                          | 0.07                                                                                                                                                                                                                                                                              | 77.77 $(7/9)$                                                                                                                                                                                                                                   |
| DS:CLX                                                                                                                                                        | 89.24%                                     | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48.67%                                                                                                                                                                                                                | 0.17                                                                                                                                                                                                                                   | 0.05                                                                                                                                                                                                                                                                                                                                         | 76.34%                                                                                                                 | 0.48                                                                                                                                                                                                                                                      | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                                                                   | 0.05                                                                                                                                                                                                                                                                          | 0.01                                                                                | 54.28%                                                                                                                                                     | 0.14                                                                                                                                                                                                                          | 0.04                                                                                                                                                                                                                                                                              | <b>0.00</b> ( <b>0</b> /10)                                                                                                                                                                                                                     |
| DS:CL3                                                                                                                                                        | 82.20%                                     | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43.10%                                                                                                                                                                                                                | 0.61                                                                                                                                                                                                                                   | 0.05                                                                                                                                                                                                                                                                                                                                         | 49.66%                                                                                                                 | 0.96                                                                                                                                                                                                                                                      | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                                                                   | 0.15                                                                                                                                                                                                                                                                          | 0.02                                                                                | 34.29%                                                                                                                                                     | 0.18                                                                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                              | $24.41 \ (21/86)$                                                                                                                                                                                                                               |
|                                                                                                                                                               |                                            | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                       | Ľ                                                                                                                                                                                                                                      | 17                                                                                                                                                                                                                                                                                                                                           |                                                                                                                        | 5                                                                                                                                                                                                                                                         | )3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                     | )4                                                                                                                                                                                                                                                                            | 00                                                                                  |                                                                                                                                                            | 33                                                                                                                                                                                                                            | )3                                                                                                                                                                                                                                                                                | 53                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                            | 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                       | 0.1                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                          |                                                                                                                        | 0.2                                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                           | 0.0                                                                                 |                                                                                                                                                            | 0.2                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                               | 27.                                                                                                                                                                                                                                             |
|                                                                                                                                                               |                                            | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                       | H                                                                                                                                                                                                                                      | +1                                                                                                                                                                                                                                                                                                                                           |                                                                                                                        | ++                                                                                                                                                                                                                                                        | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                     | +1                                                                                                                                                                                                                                                                            | ++                                                                                  |                                                                                                                                                            | ++                                                                                                                                                                                                                            | ++                                                                                                                                                                                                                                                                                | Ĥ                                                                                                                                                                                                                                               |
|                                                                                                                                                               |                                            | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                       | 7                                                                                                                                                                                                                                      | Ξ                                                                                                                                                                                                                                                                                                                                            |                                                                                                                        | 61                                                                                                                                                                                                                                                        | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                     | 0                                                                                                                                                                                                                                                                             | 1                                                                                   |                                                                                                                                                            | 22                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                 | .37                                                                                                                                                                                                                                             |
|                                                                                                                                                               |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                       | <u>.</u>                                                                                                                                                                                                                               | E.C                                                                                                                                                                                                                                                                                                                                          |                                                                                                                        |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                               | č                                                                                   |                                                                                                                                                            |                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                               | 13                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                            | <b>U</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                            |                                                                                                                        | <b>U</b>                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                             | 0                                                                                   |                                                                                                                                                            | 0                                                                                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                 | <b>N</b> .                                                                                                                                                                                                                                      |
|                                                                                                                                                               |                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Test 6 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | • Emotion                                                                                                                                                                                                             | n Recogn                                                                                                                                                                                                                               | ition $+$                                                                                                                                                                                                                                                                                                                                    | RTOR -                                                                                                                 | $\overline{\varphi_j(v_j(n))}$                                                                                                                                                                                                                            | = sigma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pid, opt=                                                                                                                                                                                           | sgd', $N_h$                                                                                                                                                                                                                                                                   | $=90 \times 2$                                                                      | $, N_o = 5$                                                                                                                                                | 0                                                                                                                                                                                                                             | <u> </u>                                                                                                                                                                                                                                                                          | 7                                                                                                                                                                                                                                               |
| Flight                                                                                                                                                        |                                            | Нарру                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Test 6 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Emotion                                                                                                                                                                                                               | n Recogn<br>Sad                                                                                                                                                                                                                        | ition +                                                                                                                                                                                                                                                                                                                                      | RTOR -                                                                                                                 | $\varphi_j(v_j(n))$ <b>Angry</b>                                                                                                                                                                                                                          | = sigma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | pid, opt=                                                                                                                                                                                           | $sgd', N_h$<br>urprised                                                                                                                                                                                                                                                       | $=90 \times 2$                                                                      | $, N_o = 5$                                                                                                                                                | Scared                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                   | Match                                                                                                                                                                                                                                           |
| Flight<br>Dataset                                                                                                                                             | MARD                                       | Happy<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Test 6 -<br>MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • Emotion                                                                                                                                                                                                             | n Recogn<br>Sad<br>RMSE                                                                                                                                                                                                                | ition +<br>MAE                                                                                                                                                                                                                                                                                                                               | RTOR -                                                                                                                 | $ \begin{array}{c} \varphi_j(v_j(n)) \\ \mathbf{Angry} \\ RMSE \end{array} $                                                                                                                                                                              | = sigma<br>MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | pid, opt='<br>S<br>MARD                                                                                                                                                                             | $sgd', N_h$<br>urprised<br>RMSE                                                                                                                                                                                                                                               | $= 90 \times 2$ $MAE$                                                               | $N_o = 5$<br>MARD                                                                                                                                          | Scared<br>RMSE                                                                                                                                                                                                                | MAE                                                                                                                                                                                                                                                                               | Match<br>Accuracy (%)                                                                                                                                                                                                                           |
| Flight<br>Dataset<br>DS:RC1                                                                                                                                   | MARD<br>*                                  | Happy<br>RMSE<br>0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{\text{Test } 6}{MAE}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | • Emotion<br>MARD<br>*                                                                                                                                                                                                | n Recogn<br>Sad<br>RMSE<br>0.42                                                                                                                                                                                                        | $\frac{MAE}{0.04}$                                                                                                                                                                                                                                                                                                                           | <b>RTOR -</b><br><i>MARD</i><br>78.23%                                                                                 | $ \begin{array}{c} \mathbf{c} \\ \varphi_j(v_j(n)) \\ \mathbf{Angry} \\ RMSE \\ 0.50 \end{array} $                                                                                                                                                        | = sigma $MAE$ $0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | pid, opt=' <b>S</b> $MARD$ 41.28%                                                                                                                                                                   | $\frac{\text{sgd', } N_h}{\text{urprised}}$ $\frac{RMSE}{0.13}$                                                                                                                                                                                                               | $= 90 \times 2$ $MAE$ 0.01                                                          | $N_o = 5$ $MARD$ *                                                                                                                                         | Scared<br>RMSE<br>0.19                                                                                                                                                                                                        | MAE<br>0.02                                                                                                                                                                                                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)                                                                                                                                                                                                          |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2                                                                                                                         | MARD<br>*                                  | Happy<br><i>RMSE</i><br>0.16<br>0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\frac{MAE}{0.02}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Emotion<br>MARD<br>*<br>81.48%                                                                                                                                                                                        | Sad           RMSE           0.42           0.82                                                                                                                                                                                       | $\frac{MAE}{0.04}$                                                                                                                                                                                                                                                                                                                           | <b>RTOR -</b><br><i>MARD</i><br>78.23%<br>69.36%                                                                       | $\varphi_j(v_j(n))$<br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29                                                                                                                                                                                        | = sigma $MAE$ $0.04$ $0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | nid, opt='<br>S<br>MARD<br>41.28%<br>39.53%                                                                                                                                                         | <b>sgd'</b> , <i>N<sub>h</sub></i><br><b>urprised</b><br><i>RMSE</i><br>0.13<br>0.12                                                                                                                                                                                          | $= 90 \times 2$ $\underline{MAE}$ 0.01 0.01                                         | $N_o = 5$ $MARD$ * *                                                                                                                                       | <b>Scared</b><br><i>RMSE</i><br>0.19<br>0.26                                                                                                                                                                                  | MAE<br>0.02<br>0.03                                                                                                                                                                                                                                                               | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)                                                                                                                                                                                         |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3                                                                                                               | MARD<br>*<br>*                             | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{MAE}{0.02} \\ 0.02 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\$ | • Emotion<br>*<br>81.48%<br>91.16%                                                                                                                                                                                    | Recogn           Sad           RMSE           0.42           0.82           1.37                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                              | <b>RTOR -</b><br><i>MARD</i><br>78.23%<br>69.36%<br>62.17%                                                             | $\varphi_j(v_j(n))$<br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.28                                                                                                                                                                                | = sigma $MAE$ $0.04$ $0.03$ $0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pid, opt='<br>S<br>MARD<br>41.28%<br>39.53%<br>7.70%                                                                                                                                                | <b>sgd'</b> , <i>N<sub>h</sub></i><br><b>urprised</b><br><i>RMSE</i><br>0.13<br>0.12<br>0.12                                                                                                                                                                                  | $= 90 \times 2$ $= 90 \times 2$ $MAE$ 0.01 0.01 0.01                                | $N_o = 5$ $MARD$ $*$ $*$ $*$                                                                                                                               | <b>Scared</b><br><i>RMSE</i><br>0.19<br>0.26<br>0.24                                                                                                                                                                          | <i>MAE</i><br>0.02<br>0.03<br>0.03                                                                                                                                                                                                                                                | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)                                                                                                                                                                        |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1                                                                                                     | MARD<br>*<br>*<br>*                        | Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAE           0.02           0.02           0.07           0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • Emotion<br>*<br>81.48%<br>91.16%<br>*                                                                                                                                                                               | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96                                                                                                                                        | $\frac{MAE}{0.04}$ 0.07 0.11 0.11                                                                                                                                                                                                                                                                                                            | <b>RTOR -</b><br><i>MARD</i><br>78.23%<br>69.36%<br>62.17%<br>*                                                        | $\varphi_j(v_j(n))$<br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68                                                                                                                                                                        | $= sigma \\ MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 $ | <i>bid</i> , <b>opt</b> ='<br><b>S</b><br><i>MARD</i><br>41.28%<br>39.53%<br>7.70%<br>56.74%                                                                                                        | $\begin{array}{c} {} {} {} {} {} {} {} {} {} {} {} {} {}$                                                                                                                                                                                                                     | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.01                                           | $N_o = 5$ $MARD$ $*$ $*$ $*$                                                                                                                               | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26                                                                                                                                                                         | MAE<br>0.02<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                               | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)                                                                                                                                                       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3                                                                                           | MARD * * * * * *                           | Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAE           0.02           0.02           0.07           0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • Emotion<br>*<br>81.48%<br>91.16%<br>*<br>*                                                                                                                                                                          | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82                                                                                                                         | $\begin{array}{c} \hline \\ \hline $                                                                                                                                                                                                                         | <b>RTOR -</b><br><i>MARD</i><br>78.23%<br>69.36%<br>62.17%<br>*<br>*                                                   | $\begin{array}{c} & & \\ \varphi_{j}(v_{j}(n)) \\ \hline \mathbf{Angry} \\ RMSE \\ \hline 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \end{array}$                                                                                                               | $= sigma \\ MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 $ | vid, opt='<br>S<br>MARD<br>41.28%<br>39.53%<br>7.70%<br>56.74%<br>*                                                                                                                                 | $\begin{array}{c} \textbf{sgd', } N_h \\ \textbf{urprised} \\ \hline \textbf{RMSE} \\ \hline 0.13 \\ 0.12 \\ 0.12 \\ 0.06 \\ 0.15 \\ \end{array}$                                                                                                                             | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02                                      | $, N_o = 5$<br>MARD * * * * * *                                                                                                                            | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27                                                                                                                                                                 | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)                                                                                                                                     |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1                                                                                 | MARD * * * * * * *                         | Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAE           0.02           0.02           0.07           0.03           0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | • Emotion<br>*<br>81.48%<br>91.16%<br>*<br>*<br>*                                                                                                                                                                     | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65                                                                                                          | $\begin{array}{c} \hline \\ \textbf{ition} + \\ \hline \\ MAE \\ \hline \\ 0.04 \\ 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ \end{array}$                                                                                                                                                                                                      | <b>RTOR -</b><br><i>MARD</i><br>78.23%<br>69.36%<br>62.17%<br>*<br>*<br>*                                              | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \hline \boldsymbol{Angry} \\ RMSE \\ 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \\ 0.30 \end{array}$                                                                                                                 | $= sigma \\ MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | vid, opt='<br>S<br>MARD<br>41.28%<br>39.53%<br>7.70%<br>56.74%<br>*<br>50.40%                                                                                                                       | $\begin{array}{c} {} {} {} {} {} {} {} {} {} {} {} {} {}$                                                                                                                                                                                                                     | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02 0.01                                 | , N <sub>o</sub> = 5<br>MARD<br>*<br>*<br>*<br>*                                                                                                           | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.24                                                                                                                                                         | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02                                                                                                                                                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)                                                                                                                   |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2                                                                       | MARD * * * * * * * *                       | Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAE           0.02           0.02           0.07           0.03           0.02           0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | • Emotion<br>*<br>81.48%<br>91.16%<br>*<br>*<br>60.13%                                                                                                                                                                | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65           0.38                                                                                           | $\begin{array}{c} \textbf{ition} + \\ \hline MAE \\ \hline 0.04 \\ 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \end{array}$                                                                                                                                                                                                                 | <b>RTOR -</b><br><i>MARD</i><br>78.23%<br>69.36%<br>62.17%<br>*<br>*<br>*<br>40.01%                                    | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \textbf{Angry} \\ RMSE \\ 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \\ 0.30 \\ 0.21 \end{array}$                                                                                                                    | = sigma $MAE$ 0.04 0.03 0.03 0.08 0.08 0.08 0.02 0.02 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | vid, opt='<br>S<br>MARD<br>41.28%<br>39.53%<br>7.70%<br>56.74%<br>*<br>50.40%<br>*                                                                                                                  | $\begin{array}{c} \mathbf{sgd', N_h} \\ \mathbf{urprised} \\ \overline{RMSE} \\ \hline 0.13 \\ 0.12 \\ 0.12 \\ 0.06 \\ 0.15 \\ 0.07 \\ 0.11 \\ \end{array}$                                                                                                                   | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01                       | $N_o = 5$<br><i>MARD</i><br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                                | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.24<br>0.21                                                                                                                                                 | <i>MAE</i><br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02                                                                                                                                                                                                                | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)                                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1                                                             | MARD * * * * * * * * *                     | Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.23<br>0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Test 6         -           MAE         0.02           0.02         0.07           0.03         0.03           0.02         0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Emotion MARD * 81.48% 91.16% * * 60.13% 81.00%                                                                                                                                                                        | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65           0.38                                                                                           | $\begin{array}{c} \textbf{ition} + \\ \hline MAE \\ \hline 0.04 \\ 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.04 \\ \end{array}$                                                                                                                                                                                                      | RTOR -<br><i>MARD</i><br>78.23%<br>69.36%<br>62.17%<br>*<br>*<br>*<br>40.01%<br>*                                      | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \textbf{Angry} \\ RMSE \\ 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \\ 0.30 \\ 0.21 \\ 0.35 \end{array}$                                                                                                            | = sigma $MAE$ 0.04 0.03 0.03 0.03 0.08 0.08 0.02 0.02 0.02 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <i>vid</i> , <b>opt=</b> '<br><b>S</b><br><u>MARD</u><br>41.28%<br>39.53%<br>7.70%<br>56.74%<br>*<br>50.40%<br>*<br>23.69%                                                                          | $\begin{array}{c} {} {\bf sgd', N_h} \\ {\bf urprised} \\ {RMSE} \\ \hline 0.13 \\ 0.12 \\ 0.12 \\ 0.12 \\ 0.06 \\ 0.15 \\ 0.07 \\ 0.11 \\ 0.04 \end{array}$                                                                                                                  | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01                       | $N_o = 5$<br>MARD * * * * * * * * * * * 79.10%                                                                                                             | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.24<br>0.21<br>1.01                                                                                                                                         | <i>MAE</i><br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.02                                                                                                                                                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2                                                   | MARD * * * * * * * * * * *                 | Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.23<br>0.13<br>0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Test 6         -           MAE         0.02           0.02         0.07           0.03         0.03           0.02         0.03           0.03         0.02           0.03         0.02           0.03         0.02           0.03         0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | • Emotion<br>*<br>81.48%<br>91.16%<br>*<br>*<br>60.13%<br>81.00%<br>*                                                                                                                                                 | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65           0.38           0.31           0.42                                                             | $\begin{array}{c} \textbf{ition} + \\ \hline MAE \\ 0.04 \\ 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.04 \\ 0.06 \end{array}$                                                                                                                                                                                                        | RTOR -<br><i>MARD</i><br>78.23%<br>69.36%<br>62.17%<br>*<br>*<br>*<br>40.01%<br>*<br>*                                 | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \textbf{Angry} \\ RMSE \\ 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \\ 0.30 \\ 0.21 \\ 0.35 \\ 0.36 \end{array}$                                                                                                    | = sigma $MAE$ 0.04 0.03 0.03 0.08 0.08 0.02 0.02 0.02 0.05 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \textit{vid, opt} = "\\ & \mathbf{S} \\ \hline MARD \\ 41.28\% \\ 39.53\% \\ 7.70\% \\ 56.74\% \\ * \\ 50.40\% \\ * \\ 23.69\% \\ 28.17\% \end{array}$                            | $\begin{array}{c} {\bf sgd', N_h} \\ {\bf urprised} \\ \hline {\bf RMSE} \\ \hline 0.13 \\ 0.12 \\ 0.12 \\ 0.06 \\ 0.15 \\ 0.07 \\ 0.11 \\ 0.04 \\ 0.07 \\ \end{array}$                                                                                                       | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01                       | $N_{o} = 5$ $MARD$ * * * * * * * * * * * * * * * * * * *                                                                                                   | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.24<br>0.21<br>1.01<br>0.55                                                                                                                                 | MAE           0.02           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)                                                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1                                         | MARD * * * * * * * * * * * * *             | Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.23<br>0.13<br>0.13<br>0.13<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \hline \mathbf{Test} \ 6 \ \mathbf{-} \\ \hline \mathbf{MAE} \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.01 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | • Emotion<br>*<br>81.48%<br>91.16%<br>*<br>*<br>60.13%<br>81.00%<br>*<br>75.42%                                                                                                                                       | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65           0.38           0.31           0.42           2.58                                              | $\begin{array}{c} \textbf{ition} + \\ \hline MAE \\ 0.04 \\ 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.04 \\ 0.06 \\ 0.26 \end{array}$                                                                                                                                                                                                | RTOR -<br><i>MARD</i><br>78.23%<br>69.36%<br>62.17%<br>*<br>*<br>40.01%<br>*<br>*<br>66.39%                            | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \textbf{Angry} \\ RMSE \\ 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \\ 0.30 \\ 0.21 \\ 0.35 \\ 0.36 \\ 0.92 \end{array}$                                                                                            | = sigma $MAE$ 0.04 0.03 0.03 0.03 0.08 0.08 0.02 0.02 0.02 0.05 0.06 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \textit{vid, opt} = "\\ & \mathbf{S} \\ \hline MARD \\ 41.28\% \\ 39.53\% \\ 7.70\% \\ 56.74\% \\ * \\ 50.40\% \\ * \\ 23.69\% \\ 28.17\% \\ 37.37\% \end{array}$                 | $\begin{array}{c} {\bf sgd', } N_h \\ {\bf urprised} \\ \hline RMSE \\ \hline 0.13 \\ 0.12 \\ 0.12 \\ 0.06 \\ 0.15 \\ 0.07 \\ 0.11 \\ 0.04 \\ 0.07 \\ 0.12 \\ \end{array}$                                                                                                    | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01             | $N_o = 5$ $MARD$ * * * * * * * * * * * * * * * * * * *                                                                                                     | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.24<br>0.21<br>1.01<br>0.55<br>0.40                                                                                                                         | MAE           0.02           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.02           0.13           0.07           0.04                               | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)                                                |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3                               | MARD * * * * * * * * * * * * * *           | Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.23<br>0.13<br>0.13<br>0.13<br>0.12<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \hline \mathbf{Test} \ 6 \ \mathbf{-} \\ \hline \mathbf{MAE} \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • Emotion<br>*<br>81.48%<br>91.16%<br>*<br>*<br>60.13%<br>81.00%<br>*<br>75.42%<br>52.77%                                                                                                                             | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65           0.38           0.31           0.42           2.58           0.55                               | $\begin{array}{c} \textbf{ition} + \\ \hline MAE \\ \hline 0.04 \\ 0.07 \\ 0.11 \\ 0.01 \\ 0.01 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.06 \\ 0.26 \\ 0.15 \end{array}$                                                                                                                                                                                 | RTOR -<br><i>MARD</i><br>78.23%<br>69.36%<br>62.17%<br>*<br>*<br>40.01%<br>*<br>*<br>66.39%<br>*                       | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \mathbf{Angry} \\ RMSE \\ \hline 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \\ 0.30 \\ 0.21 \\ 0.35 \\ 0.36 \\ 0.92 \\ 0.17 \end{array}$                                                                             | = sigma $MAE$ 0.04 0.03 0.03 0.08 0.08 0.02 0.02 0.02 0.05 0.06 0.09 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} \textit{vid, opt} = "\\ \hline \textbf{S}\\ \hline \textbf{MARD}\\ 41.28\%\\ 39.53\%\\ 7.70\%\\ 56.74\%\\ *\\ 50.40\%\\ *\\ 23.69\%\\ 28.17\%\\ 37.37\%\\ 12.71\% \end{array}$    | $\begin{array}{c} {\bf sgd', } N_h \\ {\bf urprised} \\ \hline {RMSE} \\ \hline 0.13 \\ 0.12 \\ 0.12 \\ 0.06 \\ 0.15 \\ 0.07 \\ 0.11 \\ 0.04 \\ 0.07 \\ 0.12 \\ 0.01 \\ \end{array}$                                                                                          | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01             | $\begin{array}{c} N_o = 5 \\ \hline MARD \\ * \\ * \\ * \\ * \\ * \\ * \\ * \\ 79.10\% \\ 66.67\% \\ 63.46\% \\ 67.57\% \end{array}$                       | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.24<br>0.21<br>1.01<br>0.55<br>0.40<br>0.30                                                                                                                 | MAE           0.02           0.03           0.03           0.03           0.03           0.03           0.02           0.13           0.07           0.04           0.08                                                                                                          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX                     | MARD * * * * * * * * * * * * * * * * * * * | Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.23<br>0.13<br>0.13<br>0.13<br>0.12<br>0.05<br>0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \hline \mathbf{Test} \ 6 \ \mathbf{-} \\ \hline \mathbf{MAE} \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.21 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | • Emotion<br>*<br>81.48%<br>91.16%<br>*<br>*<br>60.13%<br>81.00%<br>*<br>75.42%<br>52.77%<br>20.16%                                                                                                                   | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65           0.38           0.31           0.42           2.58           0.55           0.06                | $\begin{array}{c} \textbf{ition} + \\ \hline MAE \\ \hline 0.04 \\ 0.07 \\ 0.11 \\ 0.01 \\ 0.01 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.06 \\ 0.26 \\ 0.15 \\ 0.02 \end{array}$                                                                                                                                                                         | <b>RTOR -</b><br><i>MARD</i><br>78.23%<br>69.36%<br>62.17%<br>*<br>*<br>40.01%<br>*<br>66.39%<br>*<br>56.26%           | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \mathbf{Angry} \\ RMSE \\ \hline 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \\ 0.30 \\ 0.21 \\ 0.35 \\ 0.36 \\ 0.92 \\ 0.17 \\ 0.36 \end{array}$                                                                     | = sigma $MAE$ 0.04 0.03 0.03 0.08 0.08 0.02 0.02 0.02 0.05 0.06 0.09 0.05 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \textit{iid, opt} = '\\ & \mathbf{S} \\ \hline MARD \\ 41.28\% \\ 39.53\% \\ 7.70\% \\ 56.74\% \\ * \\ 50.40\% \\ * \\ 23.69\% \\ 28.17\% \\ 37.37\% \\ 12.71\% \\ * \end{array}$ | $\begin{array}{c} {\bf sgd', } N_h \\ {\bf urprised} \\ \underline{RMSE} \\ \hline 0.13 \\ 0.12 \\ 0.12 \\ 0.06 \\ 0.15 \\ 0.07 \\ 0.11 \\ 0.07 \\ 0.11 \\ 0.04 \\ 0.07 \\ 0.12 \\ 0.01 \\ 0.04 \\ \end{array}$                                                               | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01             | $\begin{array}{c} N_o = 5\\ \hline MARD\\ *\\ *\\ *\\ *\\ *\\ *\\ *\\ *\\ 79.10\%\\ 66.67\%\\ 63.46\%\\ 67.57\%\\ 60.20\%\\ \end{array}$                   | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.24<br>0.21<br>1.01<br>0.55<br>0.40<br>0.30<br>0.14                                                                                                         | MAE           0.02           0.03           0.03           0.03           0.03           0.03           0.03           0.02           0.13           0.07           0.04           0.08           0.04                                                                            | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3 | MARD * * * * * * * * * * * * * * * * * * * | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.23<br>0.13<br>0.13<br>0.13<br>0.12<br>0.05<br>0.76<br>0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \hline \mathbf{Test} \ 6 \ \mathbf{-} \\ \hline \mathbf{MAE} \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.21 \\ 0.03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>Emotion</li> <li>MARD</li> <li>*</li> <li>81.48%</li> <li>91.16%</li> <li>*</li> <li>*</li> <li>60.13%</li> <li>81.00%</li> <li>*</li> <li>75.42%</li> <li>52.77%</li> <li>20.16%</li> <li>29.04%</li> </ul> | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65           0.38           0.31           0.42           2.58           0.55           0.06           0.39 | $\begin{array}{c} \textbf{ition +} \\ \hline \textbf{MAE} \\ \hline \textbf{0.04} \\ \textbf{0.07} \\ \textbf{0.01} \\ \textbf{0.01} \\ \textbf{0.01} \\ \textbf{0.09} \\ \textbf{0.06} \\ \textbf{0.04} \\ \textbf{0.06} \\ \textbf{0.04} \\ \textbf{0.06} \\ \textbf{0.26} \\ \textbf{0.15} \\ \textbf{0.02} \\ \textbf{0.03} \end{array}$ | <b>RTOR -</b><br><i>MARD</i><br>78.23%<br>69.36%<br>62.17%<br>*<br>*<br>40.01%<br>*<br>*<br>66.39%<br>56.26%<br>60.25% | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \textbf{Angry} \\ \textbf{RMSE} \\ \hline 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \\ 0.30 \\ 0.21 \\ 0.35 \\ 0.36 \\ 0.92 \\ 0.17 \\ 0.36 \\ 1.10 \end{array}$                                                    | = sigma $MAE$ 0.04 0.03 0.03 0.03 0.08 0.02 0.02 0.02 0.05 0.06 0.09 0.05 0.11 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nid, opt='<br>S<br>MARD<br>41.28%<br>39.53%<br>7.70%<br>56.74%<br>*<br>50.40%<br>*<br>23.69%<br>28.17%<br>37.37%<br>12.71%<br>*<br>*                                                                | $\begin{array}{c} {\bf sgd', } N_h \\ {\bf urprised} \\ RMSE \\ \hline 0.13 \\ 0.12 \\ 0.12 \\ 0.06 \\ 0.15 \\ 0.07 \\ 0.11 \\ 0.04 \\ 0.07 \\ 0.12 \\ 0.01 \\ 0.04 \\ 0.02 \\ 0.01 \\ 0.04 \\ 0.12 \\ \end{array}$                                                           | $= 90 \times 2$ $\underline{MAE}$ 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01 | $\begin{array}{c} N_o = 5\\ \hline MARD\\ *\\ *\\ *\\ *\\ *\\ *\\ *\\ 79.10\%\\ 66.67\%\\ 63.46\%\\ 67.57\%\\ 60.20\%\\ 29.13\% \end{array}$               | Scared<br><u>RMSE</u><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.24<br>0.21<br>1.01<br>0.55<br>0.40<br>0.30<br>0.14<br>0.18                                                                                                 | <i>MAE</i><br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.13<br>0.07<br>0.04<br>0.08<br>0.04<br>0.04<br>0.01                                                                                                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>24.41 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:CR3<br>DS:CR3<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.23<br>0.13<br>0.13<br>0.13<br>0.12<br>0.05<br>0.76<br>0.36<br><b>\bar{S}</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Test 6 -<br>MAE 0.02 0.02 0.02 0.07 0.03 0.03 0.02 0.03 0.02 0.02 0.01 0.02 0.01 0.02 0.21 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Emotion<br><i>MARD</i><br>*<br>81.48%<br>91.16%<br>*<br>*<br>60.13%<br>81.00%<br>*<br>75.42%<br>52.77%<br>20.16%<br>29.04%                                                                                            | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65           0.38           0.31           0.42           0.55           0.06           0.39                | MAE           0.04           0.07           0.11           0.11           0.11           0.09           0.06           0.04           0.05           0.04           0.05           0.06           0.04           0.05           0.06           0.07           0.08           0.03                                                            | RTOR -<br><i>MARD</i><br>78.23%<br>69.36%<br>62.17%<br>*<br>*<br>40.01%<br>*<br>*<br>66.39%<br>*<br>56.26%<br>60.25%   | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \hline \varphi_{j}(v_{j}(n)) \\ \hline Angry \\ RMSE \\ 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \\ 0.30 \\ 0.21 \\ 0.35 \\ 0.36 \\ 0.92 \\ 0.17 \\ 0.36 \\ 1.10 \\ \hline \end{array}$                            | = sigma $MAE$ 0.04 0.03 0.03 0.03 0.08 0.02 0.02 0.02 0.02 0.05 0.06 0.09 0.05 0.11 0.11 <b>E</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nid, opt='<br>S<br>MARD<br>41.28%<br>39.53%<br>7.70%<br>56.74%<br>*<br>50.40%<br>*<br>23.69%<br>28.17%<br>37.37%<br>12.71%<br>*<br>*                                                                | sgd', N <sub>h</sub><br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.12<br>0.01<br>0.04<br>0.12                                                                                                      | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01             | $\begin{array}{c} N_o = 5 \\ \hline MARD \\ * \\ * \\ * \\ * \\ * \\ * \\ * \\ 79.10\% \\ 66.67\% \\ 63.46\% \\ 67.57\% \\ 60.20\% \\ 29.13\% \end{array}$ | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.24<br>0.21<br>1.01<br>0.55<br>0.40<br>0.30<br>0.14<br>0.18<br><b>\bar{S}</b>                                                                               | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.13<br>0.07<br>0.04<br>0.08<br>0.04<br>0.01<br><b>°C</b>                                                                                                                                                          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>24.41 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CL3 | MARD * * * * * * * * * * * * * * * * * * * | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.23<br>0.13<br>0.13<br>0.13<br>0.12<br>0.05<br>0.76<br>0.36<br><b>C</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.03           0.02           0.01           0.02           0.03           0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Emotion MARD * 81.48% 91.16% * * 60.13% 81.00% * 75.42% 52.77% 20.16% 29.04%                                                                                                                                          | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65           0.38           0.31           0.42           2.58           0.55           0.06           0.39 | MAE           0.04           0.07           0.11           0.11           0.11           0.09           0.06           0.04           0.05           0.06           0.04           0.05           0.06           0.04           0.06           0.06           0.07           0.08           0.09           0.03           90.00              | RTOR -<br><i>MARD</i><br>78.23%<br>69.36%<br>62.17%<br>*<br>*<br>40.01%<br>*<br>*<br>66.39%<br>*<br>56.26%<br>60.25%   | $\varphi_j(v_j(n))$ Angry <i>RMSE</i> 0.50 0.29 0.28 0.68 0.69 0.30 0.21 0.35 0.36 0.92 0.17 0.36 1.10 <b>Eq.</b>                                                                                                                                         | = sigma<br>MAE<br>0.04<br>0.03<br>0.03<br>0.03<br>0.08<br>0.08<br>0.02<br>0.02<br>0.02<br>0.05<br>0.06<br>0.09<br>0.05<br>0.11<br>0.11<br><b>ECO</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nid, opt='<br>S<br>MARD<br>41.28%<br>39.53%<br>7.70%<br>56.74%<br>*<br>50.40%<br>*<br>23.69%<br>28.17%<br>37.37%<br>12.71%<br>*                                                                     | sgd', N <sub>h</sub><br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.12<br>0.01<br>0.04<br>0.12                                                                                                      | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01             | $\begin{array}{c} N_o = 5\\ \hline MARD\\ *\\ *\\ *\\ *\\ *\\ *\\ *\\ 79.10\%\\ 66.67\%\\ 63.46\%\\ 67.57\%\\ 60.20\%\\ 29.13\% \end{array}$               | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.24<br>0.21<br>1.01<br>0.55<br>0.40<br>0.30<br>0.14<br>0.18<br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b> | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.13<br>0.07<br>0.04<br>0.08<br>0.04<br>0.01<br><b>E0</b><br><b>0</b><br><b>0</b>                                                                                                                                  | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>24.41 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR3<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.23<br>0.13<br>0.13<br>0.13<br>0.12<br>0.05<br>0.76<br>0.36<br>₹<br>0<br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Test 6         MAE         0.02         0.02         0.02         0.03         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.01         0.02         0.01         0.02         0.03         0.03         0.03         ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Emotion MARD * 81.48% 91.16% * * 60.13% 81.00% * 75.42% 52.77% 20.16% 29.04%                                                                                                                                          | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65           0.38           0.31           0.42           2.58           0.55           0.06           0.39 | ition +         MAE         0.04         0.07         0.11         0.11         0.09         0.06         0.04         0.05         0.04         0.05         0.06         0.07         0.08         0.026         0.03         90.00         ++                                                                                             | RTOR -<br><i>MARD</i><br>78.23%<br>69.36%<br>62.17%<br>*<br>*<br>40.01%<br>*<br>*<br>66.39%<br>*<br>56.26%<br>60.25%   | $\varphi_j(v_j(n))$ Angry <i>RMSE</i> 0.50 0.29 0.28 0.68 0.69 0.30 0.21 0.35 0.36 0.92 0.17 0.36 1.10 <b><math>\xi_{7.00}</math></b> $\psi_j(v_j(n))$                                                                                                    | = sigma<br>MAE<br>0.04<br>0.03<br>0.03<br>0.03<br>0.08<br>0.02<br>0.02<br>0.02<br>0.05<br>0.06<br>0.09<br>0.05<br>0.11<br>0.11<br>80.00<br>++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nid, opt='<br>S<br>MARD<br>41.28%<br>39.53%<br>7.70%<br>56.74%<br>*<br>50.40%<br>*<br>23.69%<br>28.17%<br>37.37%<br>12.71%<br>*                                                                     | sgd', N <sub>h</sub><br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.12<br>0.01<br>0.04<br>0.12                                                                                                      | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01             | $\begin{array}{c} N_o = 5\\ \hline MARD\\ *\\ *\\ *\\ *\\ *\\ *\\ *\\ 79.10\%\\ 66.67\%\\ 63.46\%\\ 67.57\%\\ 60.20\%\\ 29.13\%\\ \end{array}$             | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.24<br>0.21<br>1.01<br>0.55<br>0.40<br>0.30<br>0.14<br>0.18<br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b> | <i>MAE</i><br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.13<br>0.07<br>0.04<br>0.08<br>0.04<br>0.01<br><b>€0.0</b><br>0.01                                                                                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>24.41 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR3<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | Нарру<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.23<br>0.13<br>0.13<br>0.13<br>0.12<br>0.05<br>0.76<br>0.36<br><b>СС</b><br>0.4<br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b><br><b>СС</b> | MAE           0.02           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.01           0.02           0.03           0.04           0.05           0.06           ++           *C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Emotion MARD * 81.48% 91.16% * * 60.13% 81.00% * 75.42% 52.77% 20.16% 29.04%                                                                                                                                          | Recogn           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65           0.38           0.31           0.42           2.58           0.55           0.06           0.39 | ition +         MAE         0.04         0.07         0.11         0.11         0.09         0.06         0.04         0.05         0.04         0.05         0.06         0.04         0.05         0.06         0.15         0.02         0.03         90.00         ++         80                                                         | RTOR -<br><i>MARD</i><br>78.23%<br>69.36%<br>62.17%<br>*<br>*<br>40.01%<br>*<br>*<br>66.39%<br>*<br>56.26%<br>60.25%   | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \hline \varphi_{j}(v_{j}(n)) \\ \hline Angry \\ RMSE \\ 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \\ 0.30 \\ 0.21 \\ 0.35 \\ 0.36 \\ 0.92 \\ 0.17 \\ 0.36 \\ 1.10 \\ \hline \hline c \\ 0 \\ + \\ g \\ \end{array}$ | = sigma<br>MAE<br>0.04<br>0.03<br>0.03<br>0.03<br>0.08<br>0.02<br>0.02<br>0.02<br>0.05<br>0.06<br>0.09<br>0.05<br>0.11<br>0.11<br><b>E0.00</b><br>H<br><b>90</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vid, opt='<br>S<br>MARD<br>41.28%<br>39.53%<br>7.70%<br>56.74%<br>*<br>50.40%<br>*<br>23.69%<br>28.17%<br>37.37%<br>12.71%<br>*                                                                     | sgd', N <sub>h</sub> urprised           RMSE           0.13           0.12           0.13           0.12           0.06           0.15           0.07           0.11           0.04           0.01           0.04           0.12           0.01           0.04           0.12 | $= 90 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01             | $\begin{array}{c} N_o = 5\\ \hline MARD\\ *\\ *\\ *\\ *\\ *\\ *\\ 79.10\%\\ 66.67\%\\ 63.46\%\\ 67.57\%\\ 60.20\%\\ 29.13\%\\ \end{array}$                 | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.24<br>0.21<br>1.01<br>0.55<br>0.40<br>0.30<br>0.14<br>0.18<br>€<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                           | <i>MAE</i><br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.02                                                                                                                                                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>24.41 (13/86) |

TABLE 9.5. Emotion recognition results tests 5 and 6. ANN with  $6 \times 10^3$  train epochs and input data with feature extraction.

|         |         | Test 7          | - Emoti         | on Recog     | gnition +                    | RTOR            | [GSR+F       | $\mathbf{EG}$ ] - $\varphi_j$ | $(v_j(n)) =$          | $= ReLU, \mathbf{c}$ | opt='ada          | m', $N_h$ =                  | $= 79 \times 2, 1$  | $N_o = 5$                |                   |                                                  |
|---------|---------|-----------------|-----------------|--------------|------------------------------|-----------------|--------------|-------------------------------|-----------------------|----------------------|-------------------|------------------------------|---------------------|--------------------------|-------------------|--------------------------------------------------|
| Flight  |         | Happy           |                 |              | Sad                          |                 |              | Angry                         |                       | S                    | urprised          |                              |                     | Scared                   |                   | Match                                            |
| Dataset | MARD    | RMSE            | MAE             | MARD         | RMSE                         | MAE             | MARD         | RMSE                          | MAE                   | MARD                 | RMSE              | MAE                          | MARD                | RMSE                     | MAE               | Accuracy (%)                                     |
| DS:RC1  | *       | 0.18            | 0.02            | *            | 0.76                         | 0.08            | *            | 0.56                          | 0.05                  | 34.16%               | 0.10              | 0.01                         | *                   | 0.60                     | 0.06              | <b>37.31</b> ( <b>25</b> /67)                    |
| DS:RC2  | *       | 0.29            | 0.03            | 77.74%       | 0.91                         | 0.08            | *            | 0.73                          | 0.07                  | 35.38%               | 0.11              | 0.01                         | *                   | 0.21                     | 0.02              | <b>33.33</b> ( <b>26</b> /78)                    |
| DS:RC3  | *       | 0.82            | 0.08            | *            | 1.71                         | 0.15            | 87.95%       | 0.48                          | 0.05                  | 16.05%               | 0.12              | 0.01                         | *                   | 0.29                     | 0.02              | <b>36.98</b> ( <b>27</b> /73)                    |
| DS:GC1  | *       | 0.85            | 0.08            | *            | 3.25                         | 0.33            | *            | 0.81                          | 0.09                  | *                    | 0.11              | 0.01                         | *                   | 0.13                     | 0.00              | <b>20.00</b> (15/75)                             |
| DS:GC3  | *       | 0.13            | 0.01            | *            | 0.58                         | 0.05            | *            | 0.32                          | 0.03                  | *                    | 0.15              | 0.02                         | *                   | 0.23                     | 0.02              | <b>87.17</b> ( <b>68</b> /78)                    |
| DS:LS1  | *       | 0.14            | 0.01            | *            | 1.29                         | 0.11            | *            | 0.41                          | 0.03                  | 63.89%               | 0.09              | 0.01                         | *                   | 0.25                     | 0.02              | <b>29.41</b> ( <b>30</b> /102)                   |
| DS:LS2  | *       | 0.33            | 0.03            | 63.41%       | 0.46                         | 0.04            | 88.44%       | 0.53                          | 0.05                  | *                    | 0.13              | 0.01                         | *                   | 0.20                     | 0.02              | 44.00 (33/75)                                    |
| DS:VC1  | *       | 0.11            | 0.01            | 72.93%       | 0.38                         | 0.05            | *            | 0.22                          | 0.02                  | 42.45%               | 0.06              | 0.01                         | 91.94%              | 1.04                     | 0.13              | <b>18.75</b> (9/48)                              |
| DS:VC2  | *       | 0.20            | 0.03            | *            | 0.66                         | 0.08            | *            | 0.75                          | 0.12                  | 44.57%               | 0.09              | 0.01                         | 66.76%              | 0.49                     | 0.06              | $10.52 \ (4/38)$                                 |
| DS:CR1  | *       | 0.16            | 0.01            | 71.86%       | 2.54                         | 0.26            | 67.40%       | 0.88                          | 0.08                  | 45.50%               | 0.14              | 0.01                         | 97.09%              | 0.58                     | 0.07              | <b>64.38</b> ( <b>47</b> /73)                    |
| DS:CR3  | *       | 0.06            | 0.02            | 53.37%       | 0.60                         | 0.16            | *            | 0.26                          | 0.08                  | 24.87%               | 0.02              | 0.00                         | 59.82%              | 0.28                     | 0.07              | 44.44(4/9)                                       |
| DS:CLX  | 90.21%  | 0.78            | 0.22            | 90.16%       | 0.35                         | 0.08            | 61.72%       | 0.41                          | 0.11                  | *                    | 0.04              | 0.01                         | 69.64%              | 0.18                     | 0.05              | <b>0.00</b> ( <b>0</b> /10)                      |
| DS:CL3  | 72.18%  | 0.38            | 0.03            | *            | 1.35                         | 0.12            | 40.10%       | 0.81                          | 0.07                  | *                    | 0.19              | 0.02                         | 98.84%              | 0.31                     | 0.03              | <b>19.76</b> ( <b>17</b> /86)                    |
|         |         |                 |                 |              |                              |                 |              |                               |                       |                      |                   |                              |                     |                          |                   | 17                                               |
|         |         | 27              | 35              |              | 5                            | 38              |              | 21                            | 02                    |                      | 04                | 00                           |                     | 24                       | 33                | 5.0                                              |
|         |         | 0.5             | 0.0             |              | 0.8                          | 0.0             |              | 00                            | 0.0                   |                      | 0.0               | 0.0                          |                     | 0.5                      | 0.0               | <b>7</b><br>++                                   |
|         |         | 4               | 4               |              | 4                            | 5               |              | 14<br>24                      | 7+                    |                      | +0                | ++                           |                     | +                        | 4                 | 31                                               |
|         |         | <i>.</i>        | 0.0             |              | ÷.                           |                 |              | 5                             | .0,                   |                      | Ē                 | 0.0                          |                     | <u>.</u>                 | 0.0               | 4                                                |
|         |         | Toot 9          | Emoti           | on Dogo      | mition                       | DTOD            |              |                               | $(\alpha, (\alpha)))$ | - ai am ai d         | ont-'ar           | - U                          | $-70 \times 2^{-1}$ | V _ 5                    | 0                 | <u></u>                                          |
| Flight  |         | Happy           | - Emot          | ion necos    | $\frac{1111011}{\text{Sud}}$ | nion            | [GSIT_1      | $\Delta n \sigma r v$         | $f(v_j(n))$ -         | _ siymoid<br>C       | , opt – sg        | $\mathbf{u}, \mathbf{n}_h$ - | - 19 × 2, 1         | $\frac{v_o = 0}{Scared}$ |                   | Match                                            |
| Datasot | MARD    | RMSE            | MAE             | MARD         | BMSE                         | MAE             | MARD         | RMSE                          | MAE                   | MARD                 | RMSE              | MAE                          | MARD                | RMSE                     | MAE               | Accuracy (%)                                     |
| DS-BC1  | *       | 0.18            | 0.02            | *            | 0.42                         | 0.04            | 80.56%       | 0.50                          | 0.04                  | 55 30%               | 0.11              | 0.01                         | *                   | 0.31                     | 0.04              | <b>53 73 (36</b> /67)                            |
| DS.RC2  | *       | 0.10            | 0.02            | 81 530%      | 0.42                         | 0.04            | 70.0070      | 0.00                          | 0.04                  | 70 48%               | 0.11              | 0.01                         | *                   | 0.31                     | 0.04              | 82.05(64/78)                                     |
| DS.RC2  | *       | 0.25            | 0.02            | 01.3370      | 1.37                         | 0.07            | 64 09%       | 0.29                          | 0.03                  | 10.4070              | 0.13              | 0.01                         | *                   | 0.39                     | 0.04              | 52.03 (04/78)<br>57 53 (42/73)                   |
| DS.RCJ  | *       | 0.07            | 0.00            | 91.3170<br>* | 0.06                         | 0.11            | 04.9270<br>* | 0.29                          | 0.03                  | 40.0170              | 0.12<br>0.21      | 0.01<br>0.02                 | *                   | 0.30                     | 0.04<br>0.04      | <b>27.55</b> $(42/75)$<br><b>27.66</b> $(17/75)$ |
| DS:GC1  | *       | 0.37            | 0.04            | *            | 0.30                         | 0.11            | *            | 0.03                          | 0.08                  | *                    | 0.21              | 0.02                         | *                   | 0.38                     | 0.04              | $100\ 00\ (78/78)$                               |
| DS.GC5  | *       | 0.30            | 0.04            | *            | 0.82                         | 0.03            | *            | 0.71                          | 0.00                  | *                    | 0.33<br>0.24      | 0.04                         | *                   | 0.40                     | 0.05              | <b>22</b> 54 $(23/102)$                          |
| DS.LS1  | *       | 0.31            | 0.00            | 50 58%       | 0.04                         | 0.00            | 10.88%       | 0.00                          | 0.02                  | *                    | 0.24<br>0.27      | 0.02                         | *                   | 0.30                     | 0.04              | <b>68 00</b> (51/75)                             |
| DS:LS2  | *       | 0.55            | 0.04            | 81 10%       | 0.30                         | 0.04            | *            | 0.22                          | 0.02<br>0.05          | *                    | 0.27              | 0.03                         | 67 70%              | 0.34                     | 0.04              | <b>16 66 (8</b> /48)                             |
| DS-VC2  | *       | 0.25            | 0.03            | *            | 0.31<br>0.42                 | 0.04            | *            | 0.30<br>0.37                  | 0.05                  | 88 83%               | 0.15              | 0.02<br>0.02                 | 63 30%              | 0.03<br>0.47             | 0.11              | 28.04(11/38)                                     |
| DS.CB1  | *       | 0.25            | 0.04            | 75.97%       | 0.42<br>2.58                 | 0.00            | 65 03%       | 0.07                          | 0.00                  | 50.0070              | 0.11              | 0.02                         | 35 /3%              | 0.47                     | 0.00              | 20.34(11/38)<br>03 15 (68/73)                    |
| DS.CR3  | *       | 0.20            | 0.02            | 59 57%       | 2.56                         | 0.20            | *            | 0.30<br>0.17                  | 0.05                  | 06 66%               | 0.11              | 0.01                         | 50.4070             | 0.21                     | 0.03              | 77 77 (7/0)                                      |
| DS.CLX  | 74 00%  | 0.10            | 0.00            | 10.06%       | 0.00                         | 0.15            | 54 65%       | 0.17                          | 0.05                  | *                    | 0.00              | 0.02<br>0.02                 | 37 13%              | 0.20                     | 0.07              | 0.00(0/10)                                       |
| DS:CL3  | 08 45%  | 0.71            | 0.20            | 19.9070      | 0.00                         | 0.02            | 57.60%       | 1.07                          | 0.10                  | *                    | 0.00              | 0.02                         | 18 79%              | 0.10                     | 0.05              | 15 11 (13/86)                                    |
| DD.C13  | 30.4070 | 0.20            | 0.02            | 20.0270      | 0.09                         | 0.00            | 91.0970      | 1.01                          | 0.10                  |                      | 0.00              | 0.05                         | -10.12/0            | 0.10                     | 0.01              | 10.11 (10/00)                                    |
|         |         | $0.33 \pm 0.17$ | $0.05 \pm 0.04$ |              | $0.75 {\pm} 0.61$            | $0.08{\pm}0.06$ |              | $0.48{\pm}0.26$               | $0.06{\pm}0.02$       |                      | $0.17 {\pm} 0.08$ | $0.02 {\pm} 0.00$            |                     | $0.36{\pm}0.18$          | $0.05 {\pm} 0.02$ | <b>49.09</b> ±32.0(                              |

TABLE 9.6. Emotion recognition results tests 7 and 8. ANN with  $6 \times 10^3$  train epochs and input data with feature extraction.

|                                                                                                                                                               |                                            | Test 9 -                                                                                                                                                                                                                            | Emotio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on Recogn                                                                                                                                                                                                                                                                       | nition +                                                                                                                                                                                                                                 | RTOR                                                                                                                                                    | [GSR+E                                                                                                                                                                                      | $\mathbf{EG}$ ] - $\varphi_j($                                                                                                                    | $v_j(n)) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | sigmoid,                                                                                                                                                                        | opt='ada                                                                                                                                                                                                                                                    | am', $N_h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $= 79 \times 2$ ,                                                                                                                        | $N_o = 5$                                                                                                                                                                                     |                                                                                                                                                                              |                                                                                                                                                                                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{Flight}$                                                                                                                                             |                                            | Нарру                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                 | Sad                                                                                                                                                                                                                                      |                                                                                                                                                         |                                                                                                                                                                                             | Angry                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S                                                                                                                                                                               | urprised                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          | Scared                                                                                                                                                                                        |                                                                                                                                                                              | Match                                                                                                                                                                                                                                        |
| Dataset                                                                                                                                                       | MARD                                       | RMSE                                                                                                                                                                                                                                | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MARD                                                                                                                                                                                                                                                                            | RMSE                                                                                                                                                                                                                                     | MAE                                                                                                                                                     | MARD                                                                                                                                                                                        | RMSE                                                                                                                                              | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MARD                                                                                                                                                                            | RMSE                                                                                                                                                                                                                                                        | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MARD                                                                                                                                     | RMSE                                                                                                                                                                                          | MAE                                                                                                                                                                          | Accuracy (%)                                                                                                                                                                                                                                 |
| DS:RC1                                                                                                                                                        | *                                          | 0.16                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                                                                               | 1.31                                                                                                                                                                                                                                     | 0.13                                                                                                                                                    | *                                                                                                                                                                                           | 0.60                                                                                                                                              | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 31.39%                                                                                                                                                                          | 0.10                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                        | 0.26                                                                                                                                                                                          | 0.03                                                                                                                                                                         | <b>52.23</b> ( <b>35</b> /67)                                                                                                                                                                                                                |
| DS:RC2                                                                                                                                                        | *                                          | 0.20                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88.69%                                                                                                                                                                                                                                                                          | 0.87                                                                                                                                                                                                                                     | 0.08                                                                                                                                                    | *                                                                                                                                                                                           | 0.49                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.23%                                                                                                                                                                          | 0.10                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                        | 0.27                                                                                                                                                                                          | 0.03                                                                                                                                                                         | <b>62.82</b> ( <b>49</b> /78)                                                                                                                                                                                                                |
| DS:RC3                                                                                                                                                        | *                                          | 0.84                                                                                                                                                                                                                                | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 93.30%                                                                                                                                                                                                                                                                          | 1.69                                                                                                                                                                                                                                     | 0.14                                                                                                                                                    | 62.05%                                                                                                                                                                                      | 0.42                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12.18%                                                                                                                                                                          | 0.17                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                        | 0.16                                                                                                                                                                                          | 0.02                                                                                                                                                                         | <b>57.53</b> ( <b>42</b> /73)                                                                                                                                                                                                                |
| DS:GC1                                                                                                                                                        | *                                          | 0.24                                                                                                                                                                                                                                | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                                                                               | 3.01                                                                                                                                                                                                                                     | 0.32                                                                                                                                                    | *                                                                                                                                                                                           | 0.88                                                                                                                                              | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                                                                               | 0.11                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                        | 0.33                                                                                                                                                                                          | 0.04                                                                                                                                                                         | <b>22.66</b> (17/75)                                                                                                                                                                                                                         |
| DS:GC3                                                                                                                                                        | *                                          | 0.14                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                                                                               | 0.32                                                                                                                                                                                                                                     | 0.03                                                                                                                                                    | *                                                                                                                                                                                           | 0.28                                                                                                                                              | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                                                                               | 0.10                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                        | 0.21                                                                                                                                                                                          | 0.02                                                                                                                                                                         | <b>100.00</b> ( <b>78</b> /78)                                                                                                                                                                                                               |
| DS:LS1                                                                                                                                                        | *                                          | 0.23                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                                                                               | 1.47                                                                                                                                                                                                                                     | 0.13                                                                                                                                                    | *                                                                                                                                                                                           | 0.33                                                                                                                                              | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 79.83%                                                                                                                                                                          | 0.11                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                        | 0.21                                                                                                                                                                                          | 0.02                                                                                                                                                                         | <b>22.54</b> ( <b>23</b> /102)                                                                                                                                                                                                               |
| DS:LS2                                                                                                                                                        | *                                          | 0.36                                                                                                                                                                                                                                | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84.79%                                                                                                                                                                                                                                                                          | 0.58                                                                                                                                                                                                                                     | 0.05                                                                                                                                                    | 99.04%                                                                                                                                                                                      | 0.49                                                                                                                                              | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                                                                               | 0.14                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | *                                                                                                                                        | 0.21                                                                                                                                                                                          | 0.02                                                                                                                                                                         | <b>36.00</b> ( <b>27</b> /75)                                                                                                                                                                                                                |
| DS:VC1                                                                                                                                                        | *                                          | 0.12                                                                                                                                                                                                                                | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 42.80%                                                                                                                                                                                                                                                                          | 0.18                                                                                                                                                                                                                                     | 0.02                                                                                                                                                    | *                                                                                                                                                                                           | 0.24                                                                                                                                              | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 24.38%                                                                                                                                                                          | 0.05                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 84.03%                                                                                                                                   | 1.04                                                                                                                                                                                          | 0.13                                                                                                                                                                         | <b>16.66</b> (8/48)                                                                                                                                                                                                                          |
| DS:VC2                                                                                                                                                        | *                                          | 0.21                                                                                                                                                                                                                                | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                                                                               | 0.85                                                                                                                                                                                                                                     | 0.11                                                                                                                                                    | *                                                                                                                                                                                           | 0.61                                                                                                                                              | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 32.68%                                                                                                                                                                          | 0.06                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62.24%                                                                                                                                   | 0.53                                                                                                                                                                                          | 0.07                                                                                                                                                                         | 18.42 (7/38)                                                                                                                                                                                                                                 |
| DS:CR1                                                                                                                                                        | *                                          | 0.20                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74.10%                                                                                                                                                                                                                                                                          | 2.54                                                                                                                                                                                                                                     | 0.26                                                                                                                                                    | 69.06%                                                                                                                                                                                      | 0.92                                                                                                                                              | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 44.69%                                                                                                                                                                          | 0.14                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62.81%                                                                                                                                   | 0.41                                                                                                                                                                                          | 0.04                                                                                                                                                                         | <b>79.45</b> ( <b>58</b> /73)                                                                                                                                                                                                                |
| DS:CR3                                                                                                                                                        | *                                          | 0.05                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67.86%                                                                                                                                                                                                                                                                          | 0.64                                                                                                                                                                                                                                     | 0.18                                                                                                                                                    | *                                                                                                                                                                                           | 0.20                                                                                                                                              | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16.17%                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 59.43%                                                                                                                                   | 0.27                                                                                                                                                                                          | 0.07                                                                                                                                                                         | <b>77.77</b> ( <b>7</b> /9)                                                                                                                                                                                                                  |
| DS:CLX                                                                                                                                                        | 87.93%                                     | 0.78                                                                                                                                                                                                                                | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34.85%                                                                                                                                                                                                                                                                          | 0.12                                                                                                                                                                                                                                     | 0.03                                                                                                                                                    | 75.06%                                                                                                                                                                                      | 0.47                                                                                                                                              | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                                                                               | 0.05                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56.94%                                                                                                                                   | 0.15                                                                                                                                                                                          | 0.04                                                                                                                                                                         | <b>0.00</b> ( <b>0</b> /10)                                                                                                                                                                                                                  |
| DS:CL3                                                                                                                                                        | 85.57%                                     | 0.32                                                                                                                                                                                                                                | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 55.74%                                                                                                                                                                                                                                                                          | 0.73                                                                                                                                                                                                                                     | 0.06                                                                                                                                                    | 49.75%                                                                                                                                                                                      | 0.96                                                                                                                                              | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                                                                               | 0.16                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 31.13%                                                                                                                                   | 0.17                                                                                                                                                                                          | 0.01                                                                                                                                                                         | $15.11\ (13/86)$                                                                                                                                                                                                                             |
|                                                                                                                                                               |                                            |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                          |                                                                                                                                                         |                                                                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          |                                                                                                                                                                                               |                                                                                                                                                                              | 45                                                                                                                                                                                                                                           |
|                                                                                                                                                               |                                            | 23                                                                                                                                                                                                                                  | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                 | 85                                                                                                                                                                                                                                       | 08                                                                                                                                                      |                                                                                                                                                                                             | 24                                                                                                                                                | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                 | 04                                                                                                                                                                                                                                                          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          | 23                                                                                                                                                                                            | 03                                                                                                                                                                           | .63                                                                                                                                                                                                                                          |
|                                                                                                                                                               |                                            | .0.                                                                                                                                                                                                                                 | -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                 | .0                                                                                                                                                                                                                                       | -0.                                                                                                                                                     |                                                                                                                                                                                             | .0.                                                                                                                                               | -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                 | .0                                                                                                                                                                                                                                                          | -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          | .0.                                                                                                                                                                                           | -0.                                                                                                                                                                          |                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                            | +<br>0                                                                                                                                                                                                                              | <b>4</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                 | <b>0</b>                                                                                                                                                                                                                                 | 5                                                                                                                                                       |                                                                                                                                                                                             |                                                                                                                                                   | 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                 | <b>0</b>                                                                                                                                                                                                                                                    | Ŧ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                          | <b>7</b>                                                                                                                                                                                      | 4                                                                                                                                                                            | 17                                                                                                                                                                                                                                           |
|                                                                                                                                                               |                                            | 0.3                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                 | 1.1                                                                                                                                                                                                                                      | 0.1                                                                                                                                                     |                                                                                                                                                                                             | 0.5                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                 | 0.1                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                          | 0.3                                                                                                                                                                                           | 0.0                                                                                                                                                                          | 13.                                                                                                                                                                                                                                          |
|                                                                                                                                                               |                                            |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                          |                                                                                                                                                         |                                                                                                                                                                                             |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                 |                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                          |                                                                                                                                                                                               |                                                                                                                                                                              |                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                            | Test 1                                                                                                                                                                                                                              | 0 - Emo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion Rec                                                                                                                                                                                                                                                                        | ognition                                                                                                                                                                                                                                 | + RTO                                                                                                                                                   | R [GSR-                                                                                                                                                                                     | -EEG] - (                                                                                                                                         | $\varphi_i(v_i(n))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) = ReLU                                                                                                                                                                        | opt='sg                                                                                                                                                                                                                                                     | d', $N_h =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = $79 \times 2$ , <i>I</i>                                                                                                               | $V_o = 5$                                                                                                                                                                                     |                                                                                                                                                                              |                                                                                                                                                                                                                                              |
| Flight                                                                                                                                                        |                                            | Test 10<br>Happy                                                                                                                                                                                                                    | 0 - Emo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion Rec                                                                                                                                                                                                                                                                        | ognition<br>Sad                                                                                                                                                                                                                          | + RTO                                                                                                                                                   | R [GSR-                                                                                                                                                                                     | -EEG] - (<br>Angry                                                                                                                                | $\varphi_j(v_j(n))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ) = ReLU                                                                                                                                                                        | opt='sg<br>urprised                                                                                                                                                                                                                                         | <b>d'</b> , $N_h =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $= 79 \times 2, I$                                                                                                                       | $\frac{V_o = 5}{\text{Scared}}$                                                                                                                                                               |                                                                                                                                                                              | Match                                                                                                                                                                                                                                        |
| Flight<br>Dataset                                                                                                                                             | MARD                                       | Test 10<br>Happy<br>RMSE                                                                                                                                                                                                            | 0 - Emo<br>MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tion Reco                                                                                                                                                                                                                                                                       | ognition<br>Sad<br>RMSE                                                                                                                                                                                                                  | + RTO                                                                                                                                                   | R [GSR+<br>MARD                                                                                                                                                                             | -EEG] -<br>Angry<br>RMSE                                                                                                                          | $\left[ \varphi_{j}(v_{j}(n)) \right]$ $MAE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ) = ReLU,<br>S<br>MARD                                                                                                                                                          | opt='sg<br>urprised<br>RMSE                                                                                                                                                                                                                                 | d', $N_h = MAE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $= 79 \times 2, N$<br>MARD                                                                                                               | $\frac{N_o = 5}{Scared}$ $RMSE$                                                                                                                                                               | MAE                                                                                                                                                                          | Match<br>Accuracy (%)                                                                                                                                                                                                                        |
| Flight<br>Dataset<br>DS:RC1                                                                                                                                   | MARD<br>*                                  | Test 10<br>Happy<br>RMSE<br>0.16                                                                                                                                                                                                    | 0 - Emo<br>MAE<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MARD                                                                                                                                                                                                                                                                            | ognition<br>Sad<br>RMSE<br>0.42                                                                                                                                                                                                          | + <b>RTO</b><br><i>MAE</i><br>0.04                                                                                                                      | <b>R</b> [ <b>GSR</b> +<br><i>MARD</i><br>78.20%                                                                                                                                            | -EEG] -<br>Angry<br><i>RMSE</i><br>0.50                                                                                                           | $\frac{\varphi_j(v_j(n))}{MAE}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ) = ReLU, $S$ $MARD$ $41.10%$                                                                                                                                                   | opt='sg<br>urprised<br>RMSE<br>0.13                                                                                                                                                                                                                         | $\mathbf{d'}, N_h = \frac{MAE}{0.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $= 79 \times 2, N$ $MARD$ $*$                                                                                                            | $\frac{V_o = 5}{Scared}$ $\frac{RMSE}{0.19}$                                                                                                                                                  | MAE<br>0.02                                                                                                                                                                  | Match<br>Accuracy (%)<br>53.73 (36/67)                                                                                                                                                                                                       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2                                                                                                                         | MARD<br>*                                  | Test 10<br>Happy<br><i>RMSE</i><br>0.16<br>0.17                                                                                                                                                                                     | 0 - Emo<br>MAE<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MARD           *           81.69%                                                                                                                                                                                                                                               | ognition<br>Sad<br>RMSE<br>0.42<br>0.81                                                                                                                                                                                                  | + <b>RTO</b><br><i>MAE</i><br>0.04<br>0.07                                                                                                              | R [GSR+<br>MARD<br>78.20%<br>70.00%                                                                                                                                                         | -EEG] - (<br>Angry<br><i>RMSE</i><br>0.50<br>0.29                                                                                                 | $\frac{\varphi_j(v_j(n))}{MAE}$ $\frac{MAE}{0.04}$ $0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) = ReLU,<br>S<br>MARD<br>41.10%<br>38.88%                                                                                                                                      | opt='sg<br>hurprised<br>RMSE<br>0.13<br>0.12                                                                                                                                                                                                                | <b>d'</b> , $N_h = \frac{MAE}{0.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 79 × 2, 1<br>MARD<br>*                                                                                                                 | $ \frac{N_o = 5}{Scared} $ $ \frac{RMSE}{0.19} $ $ 0.26 $                                                                                                                                     | MAE<br>0.02<br>0.03                                                                                                                                                          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)                                                                                                                                                                                      |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3                                                                                                               | <i>MARD</i><br>*<br>*                      | Test 10<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78                                                                                                                                                                             | 0 - Emo<br><u>MAE</u><br>0.02<br>0.02<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion Reco<br>MARD<br>*<br>81.69%<br>91.04%                                                                                                                                                                                                                                      | ognition           Sad           RMSE           0.42           0.81           1.38                                                                                                                                                       | + RTO<br>MAE<br>0.04<br>0.07<br>0.11                                                                                                                    | <b>R</b> [ <b>GSR</b> ]<br><i>MARD</i><br>78.20%<br>70.00%<br>61.69%                                                                                                                        | -EEG] - 0<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28                                                                                         | $\frac{\varphi_j(v_j(n))}{MAE} \\ \frac{MAE}{0.04} \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 $ | ) = ReLU<br>S<br>MARD<br>41.10%<br>38.88%<br>7.16%                                                                                                                              | opt='sg<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.13                                                                                                                                                                                                  | $     d', N_h = \frac{MAE}{0.01} \\     0.01 \\     0.01 \\     0.01 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $= 79 \times 2, I$ $MARD$ $*$ $*$ $*$                                                                                                    | $N_o = 5$ Scared $RMSE$ 0.19 0.26 0.24                                                                                                                                                        | MAE<br>0.02<br>0.03<br>0.03                                                                                                                                                  | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)                                                                                                                                                                     |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1                                                                                                     | MARD<br>*<br>*<br>*                        | Test 10<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24                                                                                                                                                                     | 0 - Emo<br>MAE<br>0.02<br>0.02<br>0.07<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MARD           *           81.69%           91.04%           *                                                                                                                                                                                                                  | ognition           Sad           RMSE           0.42           0.81           1.38           0.96                                                                                                                                        | + <b>RTO</b><br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11                                                                                              | R [GSR  <br><i>MARD</i><br>78.20%<br>70.00%<br>61.69%<br>*                                                                                                                                  | <b>EEG]</b> - <i>a</i><br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68                                                             | $\frac{\varphi_j(v_j(n))}{MAE} \\ \frac{MAE}{0.04} \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 $ | $ = ReLU, \\ S \\ MARD \\ 41.10\% \\ 38.88\% \\ 7.16\% \\ 54.86\% $                                                                                                             | opt='sg<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.13<br>0.06                                                                                                                                                                                          | $     d', N_h = \frac{MAE}{0.01}     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 79 × 2, 1<br>MARD<br>*<br>*<br>*                                                                                                       | $N_o = 5$<br>Scared<br>RMSE<br>0.19<br>0.26<br>0.24<br>0.26                                                                                                                                   | MAE<br>0.02<br>0.03<br>0.03<br>0.03                                                                                                                                          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)                                                                                                                                                    |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3                                                                                           | MARD<br>*<br>*<br>*<br>*                   | Test 10<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22                                                                                                                                                             | 0 - Emo<br>MAE<br>0.02<br>0.02<br>0.07<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MARD           *           81.69%           91.04%           *                                                                                                                                                                                                                  | ognition           Sad           RMSE           0.42           0.81           1.38           0.96           0.82                                                                                                                         | + RTO<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09                                                                                             | R [GSR- <br><i>MARD</i><br>78.20%<br>70.00%<br>61.69%<br>*<br>*                                                                                                                             | -EEG] - 0<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69                                                                         | $     \frac{\varphi_j(v_j(n))}{MAE} \\     0.04 \\     0.03 \\     0.03 \\     0.08 \\     0.08 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{array}{c} = ReLU, \\ & \mathbf{S} \\ \hline MARD \\ 41.10\% \\ 38.88\% \\ 7.16\% \\ 54.86\% \\ * \end{array} $                                                         | opt='sg<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.13<br>0.06<br>0.15                                                                                                                                                                                  | $     d', N_h = \frac{MAE}{0.01} \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.02 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 79 × 2, 1<br>MARD<br>*<br>*<br>*<br>*                                                                                                  | $N_o = 5$<br>Scared<br>RMSE<br>0.19<br>0.26<br>0.24<br>0.26<br>0.26<br>0.26                                                                                                                   | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03                                                                                                                                  | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100 (78/78)                                                                                                                                     |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1                                                                                 | MARD * * * * * * * *                       | Test 10<br>Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17                                                                                                                                                            | <b>MAE</b> 0.02           0.02           0.03           0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MARD         *           *         81.69%           91.04%         *           *         *                                                                                                                                                                                      | Sad           RMSE           0.42           0.81           1.38           0.96           0.82           0.65                                                                                                                             | + RTO<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06                                                                                     | R [GSR-<br>MARD<br>78.20%<br>70.00%<br>61.69%<br>*<br>*<br>*                                                                                                                                | -EEG] - 6<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.68<br>0.69<br>0.30                                                         | $\begin{array}{c} \varphi_j(v_j(n)) \\ \hline \\ MAE \\ \hline \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = ReLU,<br><b>S</b><br><i>MARD</i><br>41.10%<br>38.88%<br>7.16%<br>54.86%<br>*<br>48.01%                                                                                        | opt='sg<br>margined<br><i>RMSE</i><br>0.13<br>0.12<br>0.13<br>0.06<br>0.15<br>0.07                                                                                                                                                                          | $     \mathbf{d', } N_h = \frac{MAE}{0.01} \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.02 \\     0.01 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 79 × 2, 1<br><u>MARD</u><br>*<br>*<br>*<br>*<br>*<br>*                                                                                 | $N_o = 5$<br>Scared<br>RMSE<br>0.19<br>0.26<br>0.24<br>0.26<br>0.26<br>0.26<br>0.23                                                                                                           | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02                                                                                                                  | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100 (78/78)<br>22.54 (23/102)                                                                                                                   |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2                                                                       | MARD * * * * * * * * *                     | Test 10<br>Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22                                                                                                                                                    | MAE           0.02           0.02           0.02           0.03           0.03           0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MARD         *           81.69%         91.04%           *         *           59.91%         *                                                                                                                                                                                 | Sad           RMSE           0.42           0.81           1.38           0.96           0.82           0.65           0.38                                                                                                              | $+ \mathbf{RTO}$ $\underline{MAE}$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04                                                                                   | R [GSR]<br><i>MARD</i><br>78.20%<br>70.00%<br>61.69%<br>*<br>*<br>40.08%                                                                                                                    | -EEG] - 0<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22                                                         | $\frac{\varphi_j(v_j(n))}{MAE} \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{l} = ReLU,\\ & \mathbf{S}\\ MARD\\ 41.10\%\\ 38.88\%\\ 7.16\%\\ 54.86\%\\ & *\\ 48.01\%\\ & * \end{array}$                                                       | opt='sg<br>margined<br><i>RMSE</i><br>0.13<br>0.12<br>0.13<br>0.06<br>0.15<br>0.07<br>0.11                                                                                                                                                                  | $     \mathbf{d', } N_h = \frac{MAE}{0.01} \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.02 \\     0.01 \\     0.01 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = 79 × 2, 1<br><u>MARD</u><br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                            |                                                                                                                                                                                               | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \end{array}$                                                                            | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)                                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1                                                             | MARD * * * * * * * * * *                   | Test 10<br>Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13                                                                                                                                            | MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MARD           *           81.69%           91.04%           *           59.91%           81.57%                                                                                                                                                                                | Sad           RMSE           0.42           0.81           1.38           0.96           0.82           0.65           0.38                                                                                                              | $+ \mathbf{RTO}$ $\underline{MAE}$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04 0.04                                                                              | R [GSR]<br><i>MARD</i><br>78.20%<br>70.00%<br>61.69%<br>*<br>*<br>40.08%<br>*                                                                                                               | -EEG] - 0<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.35                                                 | $\begin{array}{c} \varphi_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{l} = ReLU,\\ & \mathbf{S}\\ MARD\\ 41.10\%\\ 38.88\%\\ 7.16\%\\ 54.86\%\\ *\\ 48.01\%\\ *\\ 23.35\% \end{array}$                                                 | opt='sg<br>margined<br><i>RMSE</i><br>0.13<br>0.12<br>0.13<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04                                                                                                                                                          | $     \mathbf{d', } N_h = \frac{MAE}{0.01} \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.02 \\     0.01 \\     0.01 \\     0.00   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 79 × 2, 1<br><u>MARD</u><br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                              |                                                                                                                                                                                               | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \end{array}$                                                                    | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2                                                   | MARD * * * * * * * * * * * *               | Test 10<br>Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13<br>0.14                                                                                                                                    | MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tion Reco<br>MARD * 81.69% 91.04% * * 59.91% 81.57% *                                                                                                                                                                                                                           | Sad           RMSE           0.42           0.81           1.38           0.96           0.82           0.65           0.38           0.32           0.42                                                                                | $+ \mathbf{RTO}$ $\underline{MAE}$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.04 0.06                                                                    | R [GSR]<br>MARD<br>78.20%<br>70.00%<br>61.69%<br>*<br>*<br>40.08%<br>*<br>*                                                                                                                 | -EEG] - (<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.35<br>0.36                                         | $\begin{array}{c} \varphi_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{l} = ReLU,\\ & \mathbf{S}\\ MARD\\ 41.10\%\\ 38.88\%\\ 7.16\%\\ 54.86\%\\ *\\ 48.01\%\\ *\\ 23.35\%\\ 28.57\% \end{array}$                                       | opt='sg<br>marked<br>RMSE<br>0.13<br>0.12<br>0.13<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07                                                                                                                                                           | $     d', N_h = \frac{MAE}{0.01} \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.02 \\     0.01 \\     0.01 \\     0.00 \\     0.01 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 79 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                     | $ \frac{V_o = 5}{\text{Scared}} \\ \frac{RMSE}{0.19} \\ 0.26 \\ 0.24 \\ 0.26 \\ 0.26 \\ 0.23 \\ 0.21 \\ 1.01 \\ 0.55 $                                                                        | $\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \end{array}$                                                                   | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)                                                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1                               | MARD * * * * * * * * * * * * * *           | Test 10<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12                                                                                                                     | MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} \textbf{MARD} \\ \hline \\ \textbf{MARD} \\ \hline \\ \textbf{*} \\ \textbf{81.69\%} \\ \textbf{91.04\%} \\ \textbf{*} \\ \textbf{*} \\ \textbf{*} \\ \textbf{59.91\%} \\ \textbf{81.57\%} \\ \textbf{*} \\ \textbf{75.32\%} \end{array}$                     | Sad           RMSE           0.42           0.81           1.38           0.96           0.82           0.65           0.38           0.32           0.42           2.58                                                                 | $+ \mathbf{RTO}$ $\underline{MAE}$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.04 0.06 0.26                                                               | R [GSR-<br>MARD<br>78.20%<br>70.00%<br>61.69%<br>*<br>*<br>40.08%<br>*<br>*<br>66.51%                                                                                                       | -EEG] - (<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.35<br>0.36<br>0.36<br>0.92                         | $\begin{array}{c} \varphi_j(v_j(n)) \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $ \begin{split} ) &= ReLU, \\ \mathbf{S} \\ \hline \mathbf{MARD} \\ 41.10\% \\ 38.88\% \\ 7.16\% \\ 54.86\% \\ * \\ 48.01\% \\ * \\ 23.35\% \\ 28.57\% \\ 36.94\% \end{split} $ | opt='sg<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.13<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12                                                                                                                                                 | $     d', N_h = \frac{MAE}{0.01} \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.02 \\     0.01 \\     0.01 \\     0.00 \\     0.01 \\     0.01 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 79 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                     | $     \begin{array}{l} V_o = 5 \\ \hline \textbf{Scared} \\ \hline \textbf{RMSE} \\ \hline 0.19 \\ 0.26 \\ 0.24 \\ 0.26 \\ 0.26 \\ 0.23 \\ 0.21 \\ 1.01 \\ 0.55 \\ 0.40 \end{array} $         | $\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \end{array}$                                                           | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)                                                |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1<br>DS:CR3                     | MARD * * * * * * * * * * * * * * * * * *   | Test 10<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05                                                                                                             | MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \textbf{MARD} \\ \hline \\ \textbf{MARD} \\ \hline \\ \textbf{*} \\ \textbf{*1.69\%} \\ \textbf{91.04\%} \\ \textbf{*} \\ \textbf{*} \\ \textbf{*} \\ \textbf{59.91\%} \\ \textbf{81.57\%} \\ \textbf{*} \\ \textbf{75.32\%} \\ \textbf{52.55\%} \end{array}$ | Sad           RMSE           0.42           0.81           1.38           0.96           0.82           0.65           0.38           0.32           0.42           2.58           0.55                                                  | $+ \mathbf{RTO}$ $\underline{MAE}$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.06 0.26 0.15                                                               | R [GSR]<br><i>MARD</i><br>78.20%<br>70.00%<br>61.69%<br>*<br>*<br>40.08%<br>*<br>66.51%<br>*                                                                                                | -EEG] - (<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.35<br>0.36<br>0.36<br>0.92<br>0.36<br>0.92<br>0.17 | $ \begin{array}{c} \varphi_j(v_j(n)) \\ \hline \\ \hline \\ MAE \\ \hline \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{l} = ReLU,\\ \mathbf{S}\\ MARD\\ 41.10\%\\ 38.88\%\\ 7.16\%\\ 54.86\%\\ *\\ 48.01\%\\ *\\ 23.35\%\\ 28.57\%\\ 36.94\%\\ 10.35\%\\ \end{array}$                   | opt='sg<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.13<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01                                                                                                                                         | $\mathbf{d', N_h} = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.01$ $0.00$ $0.01$ $0.01$ $0.01$ $0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = 79 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                     | $     \begin{array}{l} V_o = 5 \\ \hline \textbf{Scared} \\ \hline \textbf{RMSE} \\ \hline 0.19 \\ 0.26 \\ 0.24 \\ 0.26 \\ 0.26 \\ 0.23 \\ 0.21 \\ 1.01 \\ 0.55 \\ 0.40 \\ 0.36 \end{array} $ | $\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.11 \end{array}$                                                   | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX                     | MARD * * * * * * * * * * * * * * * * * * * | $\begin{array}{c} {\rm Test} \ 10 \\ {\rm Happy} \\ RMSE \\ \hline 0.16 \\ 0.17 \\ 0.78 \\ 0.24 \\ 0.22 \\ 0.17 \\ 0.22 \\ 0.13 \\ 0.14 \\ 0.12 \\ 0.05 \\ 0.76 \\ \end{array}$                                                     | MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.02           0.02           0.01           0.02           0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \textbf{MARD} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $                                                                                                                                                                                               | Sad           RMSE           0.42           0.81           1.38           0.96           0.82           0.65           0.38           0.32           0.42           2.58           0.55           0.06                                   | $+ \mathbf{RTO}$ $\underline{MAE}$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.06 0.26 0.15 0.02                                                          | R [GSR-<br>MARD<br>78.20%<br>70.00%<br>61.69%<br>*<br>*<br>40.08%<br>*<br>*<br>40.08%<br>*<br>*<br>66.51%<br>*<br>56.19%                                                                    | -EEG] - (<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.35<br>0.36<br>0.92<br>0.17<br>0.36                 | $ \begin{array}{c} \varphi_j(v_j(n)) \\ \hline \\ \hline \\ MAE \\ \hline \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{l} = ReLU,\\ \mathbf{S}\\ MARD\\ 41.10\%\\ 38.88\%\\ 7.16\%\\ 54.86\%\\ *\\ 48.01\%\\ *\\ 23.35\%\\ 28.57\%\\ 36.94\%\\ 10.35\%\\ * \end{array}$                 | opt='sg<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.13<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04                                                                                                                                 | $     d', N_h = \frac{MAE}{0.01} \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.02 \\     0.01 \\     0.01 \\     0.00 \\     0.01 \\     0.00 \\     0.01 \\     0.00 \\     0.01 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 79 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                     | $\overline{\begin{matrix} N_o = 5 \\ Scared \\ RMSE \end{matrix}} \\ \hline 0.19 \\ 0.26 \\ 0.24 \\ 0.26 \\ 0.26 \\ 0.23 \\ 0.21 \\ 1.01 \\ 0.55 \\ 0.40 \\ 0.36 \\ 0.14 \end{matrix}}$       | $\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.11 \\ 0.04 \end{array}$                                           | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | Test 10<br>Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36                                                                                                    | $\begin{array}{c} \textbf{MAE} \\ \hline \textbf{MAE} \\ \hline \textbf{0.02} \\ \hline \textbf{0.02} \\ \hline \textbf{0.02} \\ \hline \textbf{0.03} \\ \hline \textbf{0.03} \\ \hline \textbf{0.02} \\ \hline \textbf{0.03} \\ \hline \textbf{0.02} \\ \hline \textbf{0.02} \\ \hline \textbf{0.01} \\ \hline \textbf{0.02} \\ \hline \textbf{0.21} \\ \hline \textbf{0.03} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \textbf{MARD} \\ & \ast \\ 81.69\% \\ 91.04\% \\ & \ast \\ & \ast \\ 59.91\% \\ 81.57\% \\ & \ast \\ 75.32\% \\ 52.55\% \\ 20.48\% \\ 28.75\% \end{array}$                                                                                                    | Sad           RMSE           0.42           0.81           1.38           0.96           0.82           0.65           0.38           0.42           2.58           0.55           0.06           0.39                                   | $+ \mathbf{RTO}$ $\underline{MAE}$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.06 0.26 0.15 0.02 0.03                                                     | R [GSR-<br><i>MARD</i><br>78.20%<br>70.00%<br>61.69%<br>*<br>*<br>40.08%<br>*<br>66.51%<br>*<br>56.19%<br>60.22%                                                                            | -EEG] - (<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.35<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10         | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \hline MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{l} = ReLU,\\ \mathbf{S}\\ MARD\\ 41.10\%\\ 38.88\%\\ 7.16\%\\ 54.86\%\\ *\\ 48.01\%\\ *\\ 23.35\%\\ 28.57\%\\ 36.94\%\\ 10.35\%\\ *\\ *\\ *\end{array}$          | <b>opt='sg</b><br><b>urprised</b><br><u>RMSE</u><br>0.13<br>0.12<br>0.13<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.04<br>0.04<br>0.01                                                                                    | $\begin{array}{l} \mathbf{d', } N_{h} = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = 79 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>79.08%<br>66.92%<br>60.32%<br>60.31%<br>29.13%                                      |                                                                                                                                                                                               | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.11 \\ 0.04 \\ 0.01 \end{array}$                            | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:CR3<br>DS:CR3<br>DS:CLX<br>DS:CL3 | MARD * * * * * * * * * * * * * * * * * * * | Test 10<br>Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36                                                                                                    | MAE           0.02           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.21           0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \textbf{MARD} \\ & * \\ 81.69\% \\ 91.04\% \\ & * \\ & * \\ 59.91\% \\ 81.57\% \\ & * \\ 75.32\% \\ 52.55\% \\ 20.48\% \\ 28.75\% \end{array}$                                                                                                                | Sad           RMSE           0.42           0.81           1.38           0.96           0.82           0.65           0.38           0.32           0.42           2.58           0.55           0.06           0.39                    | $+ \mathbf{RTO}$ $\underline{MAE}$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.06 0.26 0.15 0.02 0.03                                                     | $\begin{array}{c} \textbf{R} \ [\textbf{GSR}] \\ \hline MARD \\ \hline 78.20\% \\ 70.00\% \\ 61.69\% \\ * \\ * \\ * \\ 40.08\% \\ * \\ * \\ 66.51\% \\ * \\ 56.19\% \\ 60.22\% \end{array}$ | -EEG] - (<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.35<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10         | $\begin{array}{c} \varphi_j(v_j(n)) \\ \hline MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | P = ReLU, S MARD 41.10% 38.88% 7.16% 54.86% * 48.01% * 23.35% 28.57% 36.94% 10.35% * *                                                                                          | opt='sg<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.13<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.01<br>0.04<br>0.11                                                                                                         | $\mathbf{d'}, N_h = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.01$ $0.01$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 79 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>79.08%<br>66.92%<br>62.86%<br>99.99%<br>60.31%<br>29.13%                                 | $N_o = 5$<br>Scared<br>RMSE<br>0.19<br>0.26<br>0.24<br>0.26<br>0.26<br>0.23<br>0.21<br>1.01<br>0.55<br>0.40<br>0.36<br>0.14<br>0.18                                                           | $\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.11 \\ 0.04 \\ 0.01 \end{array}$                                   | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR3<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | Test 10<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36<br>■                                                                                        | MAE           0.02           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.21           0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} \textbf{MARD} \\ & \ast \\ 81.69\% \\ 91.04\% \\ & \ast \\ & \ast \\ & \ast \\ 59.91\% \\ 81.57\% \\ & \ast \\ 75.32\% \\ 52.55\% \\ 20.48\% \\ 28.75\% \end{array}$                                                                                          | Sad           RMSE           0.42           0.81           1.38           0.96           0.82           0.65           0.38           0.32           0.42           2.58           0.55           0.06           0.39                    | + RTO<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br>90                       | $\begin{array}{c} \textbf{R} \ [\textbf{GSR}] \\ \hline MARD \\ \hline 78.20\% \\ 70.00\% \\ 61.69\% \\ * \\ * \\ 40.08\% \\ * \\ * \\ 66.51\% \\ * \\ 56.19\% \\ 60.22\% \end{array}$      | -EEG] -<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.35<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10           | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P = ReLU, S MARD 41.10% 38.88% 7.16% 54.86% * 48.01% * 23.35% 28.57% 36.94% 10.35% * *                                                                                          | <b>opt='sg</b><br><b>urprised</b><br><i>RMSE</i><br>0.13<br>0.12<br>0.13<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.11<br>8<br><b>5</b>                                                                                   | $     d', N_h = \frac{MAE}{0.01} \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.02 \\     0.01 \\     0.00 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\  $      | $= 79 \times 2, I$ $= 79 \times 2, I$ $= MARD$ $*$ $*$ $*$ $*$ $*$ $79.08\%$ $66.92\%$ $66.92\%$ $62.86\%$ $99.99\%$ $60.31\%$ $29.13\%$ | $N_o = 5$<br>Scared<br>RMSE<br>0.19<br>0.26<br>0.24<br>0.26<br>0.26<br>0.23<br>0.21<br>1.01<br>0.55<br>0.40<br>0.36<br>0.14<br>0.18                                                           | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.13<br>0.07<br>0.04<br>0.11<br>0.04<br>0.01<br>80                                                            | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR3<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | Test 10<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36<br><b>C</b>                                                                                 | 0 - Emo<br>MAE<br>0.02<br>0.02<br>0.02<br>0.02<br>0.03<br>0.03<br>0.02<br>0.03<br>0.02<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.02<br>0.01<br>0.02<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.03<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.04<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | $\begin{array}{c} \textbf{MARD} \\ & \ast \\ 81.69\% \\ 91.04\% \\ & \ast \\ & \ast \\ 59.91\% \\ 81.57\% \\ & \ast \\ 75.32\% \\ 52.55\% \\ 20.48\% \\ 28.75\% \end{array}$                                                                                                    | ognition           Sad           RMSE           0.42           0.81           1.38           0.96           0.82           0.65           0.38           0.32           0.42           2.58           0.55           0.06           0.39 | + RTO<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br>9000             | $\begin{array}{c} \textbf{R} \ [\textbf{GSR}] \\ \hline MARD \\ \hline 78.20\% \\ 70.00\% \\ 61.69\% \\ * \\ * \\ 40.08\% \\ * \\ * \\ 66.51\% \\ * \\ 56.19\% \\ 60.22\% \end{array}$      | -EEG] -<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.35<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10           | $\begin{array}{c} \varphi_{j}(v_{j}(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | P = ReLU, <b>S</b> <i>MARD</i> 41.10% 38.88% 7.16% 54.86% * 48.01% * 23.35% 28.57% 36.94% 10.35% * *                                                                            | opt='sg           urprised           RMSE           0.13           0.12           0.13           0.12           0.13           0.06           0.15           0.07           0.11           0.04           0.01           0.04           0.11                | $     \mathbf{d', } N_h = \frac{MAE}{0.01} \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.02 \\     0.01 \\     0.01 \\     0.00 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01$ | = 79 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>79.08%<br>66.92%<br>62.86%<br>99.99%<br>60.31%<br>29.13%                                 | $N_o = 5$<br>Scared<br>RMSE<br>0.19<br>0.26<br>0.24<br>0.26<br>0.24<br>0.26<br>0.23<br>0.21<br>1.01<br>0.55<br>0.40<br>0.36<br>0.14<br>0.18                                                   | <i>MAE</i><br>0.02<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.13<br>0.07<br>0.04<br>0.11<br>0.04<br>0.01                                                                   | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR3<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | Test         10           Happy         RMSE           0.16         0.17           0.78         0.24           0.22         0.17           0.22         0.13           0.14         0.12           0.05         0.76           0.36 | 0 - Emo<br>MAE<br>0.02<br>0.02<br>0.02<br>0.03<br>0.03<br>0.02<br>0.03<br>0.02<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.04<br>0.04<br>0.05<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | $\begin{array}{c} \textbf{MARD} \\ & \ast \\ 81.69\% \\ 91.04\% \\ & \ast \\ & \ast \\ 59.91\% \\ 81.57\% \\ & \ast \\ 75.32\% \\ 52.55\% \\ 20.48\% \\ 28.75\% \end{array}$                                                                                                    | ognition           Sad           RMSE           0.42           0.81           1.38           0.96           0.82           0.65           0.38           0.32           0.42           2.58           0.55           0.06           0.39 | + RTO<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br>90.06<br>4<br>80 | R [GSR-<br><i>MARD</i><br>78.20%<br>70.00%<br>61.69%<br>*<br>*<br>40.08%<br>*<br>66.51%<br>*<br>56.19%<br>60.22%                                                                            | -EEG] -<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.35<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10           | $\begin{array}{c} \varphi_{j}(v_{j}(n))\\ \hline \\ MAE\\ \hline 0.04\\ 0.03\\ 0.03\\ 0.03\\ 0.08\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.05\\ 0.06\\ 0.09\\ 0.05\\ 0.11\\ 0.11\\ \hline \\ \begin{array}{c} \textbf{E0.00}\\ \textbf{H}\\ \textbf{90} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P = ReLU, <b>S</b> <i>MARD</i> 41.10% 38.88% 7.16% 54.86% * 48.01% * 23.35% 28.57% 36.94% 10.35% * *                                                                            | opt='sg           urprised           RMSE           0.13           0.12           0.13           0.12           0.13           0.06           0.15           0.07           0.11           0.04           0.12           0.01           0.04           0.11 | $     d', N_h = \frac{MAE}{0.01} \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.02 \\     0.01 \\     0.01 \\     0.00 \\     0.01 \\     0.01 \\     0.01 \\     0.01     0.01     0.01     0.01     0.01     0.01     0.01 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 79 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>79.08%<br>66.92%<br>60.31%<br>29.13%                                                     | $N_o = 5$<br>Scared<br>RMSE<br>0.19<br>0.26<br>0.24<br>0.26<br>0.24<br>0.26<br>0.23<br>0.21<br>1.01<br>0.55<br>0.40<br>0.36<br>0.14<br>0.18                                                   | MAE         0.02         0.03         0.03         0.03         0.03         0.03         0.03         0.02         0.13         0.04         0.11         0.04         0.01 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |

TABLE 9.7. Emotion recognition results tests 9 and 10. ANN with  $6 \times 10^3$  train epochs and input data with feature extraction.

|                                                                                                                                                               |                                                                                                     | Test 11                                                                                                                                                                                                                      | l - Emo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tion Reco                                                                                                            | ognition -                                                                                                                                                                                                                               | $+ \mathbf{RTOI}$                                                                                                                         | R [HR+E                                                                                                                                                                                 | $\mathbf{EG}$ ] - $\varphi_j$                                                                                                                                                                              | $(v_j(n)) =$                                                                                                                                                                                                                                                                                   | $= ReLU, \mathbf{c}$                                                                                                                 | pt='adaı                                                                                                                                                                | m', $N_h$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $= 83 \times 2, 1$                                                                                            | $V_o = 5$                                                                                                                                             |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flight                                                                                                                                                        |                                                                                                     | Happy                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      | Sad                                                                                                                                                                                                                                      |                                                                                                                                           |                                                                                                                                                                                         | Angry                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                | S                                                                                                                                    | urprised                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               | Scared                                                                                                                                                |                                                                                                                                                                                                                                                                         | Match                                                                                                                                                                                                                                          |
| Dataset                                                                                                                                                       | MARD                                                                                                | RMSE                                                                                                                                                                                                                         | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MARD                                                                                                                 | RMSE                                                                                                                                                                                                                                     | MAE                                                                                                                                       | MARD                                                                                                                                                                                    | RMSE                                                                                                                                                                                                       | MAE                                                                                                                                                                                                                                                                                            | MARD                                                                                                                                 | RMSE                                                                                                                                                                    | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MARD                                                                                                          | RMSE                                                                                                                                                  | MAE                                                                                                                                                                                                                                                                     | Accuracy (%)                                                                                                                                                                                                                                   |
| DS:RC1                                                                                                                                                        | *                                                                                                   | 0.25                                                                                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90.11%                                                                                                               | 0.46                                                                                                                                                                                                                                     | 0.04                                                                                                                                      | *                                                                                                                                                                                       | 0.60                                                                                                                                                                                                       | 0.06                                                                                                                                                                                                                                                                                           | 37.45%                                                                                                                               | 0.12                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                             | 0.82                                                                                                                                                  | 0.09                                                                                                                                                                                                                                                                    | <b>22.38</b> (15/67)                                                                                                                                                                                                                           |
| DS:RC2                                                                                                                                                        | *                                                                                                   | 0.34                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85.34%                                                                                                               | 0.90                                                                                                                                                                                                                                     | 0.08                                                                                                                                      | *                                                                                                                                                                                       | 0.81                                                                                                                                                                                                       | 0.08                                                                                                                                                                                                                                                                                           | 53.12%                                                                                                                               | 0.14                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                             | 0.30                                                                                                                                                  | 0.03                                                                                                                                                                                                                                                                    | <b>34.61</b> ( <b>27</b> /78)                                                                                                                                                                                                                  |
| DS:RC3                                                                                                                                                        | 91.62%                                                                                              | 0.83                                                                                                                                                                                                                         | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                    | 1.67                                                                                                                                                                                                                                     | 0.14                                                                                                                                      | 69.43%                                                                                                                                                                                  | 0.43                                                                                                                                                                                                       | 0.04                                                                                                                                                                                                                                                                                           | 4.61%                                                                                                                                | 0.12                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                             | 0.51                                                                                                                                                  | 0.04                                                                                                                                                                                                                                                                    | <b>38.35</b> ( <b>28</b> /73)                                                                                                                                                                                                                  |
| DS:GC1                                                                                                                                                        | *                                                                                                   | 0.71                                                                                                                                                                                                                         | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                    | 1.28                                                                                                                                                                                                                                     | 0.13                                                                                                                                      | *                                                                                                                                                                                       | 0.74                                                                                                                                                                                                       | 0.08                                                                                                                                                                                                                                                                                           | *                                                                                                                                    | 0.14                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                             | 0.22                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                    | <b>21.33</b> (16/75)                                                                                                                                                                                                                           |
| DS:GC3                                                                                                                                                        | *                                                                                                   | 0.29                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                    | 0.64                                                                                                                                                                                                                                     | 0.05                                                                                                                                      | *                                                                                                                                                                                       | 0.42                                                                                                                                                                                                       | 0.04                                                                                                                                                                                                                                                                                           | *                                                                                                                                    | 0.18                                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                             | 0.04                                                                                                                                                  | 0.00                                                                                                                                                                                                                                                                    | 65.38 (51/78)                                                                                                                                                                                                                                  |
| DS:LS1                                                                                                                                                        | *                                                                                                   | 0.19                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                    | 1.26                                                                                                                                                                                                                                     | 0.11                                                                                                                                      | *                                                                                                                                                                                       | 0.43                                                                                                                                                                                                       | 0.03                                                                                                                                                                                                                                                                                           | 84.13%                                                                                                                               | 0.11                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                             | 0.16                                                                                                                                                  | 0.01                                                                                                                                                                                                                                                                    | <b>25.54</b> ( <b>26</b> /102)                                                                                                                                                                                                                 |
| DS:LS2                                                                                                                                                        | *                                                                                                   | 0.32                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.34%                                                                                                               | 0.43                                                                                                                                                                                                                                     | 0.04                                                                                                                                      | 54.16%                                                                                                                                                                                  | 0.35                                                                                                                                                                                                       | 0.03                                                                                                                                                                                                                                                                                           | *                                                                                                                                    | 0.16                                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                             | 0.23                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                    | 42.66 (32/75)                                                                                                                                                                                                                                  |
| DS:VC1                                                                                                                                                        | *                                                                                                   | 0.09                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 70.92%                                                                                                               | 0.35                                                                                                                                                                                                                                     | 0.04                                                                                                                                      | *                                                                                                                                                                                       | 0.42                                                                                                                                                                                                       | 0.05                                                                                                                                                                                                                                                                                           | 32.74%                                                                                                                               | 0.05                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 92.36%                                                                                                        | 1.09                                                                                                                                                  | 0.14                                                                                                                                                                                                                                                                    | <b>16.66</b> (8/48)                                                                                                                                                                                                                            |
| DS:VC2                                                                                                                                                        | *                                                                                                   | 0.20                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *                                                                                                                    | 0.61                                                                                                                                                                                                                                     | 0.08                                                                                                                                      | *                                                                                                                                                                                       | 0.65                                                                                                                                                                                                       | 0.10                                                                                                                                                                                                                                                                                           | 33.18%                                                                                                                               | 0.08                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 76.57%                                                                                                        | 0.57                                                                                                                                                  | 0.08                                                                                                                                                                                                                                                                    | <b>21.05</b> (8/38)                                                                                                                                                                                                                            |
| DS:CR1                                                                                                                                                        | *                                                                                                   | 0.15                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 74.95%                                                                                                               | 2.53                                                                                                                                                                                                                                     | 0.26                                                                                                                                      | 56.14%                                                                                                                                                                                  | 0.76                                                                                                                                                                                                       | 0.07                                                                                                                                                                                                                                                                                           | 37.97%                                                                                                                               | 0.12                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83.27%                                                                                                        | 0.51                                                                                                                                                  | 0.06                                                                                                                                                                                                                                                                    | <b>47.94</b> ( <b>35</b> /73)                                                                                                                                                                                                                  |
| DS:CR3                                                                                                                                                        | *                                                                                                   | 0.10                                                                                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 97.93%                                                                                                               | 0.65                                                                                                                                                                                                                                     | 0.20                                                                                                                                      | *                                                                                                                                                                                       | 0.40                                                                                                                                                                                                       | 0.12                                                                                                                                                                                                                                                                                           | 38.89%                                                                                                                               | 0.03                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62.29%                                                                                                        | 0.27                                                                                                                                                  | 0.07                                                                                                                                                                                                                                                                    | 44.44 (4/9)                                                                                                                                                                                                                                    |
| DS:CLX                                                                                                                                                        | 86.23%                                                                                              | 0.76                                                                                                                                                                                                                         | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 91.45%                                                                                                               | 0.31                                                                                                                                                                                                                                     | 0.08                                                                                                                                      | 66.50%                                                                                                                                                                                  | 0.43                                                                                                                                                                                                       | 0.12                                                                                                                                                                                                                                                                                           | *                                                                                                                                    | 0.05                                                                                                                                                                    | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67.72%                                                                                                        | 0.18                                                                                                                                                  | 0.05                                                                                                                                                                                                                                                                    | <b>0.00</b> ( <b>0</b> /10)                                                                                                                                                                                                                    |
| DS:CL3                                                                                                                                                        | 83.46%                                                                                              | 0.40                                                                                                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 85.33%                                                                                                               | 1.10                                                                                                                                                                                                                                     | 0.09                                                                                                                                      | 48.68%                                                                                                                                                                                  | 0.96                                                                                                                                                                                                       | 0.09                                                                                                                                                                                                                                                                                           | *                                                                                                                                    | 0.19                                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 73.32%                                                                                                        | 0.26                                                                                                                                                  | 0.02                                                                                                                                                                                                                                                                    | $19.76 \ (17/86)$                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                                                                                     |                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                      |                                                                                                                                                                                                                                          |                                                                                                                                           |                                                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                |                                                                                                                                      |                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                                                                       |                                                                                                                                                                                                                                                                         | 27                                                                                                                                                                                                                                             |
|                                                                                                                                                               |                                                                                                     | 24                                                                                                                                                                                                                           | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                      | 60                                                                                                                                                                                                                                       | 90                                                                                                                                        |                                                                                                                                                                                         | 18                                                                                                                                                                                                         | 03                                                                                                                                                                                                                                                                                             |                                                                                                                                      | 04                                                                                                                                                                      | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | 58                                                                                                                                                    | 03                                                                                                                                                                                                                                                                      | 69                                                                                                                                                                                                                                             |
|                                                                                                                                                               |                                                                                                     | 0.:                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      | 0.0                                                                                                                                                                                                                                      | 0.0                                                                                                                                       |                                                                                                                                                                                         | 0                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                            |                                                                                                                                      | 0.0                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               | 0                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                     | <b>H</b>                                                                                                                                                                                                                                       |
|                                                                                                                                                               |                                                                                                     | 9                                                                                                                                                                                                                            | <u>م</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      | 4                                                                                                                                                                                                                                        | +0                                                                                                                                        |                                                                                                                                                                                         | 4                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                              |                                                                                                                                      | ++                                                                                                                                                                      | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                               | +0                                                                                                                                                    | <b>5</b>                                                                                                                                                                                                                                                                | 78                                                                                                                                                                                                                                             |
|                                                                                                                                                               |                                                                                                     | .3                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                      | 6.0                                                                                                                                                                                                                                      | .1                                                                                                                                        |                                                                                                                                                                                         | .5                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                            |                                                                                                                                      | .1                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               | 4.                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                     | .0                                                                                                                                                                                                                                             |
|                                                                                                                                                               |                                                                                                     | <u> </u>                                                                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                      | <u> </u>                                                                                                                                                                                                                                 | <u> </u>                                                                                                                                  |                                                                                                                                                                                         | <u> </u>                                                                                                                                                                                                   | <u> </u>                                                                                                                                                                                                                                                                                       |                                                                                                                                      | 0                                                                                                                                                                       | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                               | <u> </u>                                                                                                                                              | )                                                                                                                                                                                                                                                                       | •••                                                                                                                                                                                                                                            |
|                                                                                                                                                               |                                                                                                     | Test 15                                                                                                                                                                                                                      | 2 - Emo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tion Reco                                                                                                            | ognition                                                                                                                                                                                                                                 | + BTO                                                                                                                                     | R [HR+F                                                                                                                                                                                 | $\mathbf{EEG}$ ] - $(\alpha)$                                                                                                                                                                              | $(v_{i}(n)) =$                                                                                                                                                                                                                                                                                 | = siamoid                                                                                                                            | ont='sg                                                                                                                                                                 | d'. $N_{L} =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $= 83 \times 2.7$                                                                                             | $V_{-} = 5$                                                                                                                                           |                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                |
| Flight                                                                                                                                                        |                                                                                                     | Test 12<br>Happy                                                                                                                                                                                                             | 2 - Emo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tion Reco                                                                                                            | ognition -<br>Sad                                                                                                                                                                                                                        | $+ \mathbf{RTO}$                                                                                                                          | R [HR+H                                                                                                                                                                                 | $\mathbf{EEG}$ ] - $\varphi_{j}$                                                                                                                                                                           | $v_j(v_j(n)) =$                                                                                                                                                                                                                                                                                | = sigmoid                                                                                                                            | , opt='sg<br>urprised                                                                                                                                                   | <b>d'</b> , $N_h =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $= 83 \times 2, 1$                                                                                            | $N_o = 5$<br>Scared                                                                                                                                   |                                                                                                                                                                                                                                                                         | Match                                                                                                                                                                                                                                          |
| Flight<br>Dataset                                                                                                                                             | MARD                                                                                                | Test 12<br>Happy<br>RMSE                                                                                                                                                                                                     | 2 - Emo<br>MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tion Reco                                                                                                            | ognition ·<br>Sad<br>RMSE                                                                                                                                                                                                                | + <b>RTO</b>                                                                                                                              | R [HR+I                                                                                                                                                                                 | $\frac{\mathbf{EEG}] - \varphi_{\mathcal{I}}}{\mathbf{Angry}}$ $\frac{RMSE}{RMSE}$                                                                                                                         | $\frac{1}{i}(v_j(n)) = MAE$                                                                                                                                                                                                                                                                    | = sigmoid<br><b>S</b><br>MARD                                                                                                        | , opt='sg<br>urprised<br>RMSE                                                                                                                                           | d', $N_h = MAE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $= 83 \times 2, 1$ $MARD$                                                                                     | $N_o = 5$<br>Scared<br>RMSE                                                                                                                           | MAE                                                                                                                                                                                                                                                                     | Match<br>Accuracy (%)                                                                                                                                                                                                                          |
| Flight<br>Dataset<br>DS:RC1                                                                                                                                   | MARD<br>*                                                                                           | Test 12<br>Happy<br>RMSE                                                                                                                                                                                                     | 2 - Emo<br>MAE<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tion Reco<br>MARD<br>*                                                                                               | ognition<br>Sad<br>RMSE<br>0.42                                                                                                                                                                                                          | + <b>RTO</b>                                                                                                                              | R [HR+H<br>MARD<br>80.26%                                                                                                                                                               | $\frac{\mathbf{EEG}] - \varphi_3}{\mathbf{Angry}}$ $\frac{RMSE}{0.50}$                                                                                                                                     | $\frac{MAE}{0.04}$                                                                                                                                                                                                                                                                             | = sigmoid,<br>S<br>MARD<br>53.17%                                                                                                    | opt='sg<br>urprised<br>RMSE<br>0.11                                                                                                                                     | $\mathbf{d', } N_h = \frac{MAE}{0.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 83 × 2, 1<br>MARD<br>*                                                                                      | $\frac{N_o = 5}{\text{Scared}}$ $\frac{RMSE}{0.31}$                                                                                                   | <i>MAE</i> 0.04                                                                                                                                                                                                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)                                                                                                                                                                                                         |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2                                                                                                                         | MARD<br>*                                                                                           | Test 12<br>Happy<br><i>RMSE</i><br>0.17<br>0.23                                                                                                                                                                              | 2 - Emo<br>MAE<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | tion Reco<br><i>MARD</i><br>*<br>81.51%                                                                              | Sad<br>RMSE<br>0.42<br>0.82                                                                                                                                                                                                              | + <b>RTO</b>                                                                                                                              | <b>R</b> [ <b>HR</b> + <b>H</b><br><i>MARD</i><br>80.26%<br>72.14%                                                                                                                      | <b>EEG] -</b> $\varphi_3$<br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29                                                                                                                                   | $\frac{MAE}{0.04}$                                                                                                                                                                                                                                                                             | = sigmoid,<br><b>S</b><br>MARD<br>53.17%<br>68.08%                                                                                   | opt='sg<br>urprised<br>RMSE<br>0.11<br>0.13                                                                                                                             | <b>d'</b> , $N_h = \frac{MAE}{0.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 83 × 2, 1<br>MARD<br>*                                                                                      | $ \frac{N_o = 5}{\text{Scared}} \\ \frac{RMSE}{0.31} \\ 0.39 $                                                                                        | MAE<br>0.04<br>0.04                                                                                                                                                                                                                                                     | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78                                                                                                                                                                                         |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3                                                                                                               | MARD<br>*<br>*                                                                                      | Test 12<br>Happy<br><i>RMSE</i><br>0.17<br>0.23<br>0.67                                                                                                                                                                      | 2 - Emo<br>MAE<br>0.02<br>0.02<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tion Reco<br><i>MARD</i><br>*<br>81.51%<br>91.29%                                                                    | Sad           RMSE           0.42           0.82           1.37                                                                                                                                                                          | + <b>RTO</b><br><i>MAE</i><br>0.04<br>0.07<br>0.11                                                                                        | <b>R</b> [ <b>HR</b> + <b>I</b><br><i>MARD</i><br>80.26%<br>72.14%<br>64.47%                                                                                                            | <b>EEG</b> ] - $\varphi_3$<br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.29                                                                                                                          | $\frac{MAE}{0.04}$                                                                                                                                                                                                                                                                             | = sigmoid,<br>S<br>MARD<br>53.17%<br>68.08%<br>47.20%                                                                                | <b>opt='sg</b><br><b>urprised</b><br><i>RMSE</i><br>0.11<br>0.13<br>0.11                                                                                                | $     d', N_h = \frac{MAE}{0.01}     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01     0.01 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 83 × 2, 1<br>MARD<br>*<br>*                                                                                 | $     \underbrace{N_o = 5}{Scared} \\     RMSE \\     0.31 \\     0.39 \\     0.35   $                                                                | MAE<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                                             | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78<br>57.53 (42/73)                                                                                                                                                                        |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1                                                                                                     | <i>MARD</i><br>*<br>*<br>*                                                                          | Test 12<br>Happy<br><i>RMSE</i><br>0.17<br>0.23<br>0.67<br>0.36                                                                                                                                                              | 2 - Emo<br><i>MAE</i><br>0.02<br>0.02<br>0.02<br>0.06<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion Reco<br><i>MARD</i><br>* 81.51% 91.29% *                                                                        | Sad           RMSE           0.42           0.82           1.37           0.96                                                                                                                                                           | + <b>RTO</b><br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11                                                                                | R [HR+H<br>MARD<br>80.26%<br>72.14%<br>64.47%<br>*                                                                                                                                      | $\begin{array}{c} \mathbf{EEG} ] - \varphi_{\mathcal{J}} \\ \mathbf{Angry} \\ RMSE \\ 0.50 \\ 0.29 \\ 0.29 \\ 0.69 \end{array}$                                                                            | $MAE = \frac{MAE}{0.04} = 0.03 = 0.03 = 0.03 = 0.08$                                                                                                                                                                                                                                           | = sigmoid<br><b>S</b><br><i>MARD</i><br>53.17%<br>68.08%<br>47.20%<br>*                                                              | opt='sg<br>urprised<br><i>RMSE</i><br>0.11<br>0.13<br>0.11<br>0.21                                                                                                      | $     d', N_h = \frac{MAE}{0.01}     0.01     0.01     0.01     0.02   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 83 × 2, 1<br>MARD<br>*<br>*<br>*                                                                            | $V_o = 5$<br>Scared<br><i>RMSE</i><br>0.31<br>0.39<br>0.35<br>0.38                                                                                    | <i>MAE</i><br>0.04<br>0.04<br>0.04<br>0.04                                                                                                                                                                                                                              | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78<br>57.53 (42/73)<br>22.66 (17/75)                                                                                                                                                       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3                                                                                           | <i>MARD</i> * * * * *                                                                               | Test 12<br>Happy<br>RMSE<br>0.17<br>0.23<br>0.67<br>0.36<br>0.35                                                                                                                                                             | 2 - Emo<br>MAE<br>0.02<br>0.02<br>0.06<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tion Reco<br><i>MARD</i><br>* 81.51% 91.29%<br>* *                                                                   | Sad           RMSE           0.42           0.82           1.37           0.96           0.82                                                                                                                                            | + RTO<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09                                                                               | R [HR+H<br>MARD<br>80.26%<br>72.14%<br>64.47%<br>*                                                                                                                                      | $\begin{array}{c} \mathbf{EEG} ] - \varphi_{j} \\ \hline \mathbf{Angry} \\ RMSE \\ \hline 0.50 \\ 0.29 \\ 0.29 \\ 0.69 \\ 0.70 \end{array}$                                                                | $(v_j(n)) = MAE$<br>0.04<br>0.03<br>0.03<br>0.08<br>0.08                                                                                                                                                                                                                                       | = sigmoid,<br>S<br>MARD<br>53.17%<br>68.08%<br>47.20%<br>*<br>*                                                                      | opt='sg<br>urprised<br><i>RMSE</i><br>0.11<br>0.13<br>0.11<br>0.21<br>0.32                                                                                              | $     \mathbf{d', } N_h = \frac{MAE}{0.01}     0.01     0.01     0.02     0.04   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 83 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*                                                             | $N_o = 5$<br>Scared<br>RMSE<br>0.31<br>0.39<br>0.35<br>0.38<br>0.39                                                                                   | $\frac{MAE}{0.04}\\ 0.04\\ 0.04\\ 0.04\\ 0.04$                                                                                                                                                                                                                          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)                                                                                                                                     |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1                                                                                 | <i>MARD</i> * * * * * * *                                                                           | Test 12<br>Happy<br><i>RMSE</i><br>0.17<br>0.23<br>0.67<br>0.36<br>0.35<br>0.31                                                                                                                                              | 2 - Emo<br><i>MAE</i><br>0.02<br>0.02<br>0.06<br>0.04<br>0.04<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion Reco<br><i>MARD</i> * 81.51% 91.29% * * *                                                                       | Degnition         General Constraints           Sad         RMSE           0.42         0.82           1.37         0.96           0.82         0.64                                                                                     | + RTO<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06                                                                       | R [HR+H<br>MARD<br>80.26%<br>72.14%<br>64.47%<br>*<br>*                                                                                                                                 | <b>EEG]</b> - φ <sub>3</sub><br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.29<br>0.29<br>0.69<br>0.70<br>0.30                                                                                        | $(v_j(n)) = MAE$<br>0.04<br>0.03<br>0.03<br>0.08<br>0.08<br>0.02                                                                                                                                                                                                                               | = sigmoid,<br>S<br>MARD<br>53.17%<br>68.08%<br>47.20%<br>*<br>*<br>*                                                                 | opt='sg<br>urprised<br>RMSE<br>0.11<br>0.13<br>0.11<br>0.21<br>0.32<br>0.23                                                                                             | $     \mathbf{d', } N_h = \frac{MAE}{0.01} \\     0.01 \\     0.01 \\     0.02 \\     0.04 \\     0.02 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 83 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*                                                             | $N_o = 5$<br>Scared<br>RMSE<br>0.31<br>0.39<br>0.35<br>0.38<br>0.39<br>0.37                                                                           | $\frac{MAE}{0.04}\\ 0.04\\ 0.04\\ 0.04\\ 0.04\\ 0.04\\ 0.04$                                                                                                                                                                                                            | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)                                                                                                                   |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2                                                                       | MARD * * * * * * * * *                                                                              | Test 12<br>Happy<br><i>RMSE</i><br>0.17<br>0.23<br>0.67<br>0.36<br>0.35<br>0.31<br>0.34                                                                                                                                      | 2 - Emo<br>MAE<br>0.02<br>0.02<br>0.06<br>0.04<br>0.04<br>0.03<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tion Reco<br><i>MARD</i> * 81.51% 91.29% * * * 59.57%                                                                | Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64           0.38                                                                                                              | $+ \mathbf{RTO}$ $MAE$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04                                                                                 | R [HR+H<br>MARD<br>80.26%<br>72.14%<br>64.47%<br>*<br>*<br>40.72%                                                                                                                       | <b>EEG</b> ] - φ <sub>3</sub><br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.29<br>0.69<br>0.70<br>0.30<br>0.22                                                                                       | MAE<br>MAE<br>0.04<br>0.03<br>0.03<br>0.08<br>0.08<br>0.02<br>0.02                                                                                                                                                                                                                             | = sigmoid,<br><b>S</b><br><i>MARD</i><br>53.17%<br>68.08%<br>47.20%<br>*<br>*<br>*<br>*                                              | opt='sg<br>urprised<br>RMSE<br>0.11<br>0.13<br>0.11<br>0.21<br>0.32<br>0.23<br>0.27                                                                                     | $\begin{array}{c} \mathbf{d'}, \ N_h = \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 83 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                        | $N_o = 5$<br>Scared<br><i>RMSE</i><br>0.31<br>0.39<br>0.35<br>0.38<br>0.39<br>0.37<br>0.33                                                            | $\begin{array}{c} MAE \\ \hline 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \end{array}$                                                                                                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)                                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1                                                             | MARD * * * * * * * * * *                                                                            | Test 12<br>Happy<br><i>RMSE</i><br>0.17<br>0.23<br>0.67<br>0.36<br>0.35<br>0.31<br>0.34<br>0.22                                                                                                                              | 2 - Emo<br><i>MAE</i><br>0.02<br>0.02<br>0.06<br>0.04<br>0.04<br>0.03<br>0.04<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion Reco<br><i>MARD</i><br>* 81.51% 91.29%<br>* * * 59.57% 81.09%                                                   | Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64           0.38                                                                                                              | $+ \mathbf{RTO}$ $MAE$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04 0.04                                                                            | $\begin{array}{c} \textbf{R} \ \textbf{[HR+H]} \\ \hline MARD \\ 80.26\% \\ 72.14\% \\ 64.47\% \\ * \\ * \\ 40.72\% \\ * \end{array}$                                                   | EEG] - φ <sub>3</sub><br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.29<br>0.29<br>0.69<br>0.70<br>0.30<br>0.22<br>0.35                                                                                      | MAE<br>MAE<br>0.04<br>0.03<br>0.03<br>0.03<br>0.08<br>0.08<br>0.02<br>0.02<br>0.02<br>0.05                                                                                                                                                                                                     | = sigmoid,<br><b>S</b><br>MARD<br>53.17%<br>68.08%<br>47.20%<br>*<br>*<br>*<br>*<br>*                                                | opt='sg<br>urprised<br>RMSE<br>0.11<br>0.13<br>0.11<br>0.21<br>0.32<br>0.23<br>0.23<br>0.27<br>0.14                                                                     | $\mathbf{d', N_h} = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.02$ $0.04$ $0.02$ $0.03$ $0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 83 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                          | $N_o = 5$<br>Scared<br><i>RMSE</i><br>0.31<br>0.39<br>0.35<br>0.38<br>0.39<br>0.37<br>0.33<br>0.90                                                    | $\begin{array}{c} MAE \\ \hline 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.11 \end{array}$                                                                                                                                                               | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2                                                   | MARD * * * * * * * * * * * *                                                                        | Test 12<br>Happy<br>RMSE<br>0.17<br>0.23<br>0.67<br>0.36<br>0.35<br>0.31<br>0.34<br>0.22<br>0.23                                                                                                                             | 2 - Emo<br><i>MAE</i><br>0.02<br>0.02<br>0.06<br>0.04<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | tion Reco<br><i>MARD</i> * 81.51% 91.29% * * * 59.57% 81.09% *                                                       | Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64           0.38           0.31           0.42                                                                                | $+ \mathbf{RTO}$ $MAE$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.06                                                                       | R [HR+H<br>MARD<br>80.26%<br>72.14%<br>64.47%<br>*<br>*<br>40.72%<br>*<br>*                                                                                                             | <b>EEG</b> ] - φ <sub>3</sub><br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.29<br>0.69<br>0.70<br>0.30<br>0.22<br>0.35<br>0.37                                                                       | $\frac{MAE}{0.04}$ 0.04<br>0.03<br>0.03<br>0.08<br>0.08<br>0.02<br>0.02<br>0.02<br>0.05<br>0.06                                                                                                                                                                                                | = sigmoid,<br><b>S</b><br><i>MARD</i><br>53.17%<br>68.08%<br>47.20%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br>urprised<br>RMSE<br>0.11<br>0.13<br>0.11<br>0.21<br>0.32<br>0.23<br>0.23<br>0.27<br>0.14<br>0.10                                                             | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 83 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                          |                                                                                                                                                       | $\begin{array}{c} MAE \\ \hline 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.11 \\ 0.06 \end{array}$                                                                                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)                                                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1                               | MARD * * * * * * * * * * * * *                                                                      | Test 12<br>Happy<br>RMSE<br>0.17<br>0.23<br>0.67<br>0.36<br>0.35<br>0.31<br>0.34<br>0.22<br>0.23<br>0.22                                                                                                                     | 2 - Emo<br><i>MAE</i><br>0.02<br>0.02<br>0.06<br>0.04<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion Reco<br><i>MARD</i><br>* 81.51% 91.29%<br>* * 59.57% 81.09%<br>* 75.29%                                         | $\begin{array}{c} \textbf{pgnition} \\ \hline \textbf{Sad} \\ \hline RMSE \\ \hline 0.42 \\ 0.82 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.31 \\ 0.42 \\ 2.58 \end{array}$                                                            | $+ \mathbf{RTO}$ $MAE$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.04 0.06 0.26                                                             | $\begin{array}{c} \textbf{R} \ \textbf{[HR+H]} \\ \hline MARD \\ \hline 80.26\% \\ 72.14\% \\ 64.47\% \\ * \\ * \\ 40.72\% \\ * \\ * \\ 65.98\% \end{array}$                            | EEG] - φ <sub>2</sub><br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.29<br>0.69<br>0.70<br>0.30<br>0.22<br>0.35<br>0.37<br>0.90                                                                              | $\frac{MAE}{0.04}$ 0.04 0.03 0.03 0.08 0.08 0.02 0.02 0.02 0.05 0.06 0.09                                                                                                                                                                                                                      | = sigmoid,<br><b>S</b><br><i>MARD</i><br>53.17%<br>68.08%<br>47.20%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br>urprised<br>RMSE<br>0.11<br>0.13<br>0.11<br>0.21<br>0.32<br>0.23<br>0.23<br>0.27<br>0.14<br>0.10<br>0.10                                                     | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 83 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                          |                                                                                                                                                       | $\begin{array}{c} MAE \\ \hline 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.11 \\ 0.06 \\ 0.03 \end{array}$                                                                                                                                               | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)                                                |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1<br>DS:CR3                     | MARD * * * * * * * * * * * * * *                                                                    | Test 12<br>Happy<br>RMSE<br>0.17<br>0.23<br>0.67<br>0.36<br>0.35<br>0.31<br>0.34<br>0.22<br>0.23<br>0.22<br>0.10                                                                                                             | 2 - Emo<br>MAE<br>0.02<br>0.02<br>0.06<br>0.04<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.02<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tion Reco<br>MARD<br>*<br>81.51%<br>91.29%<br>*<br>*<br>59.57%<br>81.09%<br>*<br>75.29%<br>52.57%                    | $\begin{array}{c} \textbf{pgnition} \\ \hline \textbf{Sad} \\ \hline RMSE \\ \hline 0.42 \\ 0.82 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.31 \\ 0.42 \\ 2.58 \\ 0.55 \end{array}$                                                    | + RTO $MAE$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.04 0.06 0.26 0.15                                                                   | $\begin{array}{c} \textbf{R} \ \textbf{[HR+H]} \\ \hline MARD \\ 80.26\% \\ 72.14\% \\ 64.47\% \\ * \\ * \\ 40.72\% \\ * \\ * \\ 65.98\% \\ * \end{array}$                              | <b>EEG</b> ] - φ <sub>2</sub><br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.29<br>0.69<br>0.70<br>0.30<br>0.22<br>0.35<br>0.37<br>0.90<br>0.17                                                       | $\begin{array}{c} (v_j(n)) = \\ \hline MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \end{array}$                                                                                                                                        | = sigmoid,<br><b>S</b><br><i>MARD</i><br>53.17%<br>68.08%<br>47.20%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br>urprised<br>RMSE<br>0.11<br>0.13<br>0.11<br>0.21<br>0.22<br>0.23<br>0.23<br>0.27<br>0.14<br>0.10<br>0.10<br>0.05                                             | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 83 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                          |                                                                                                                                                       | $\begin{array}{c} MAE \\ \hline 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.11 \\ 0.06 \\ 0.03 \\ 0.07 \end{array}$                                                                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX | MARD * * * * * * * * * * * * * * * * * * *                                                          | Test 12<br>Happy<br><i>RMSE</i><br>0.17<br>0.23<br>0.67<br>0.36<br>0.35<br>0.31<br>0.34<br>0.22<br>0.23<br>0.22<br>0.10<br>0.71                                                                                              | 2 - Emo<br><i>MAE</i><br>0.02<br>0.02<br>0.06<br>0.04<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.02<br>0.03<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion Reco $MARD$<br>* 81.51%<br>91.29%<br>* *<br>* 59.57%<br>81.09%<br>* 75.29%<br>52.57%<br>19.93%                  | $\begin{array}{c} \textbf{pgnition} \\ \hline \textbf{Sad} \\ \hline RMSE \\ \hline 0.42 \\ 0.82 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.31 \\ 0.42 \\ 2.58 \\ 0.55 \\ 0.06 \end{array}$                                            | + RTO $MAE$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.04 0.06 0.26 0.15 0.02                                                              | $\begin{array}{c} \textbf{R} \ \textbf{[HR+H]} \\ \hline MARD \\ 80.26\% \\ 72.14\% \\ 64.47\% \\ * \\ * \\ 40.72\% \\ * \\ * \\ 65.98\% \\ * \\ 54.83\% \end{array}$                   | <b>EEG</b> ] - φ <sub>2</sub><br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.29<br>0.69<br>0.70<br>0.30<br>0.22<br>0.35<br>0.37<br>0.90<br>0.17<br>0.36                                               | $\begin{array}{c} (v_j(n)) = \\ \hline MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.10 \end{array}$                                                                                                                        | = sigmoid,<br><b>S</b><br><i>MARD</i><br>53.17%<br>68.08%<br>47.20%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br>mrprised<br>RMSE<br>0.11<br>0.13<br>0.11<br>0.21<br>0.23<br>0.23<br>0.23<br>0.27<br>0.14<br>0.10<br>0.10<br>0.05<br>0.06                                     | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 83 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                          |                                                                                                                                                       | $\begin{array}{c} MAE \\ \hline 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.011 \\ 0.06 \\ 0.03 \\ 0.07 \\ 0.03 \end{array}$                                                                                                                              | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CL3 | MARD * * * * * * * * * * * * 75.40% 97.44%                                                          | Test 12<br>Happy<br><i>RMSE</i><br>0.17<br>0.23<br>0.67<br>0.36<br>0.35<br>0.31<br>0.34<br>0.22<br>0.23<br>0.22<br>0.10<br>0.71<br>0.28                                                                                      | 2 - Emo<br><i>MAE</i><br>0.02<br>0.02<br>0.06<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.02<br>0.03<br>0.02<br>0.03<br>0.20<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion Reco $MARD$<br>*<br>81.51%<br>91.29%<br>*<br>*<br>59.57%<br>81.09%<br>*<br>75.29%<br>52.57%<br>19.93%<br>28.61% | $\begin{array}{c} \textbf{pgnition} \\ \hline \textbf{Sad} \\ \hline RMSE \\ \hline 0.42 \\ 0.82 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.31 \\ 0.42 \\ 2.58 \\ 0.55 \\ 0.06 \\ 0.39 \end{array}$                                    | + RTO $MAE$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.06 0.26 0.15 0.02 0.03                                                              | $\begin{array}{c} \textbf{R} \ \textbf{[HR+H]} \\ \hline MARD \\ 80.26\% \\ 72.14\% \\ 64.47\% \\ * \\ * \\ 40.72\% \\ * \\ * \\ 65.98\% \\ * \\ 54.83\% \\ 57.90\% \end{array}$        | $\begin{array}{c} \mathbf{EG} & - \varphi_{2} \\ \hline \mathbf{Angry} \\ RMSE \\ \hline 0.50 \\ 0.29 \\ 0.29 \\ 0.69 \\ 0.70 \\ 0.30 \\ 0.22 \\ 0.35 \\ 0.37 \\ 0.90 \\ 0.17 \\ 0.36 \\ 1.07 \end{array}$ | $\begin{array}{c} (v_j(n)) = \\ \hline MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.10 \\ 0.10 \end{array}$                                                                                                                | = sigmoid,<br><b>S</b><br><i>MARD</i><br>53.17%<br>68.08%<br>47.20%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br>mrprised<br>RMSE<br>0.11<br>0.13<br>0.11<br>0.21<br>0.23<br>0.23<br>0.27<br>0.14<br>0.10<br>0.10<br>0.05<br>0.06<br>0.29                                     | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = 83 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                          |                                                                                                                                                       | $\begin{array}{c} MAE \\ \hline 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.01 \\ 0.06 \\ 0.03 \\ 0.07 \\ 0.03 \\ 0.01 \end{array}$                                                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * * * 75.40% 97.44%                                                      | Test 12<br>Happy<br><i>RMSE</i><br>0.17<br>0.23<br>0.67<br>0.36<br>0.35<br>0.31<br>0.34<br>0.22<br>0.23<br>0.22<br>0.10<br>0.71<br>0.28                                                                                      | MAE           0.02           0.02           0.02           0.02           0.04           0.03           0.04           0.03           0.04           0.03           0.04           0.03           0.04           0.03           0.04           0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion Reco $MARD$<br>*<br>81.51%<br>91.29%<br>*<br>*<br>59.57%<br>81.09%<br>*<br>75.29%<br>52.57%<br>19.93%<br>28.61% | $\begin{array}{c} \textbf{pgnition} \\ \hline \textbf{Sad} \\ \hline RMSE \\ \hline 0.42 \\ 0.82 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.31 \\ 0.42 \\ 2.58 \\ 0.55 \\ 0.06 \\ 0.39 \\ \end{array}$                                 | $+ \mathbf{RTO}$ $MAE$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.04 0.06 0.26 0.15 0.02 0.03                                              | $\begin{array}{c} \textbf{R} \ \textbf{[HR+H]} \\ \hline MARD \\ 80.26\% \\ 72.14\% \\ 64.47\% \\ * \\ * \\ 40.72\% \\ * \\ * \\ 65.98\% \\ * \\ 54.83\% \\ 57.90\% \end{array}$        | <b>EEG</b> ] - φ <sub>2</sub><br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.69<br>0.70<br>0.30<br>0.22<br>0.35<br>0.37<br>0.90<br>0.17<br>0.36<br>1.07                                               | $\begin{array}{c} MAE \\ \hline MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.10 \\ 0.10 \end{array}$                                                                                                                               | = sigmoid,<br><b>S</b><br><i>MARD</i><br>53.17%<br>68.08%<br>47.20%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br>mrprised<br>RMSE<br>0.11<br>0.13<br>0.11<br>0.21<br>0.23<br>0.23<br>0.23<br>0.27<br>0.14<br>0.10<br>0.10<br>0.10<br>0.05<br>0.06<br>0.29                     | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = 83 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>67.95%<br>63.29%<br>36.52%<br>50.69%<br>38.10%<br>47.40% |                                                                                                                                                       | $\begin{array}{c} MAE \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.11 \\ 0.06 \\ 0.03 \\ 0.07 \\ 0.03 \\ 0.01 \end{array}$                                                                                                                              | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * *                                                          | Test 12<br>Happy<br><i>RMSE</i><br>0.17<br>0.23<br>0.67<br>0.36<br>0.35<br>0.31<br>0.34<br>0.22<br>0.23<br>0.22<br>0.10<br>0.71<br>0.28<br>►                                                                                 | 2 - Emo<br><i>MAE</i><br>0.02<br>0.02<br>0.02<br>0.02<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.02<br>0.03<br>0.20<br>0.02<br>1.20<br>0.20<br>0.20<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.02<br>0.02<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.03<br>0.20<br>0.02<br>0.03<br>0.20<br>0.03<br>0.20<br>0.02<br>0.03<br>0.20<br>0.02<br>0.03<br>0.20<br>0.02<br>0.02<br>0.03<br>0.20<br>0.02<br>0.02<br>0.02<br>0.02<br>0.03<br>0.20<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion Reco $MARD$<br>* 81.51%<br>91.29%<br>* *<br>* 59.57%<br>81.09%<br>* 75.29%<br>52.57%<br>19.93%<br>28.61%        | Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06           0.39                    | $+ \mathbf{RTO}$ $MAE$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.06 0.26 0.15 0.02 0.03 9                                                 | $\begin{array}{c} \textbf{R} \ \textbf{[HR+H]} \\ \hline MARD \\ \hline 80.26\% \\ 72.14\% \\ 64.47\% \\ * \\ * \\ 40.72\% \\ * \\ * \\ 65.98\% \\ * \\ 54.83\% \\ 57.90\% \end{array}$ | <b>EEG]</b> - φ <sub>3</sub><br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.29<br>0.69<br>0.70<br>0.30<br>0.22<br>0.35<br>0.37<br>0.90<br>0.17<br>0.36<br>1.07<br><b>9</b>                            | $\frac{MAE}{0.04}$ $\frac{0.04}{0.03}$ $\frac{0.03}{0.03}$ $\frac{0.08}{0.02}$ $\frac{0.02}{0.02}$ $\frac{0.02}{0.05}$ $\frac{0.06}{0.09}$ $\frac{0.05}{0.10}$ $\frac{0.10}{0.10}$                                                                                                             | = sigmoid,<br><b>M</b> ARD<br>53.17%<br>68.08%<br>47.20%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*            | opt='sg<br>urprised<br><u>RMSE</u><br>0.11<br>0.13<br>0.11<br>0.21<br>0.32<br>0.23<br>0.23<br>0.27<br>0.14<br>0.10<br>0.10<br>0.05<br>0.06<br>0.29<br><b>∞</b>          | $\begin{array}{c} \mathbf{d'}, \ N_h = \\ \hline \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 83 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>67.95%<br>63.29%<br>36.52%<br>50.69%<br>38.10%<br>47.40% | $N_o = 5$<br>Scared<br>RMSE<br>0.31<br>0.39<br>0.35<br>0.38<br>0.39<br>0.37<br>0.33<br>0.90<br>0.47<br>0.27<br>0.26<br>0.10<br>0.16                   | <i>MAE</i><br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.0                                                                                                                                                                                               | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * * * * 75.40% 97.44%                                                    | Test 12<br>Happy<br><i>RMSE</i><br>0.17<br>0.23<br>0.67<br>0.36<br>0.35<br>0.31<br>0.34<br>0.22<br>0.23<br>0.22<br>0.10<br>0.71<br>0.28                                                                                      | 2 - Emo<br>MAE<br>0.02<br>0.02<br>0.02<br>0.02<br>0.04<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.02<br>0.03<br>0.20<br>0.02<br>0.02<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.02<br>0.04<br>0.02<br>0.02<br>0.04<br>0.02<br>0.02<br>0.03<br>0.04<br>0.02<br>0.02<br>0.02<br>0.02<br>0.03<br>0.02<br>0.02<br>0.02<br>0.03<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | tion Reco $MARD$<br>* 81.51%<br>91.29%<br>* *<br>59.57%<br>81.09%<br>* 75.29%<br>52.57%<br>19.93%<br>28.61%          | Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06           0.39                    | + RTO<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br>90:0       | $\begin{array}{c} \textbf{R} \ \textbf{[HR+H]} \\ \hline MARD \\ \hline 80.26\% \\ 72.14\% \\ 64.47\% \\ * \\ * \\ 40.72\% \\ * \\ * \\ 65.98\% \\ * \\ 54.83\% \\ 57.90\% \end{array}$ | EEG] - φ <sub>3</sub><br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.29<br>0.29<br>0.69<br>0.70<br>0.30<br>0.22<br>0.35<br>0.37<br>0.90<br>0.17<br>0.36<br>1.07                                              | $\begin{array}{c} MAE \\ \hline MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.10 \\ 0.10 \\ \hline $ | = sigmoid,<br><u>MARD</u><br>53.17%<br>68.08%<br>47.20%<br>*<br>*<br>*<br>*<br>85.55%<br>47.93%<br>92.57%<br>*<br>*                  | opt='sg<br>urprised<br>RMSE<br>0.11<br>0.13<br>0.11<br>0.21<br>0.32<br>0.23<br>0.23<br>0.27<br>0.14<br>0.10<br>0.10<br>0.05<br>0.06<br>0.29                             | $     d', N_h = \frac{MAE}{0.01} \\     0.01 \\     0.01 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.03 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\     000 \\  $ | = 83 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>67.95%<br>63.29%<br>36.52%<br>50.69%<br>38.10%<br>47.40%      | $N_o = 5$<br>Scared<br>RMSE<br>0.31<br>0.39<br>0.35<br>0.38<br>0.39<br>0.37<br>0.33<br>0.90<br>0.47<br>0.27<br>0.26<br>0.10<br>0.16                   | MAE<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.03<br>0.07<br>0.03<br>0.01<br><b>20</b> 0                                                                                                                                              | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | Test 12<br>Happy<br><i>RMSE</i><br>0.17<br>0.23<br>0.67<br>0.36<br>0.35<br>0.31<br>0.34<br>0.22<br>0.23<br>0.22<br>0.10<br>0.71<br>0.28<br>▲<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0<br>1.0                         | 2 - Emo<br>MAE<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.02<br>0.03<br>0.20<br>0.02<br>100<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.04<br>0.02<br>0.04<br>0.04<br>0.02<br>0.04<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.04<br>0.03<br>0.04<br>0.04<br>0.04<br>0.02<br>0.04<br>0.04<br>0.03<br>0.04<br>0.04<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.03<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.02<br>0.04<br>0.02<br>0.02<br>0.04<br>0.02<br>0.02<br>0.04<br>0.02<br>0.02<br>0.04<br>0.02<br>0.02<br>0.02<br>0.04<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tion Reco $MARD$<br>* 81.51%<br>91.29%<br>* *<br>* 59.57%<br>81.09%<br>* 75.29%<br>52.57%<br>19.93%<br>28.61%        | Ognition           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06           0.39 | + RTO<br>MAE<br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br>90.00<br>+        | $\begin{array}{c} \textbf{R} \ \textbf{[HR+H]} \\ \hline MARD \\ \hline 80.26\% \\ 72.14\% \\ 64.47\% \\ * \\ * \\ 40.72\% \\ * \\ * \\ 65.98\% \\ * \\ 54.83\% \\ 57.90\% \end{array}$ | EEG] - <i>φ</i> <sub>3</sub><br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.29<br>0.29<br>0.69<br>0.70<br>0.30<br>0.22<br>0.35<br>0.37<br>0.90<br>0.17<br>0.36<br>1.07                                       | $(v_j(n)) = MAE$<br>0.04<br>0.03<br>0.03<br>0.03<br>0.08<br>0.02<br>0.02<br>0.02<br>0.02<br>0.05<br>0.06<br>0.09<br>0.05<br>0.10<br>0.10<br>0.10                                                                                                                                               | = sigmoid,<br><u>MARD</u><br>53.17%<br>68.08%<br>47.20%<br>*<br>*<br>*<br>85.55%<br>47.93%<br>92.57%<br>*<br>*                       | opt='sg<br>urprised<br><i>RMSE</i><br>0.11<br>0.13<br>0.11<br>0.21<br>0.32<br>0.23<br>0.27<br>0.14<br>0.10<br>0.10<br>0.10<br>0.05<br>0.06<br>0.29<br><b>80</b><br>     | $\begin{array}{c} \mathbf{d'}, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.02 \\ 0.04 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 83 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>67.95%<br>63.29%<br>36.52%<br>50.69%<br>38.10%<br>47.40%           | $N_o = 5$<br>Scared<br>RMSE<br>0.31<br>0.39<br>0.35<br>0.38<br>0.39<br>0.37<br>0.33<br>0.90<br>0.47<br>0.27<br>0.26<br>0.10<br>0.16                   | <i>MAE</i><br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.0                                                                                                                                                                                               | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | Test 12           Happy <i>RMSE</i> 0.17           0.23           0.67           0.36           0.35           0.31           0.32           0.22           0.23           0.22           0.10           0.71           0.28 | 2 - Emo<br><i>MAE</i><br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.02<br>0.03<br>0.20<br>0.02<br><b>*0.0</b><br>0.04<br>0.02<br>0.02<br><b>*0.0</b><br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br><b>*0.0</b><br>0.04<br>0.02<br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b><br><b>*0.0</b> | tion Reco $MARD$<br>* 81.51%<br>91.29%<br>* *<br>* 59.57%<br>81.09%<br>* 75.29%<br>52.57%<br>19.93%<br>28.61%        | Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06           0.39                    | + RTO<br>MAE<br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br>90.00<br>H<br>80. | $\begin{array}{c} \textbf{R} \ \textbf{[HR+H]} \\ \hline MARD \\ \hline 80.26\% \\ 72.14\% \\ 64.47\% \\ * \\ * \\ 40.72\% \\ * \\ * \\ 65.98\% \\ * \\ 54.83\% \\ 57.90\% \end{array}$ | EEG] - <i>φ</i> <sub>3</sub><br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.29<br>0.69<br>0.70<br>0.30<br>0.22<br>0.35<br>0.37<br>0.90<br>0.17<br>0.36<br>1.07<br>97.0<br>H<br>88<br>4                       | i(v <sub>j</sub> (n)) =<br><u>MAE</u><br>0.04<br>0.03<br>0.03<br>0.03<br>0.08<br>0.02<br>0.02<br>0.02<br>0.05<br>0.06<br>0.09<br>0.05<br>0.10<br>0.10<br><b>C0.0</b><br><b>H</b><br><b>90.</b>                                                                                                 | = sigmoid,<br><u>MARD</u><br>53.17%<br>68.08%<br>47.20%<br>*<br>*<br>*<br>85.55%<br>47.93%<br>92.57%<br>*<br>*                       | opt='sg<br>urprised<br><i>RMSE</i><br>0.11<br>0.13<br>0.11<br>0.21<br>0.32<br>0.23<br>0.27<br>0.14<br>0.10<br>0.10<br>0.05<br>0.06<br>0.29<br><b>80.00</b><br>++<br>91. | $     d', N_h = \frac{MAE}{0.01} \\     0.01 \\     0.01 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.03 \\     0.02 \\     0.02 \\     0.03 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.03 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.03 \\     0.02 \\     0.02 \\     0.03 \\     0.02 \\     0.03 \\     0.02 \\     0.03 \\     0.02 \\     0.03 \\     0.02 \\     0.03 \\     0.02 \\     0.03 \\     0.02 \\     0.03 \\     0.02 \\     0.03 \\     0.02 \\     0.03 \\     0.02 \\     0.03 \\     0.02 \\     0.03 \\     0.02 \\     0.03 \\     0.02 \\     0.03 \\     0.02 \\     0.03 \\     0.02 \\     0.03 \\     0.02 \\     0.03 \\     0.00 \\     0.02 \\     0.03 \\     0.00 \\     0.02 \\     0.03 \\     0.00 \\     0.02 \\     0.03 \\     0.00 \\     0.02 \\     0.03 \\     0.00 \\     0.02 \\     0.03 \\     0.00 \\     0.02 \\     0.03 \\     0.00 \\     0.02 \\     0.03 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\  $                  | = 83 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>67.95%<br>63.29%<br>36.52%<br>50.69%<br>38.10%<br>47.40%      | $N_o = 5$<br>Scared<br>RMSE<br>0.31<br>0.39<br>0.35<br>0.38<br>0.39<br>0.37<br>0.33<br>0.90<br>0.47<br>0.27<br>0.26<br>0.10<br>0.16<br>81.0<br>H 998. | MAE         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.04         0.03         0.07         0.03         0.01 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |

TABLE 9.8. Emotion recognition results tests 11 and 12. ANN with  $6 \times 10^3$  train epochs and input data with feature extraction.

|                                                                                                                                                               |                                                                                                     | Test 13                                                                                                                                                                                                                                                                                                                            | - Emot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ion Recog                                                                                                                                                                                                                                                                                                               | gnition +                                                                                                                                                                                                                                 | - RTOR                                                                                                                                                     | [HR+E                                                                                                                                                           | EG] - $\varphi_j($                                                                                                                                                                                                     | $v_j(n)) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | sigmoid,                                                                                           | opt='ada                                                                                                                                                                    | m', $N_h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $= 83 \times 2,$                                                                                                                                                    | $N_o = 5$                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flight                                                                                                                                                        |                                                                                                     | Нарру                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                         | Sad                                                                                                                                                                                                                                       |                                                                                                                                                            |                                                                                                                                                                 | Angry                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S                                                                                                  | urprised                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                     | Scared                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Match                                                                                                                                                                                                                                           |
| Dataset                                                                                                                                                       | MARD                                                                                                | RMSE                                                                                                                                                                                                                                                                                                                               | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MARD                                                                                                                                                                                                                                                                                                                    | RMSE                                                                                                                                                                                                                                      | MAE                                                                                                                                                        | MARD                                                                                                                                                            | RMSE                                                                                                                                                                                                                   | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MARD                                                                                               | RMSE                                                                                                                                                                        | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MARD                                                                                                                                                                | RMSE                                                                                                                                                                                                                        | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Accuracy (%)                                                                                                                                                                                                                                    |
| DS:RC1                                                                                                                                                        | *                                                                                                   | 0.16                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                                                                                                                                                                                       | 0.81                                                                                                                                                                                                                                      | 0.08                                                                                                                                                       | *                                                                                                                                                               | 0.56                                                                                                                                                                                                                   | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35.43%                                                                                             | 0.11                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                                                                                                                                                   | 0.20                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>47.76</b> ( <b>32</b> /67)                                                                                                                                                                                                                   |
| DS:RC2                                                                                                                                                        | *                                                                                                   | 0.20                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81.09%                                                                                                                                                                                                                                                                                                                  | 0.87                                                                                                                                                                                                                                      | 0.08                                                                                                                                                       | *                                                                                                                                                               | 0.46                                                                                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38.61%                                                                                             | 0.12                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                                                                                                                                                   | 0.22                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>57.69</b> (45/78)                                                                                                                                                                                                                            |
| DS:RC3                                                                                                                                                        | *                                                                                                   | 0.84                                                                                                                                                                                                                                                                                                                               | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 77.38%                                                                                                                                                                                                                                                                                                                  | 1.58                                                                                                                                                                                                                                      | 0.13                                                                                                                                                       | 51.85%                                                                                                                                                          | 0.34                                                                                                                                                                                                                   | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.65%                                                                                              | 0.14                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                                                                                                                                                   | 0.21                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>53.42</b> ( <b>39</b> /73)                                                                                                                                                                                                                   |
| DS:GC1                                                                                                                                                        | *                                                                                                   | 0.20                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                                                                                                                                                                                       | 1.82                                                                                                                                                                                                                                      | 0.18                                                                                                                                                       | *                                                                                                                                                               | 0.65                                                                                                                                                                                                                   | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 67.62%                                                                                             | 0.07                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                                                                                                                                                   | 0.23                                                                                                                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>22.66</b> (17/75)                                                                                                                                                                                                                            |
| DS:GC3                                                                                                                                                        | *                                                                                                   | 0.11                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 96.73%                                                                                                                                                                                                                                                                                                                  | 0.24                                                                                                                                                                                                                                      | 0.02                                                                                                                                                       | *                                                                                                                                                               | 0.23                                                                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                  | 0.10                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                                                                                                                                                   | 0.21                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>100.00</b> ( <b>78</b> /78)                                                                                                                                                                                                                  |
| DS:LS1                                                                                                                                                        | *                                                                                                   | 0.22                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                                                                                                                                                                                       | 1.14                                                                                                                                                                                                                                      | 0.10                                                                                                                                                       | *                                                                                                                                                               | 0.40                                                                                                                                                                                                                   | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 66.70%                                                                                             | 0.09                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                                                                                                                                                   | 0.15                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 22.54(23/102)                                                                                                                                                                                                                                   |
| DS:LS2                                                                                                                                                        | *                                                                                                   | 0.34                                                                                                                                                                                                                                                                                                                               | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 63.24%                                                                                                                                                                                                                                                                                                                  | 0.45                                                                                                                                                                                                                                      | 0.04                                                                                                                                                       | 80.18%                                                                                                                                                          | 0.41                                                                                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                  | 0.14                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                                                                                                                                                   | 0.23                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53.33 (40/75)                                                                                                                                                                                                                                   |
| DS:VC1                                                                                                                                                        | *                                                                                                   | 0.13                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 41.49%                                                                                                                                                                                                                                                                                                                  | 0.21                                                                                                                                                                                                                                      | 0.03                                                                                                                                                       | *                                                                                                                                                               | 0.26                                                                                                                                                                                                                   | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23.76%                                                                                             | 0.05                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 84.91%                                                                                                                                                              | 1.04                                                                                                                                                                                                                        | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12.50(6/48)                                                                                                                                                                                                                                     |
| DS:VC2                                                                                                                                                        | *                                                                                                   | 0.19                                                                                                                                                                                                                                                                                                                               | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                                                                                                                                                                                       | 0.76                                                                                                                                                                                                                                      | 0.09                                                                                                                                                       | *                                                                                                                                                               | 0.50                                                                                                                                                                                                                   | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27.03%                                                                                             | 0.06                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63.35%                                                                                                                                                              | 0.53                                                                                                                                                                                                                        | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>23.68</b> (9/38)                                                                                                                                                                                                                             |
| DS:CR1                                                                                                                                                        | *                                                                                                   | 0.23                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 72.54%                                                                                                                                                                                                                                                                                                                  | 2.47                                                                                                                                                                                                                                      | 0.25                                                                                                                                                       | 55.38%                                                                                                                                                          | 0.76                                                                                                                                                                                                                   | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38.66%                                                                                             | 0.12                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60.34%                                                                                                                                                              | 0.40                                                                                                                                                                                                                        | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>54.79</b> $(40/73)$                                                                                                                                                                                                                          |
| DS:CR3                                                                                                                                                        | *                                                                                                   | 0.05                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84.43%                                                                                                                                                                                                                                                                                                                  | 0.65                                                                                                                                                                                                                                      | 0.20                                                                                                                                                       | *                                                                                                                                                               | 0.18                                                                                                                                                                                                                   | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 16.66%                                                                                             | 0.01                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 61.17%                                                                                                                                                              | 0.27                                                                                                                                                                                                                        | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 77.77 (7/9)                                                                                                                                                                                                                                     |
| DS:CLX                                                                                                                                                        | 89.97%                                                                                              | 0.77                                                                                                                                                                                                                                                                                                                               | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 70.03%                                                                                                                                                                                                                                                                                                                  | 0.22                                                                                                                                                                                                                                      | 0.06                                                                                                                                                       | 74.87%                                                                                                                                                          | 0.48                                                                                                                                                                                                                   | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                  | 0.05                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 65.55%                                                                                                                                                              | 0.16                                                                                                                                                                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>0.00</b> ( <b>0</b> /10)                                                                                                                                                                                                                     |
| DS:CL3                                                                                                                                                        | 81.74%                                                                                              | 0.33                                                                                                                                                                                                                                                                                                                               | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 86.35%                                                                                                                                                                                                                                                                                                                  | 1.08                                                                                                                                                                                                                                      | 0.09                                                                                                                                                       | 44.15%                                                                                                                                                          | 0.87                                                                                                                                                                                                                   | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                  | 0.16                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34.68%                                                                                                                                                              | 0.16                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $15.11 \ (13/86)$                                                                                                                                                                                                                               |
|                                                                                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                           |                                                                                                                                                            |                                                                                                                                                                 |                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 44                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                                                                                     | 33                                                                                                                                                                                                                                                                                                                                 | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                         | 35                                                                                                                                                                                                                                        | 90                                                                                                                                                         |                                                                                                                                                                 | 61                                                                                                                                                                                                                     | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    | 74                                                                                                                                                                          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                     | 53                                                                                                                                                                                                                          | )3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.6                                                                                                                                                                                                                                             |
|                                                                                                                                                               |                                                                                                     | 0.5                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                         | 0.6                                                                                                                                                                                                                                       | 0.0                                                                                                                                                        |                                                                                                                                                                 | 0.0                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                    | 0.0                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     | 00                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>7</b><br>+                                                                                                                                                                                                                                   |
|                                                                                                                                                               |                                                                                                     | +6                                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                         | ы<br>Н                                                                                                                                                                                                                                    | $\pm 0$                                                                                                                                                    |                                                                                                                                                                 | +                                                                                                                                                                                                                      | <del>+</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                    | +6                                                                                                                                                                          | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                     | ++                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                                                                                     | 10                                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                         | .9                                                                                                                                                                                                                                        | .1                                                                                                                                                         |                                                                                                                                                                 | 4                                                                                                                                                                                                                      | Õ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                    | 0.0                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                     | ÷.                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - E                                                                                                                                                                                                                                             |
|                                                                                                                                                               |                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                  | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                         | <u> </u>                                                                                                                                                                                                                                  | 0                                                                                                                                                          |                                                                                                                                                                 | 0                                                                                                                                                                                                                      | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                    | 0                                                                                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                     | <u> </u>                                                                                                                                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | マ                                                                                                                                                                                                                                               |
|                                                                                                                                                               |                                                                                                     | Teat 1                                                                                                                                                                                                                                                                                                                             | 1 Em                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ation Doc                                                                                                                                                                                                                                                                                                               | ognition                                                                                                                                                                                                                                  |                                                                                                                                                            | DIUDI                                                                                                                                                           |                                                                                                                                                                                                                        | (a, (a)))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $- P_{0}III$                                                                                       | ont-land                                                                                                                                                                    | 12 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $92 \times 2$ M                                                                                                                                                     |                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                 |
| Flight                                                                                                                                                        |                                                                                                     | Test 1<br>Happy                                                                                                                                                                                                                                                                                                                    | 4 - Em                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | otion Rec                                                                                                                                                                                                                                                                                                               | cognition<br>Sad                                                                                                                                                                                                                          | + RTC                                                                                                                                                      | R [HR+                                                                                                                                                          | <b>EEG</b> ] - $\varphi$                                                                                                                                                                                               | $v_j(v_j(n))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = ReLU,                                                                                            | opt='sgd                                                                                                                                                                    | l', $N_h =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $83 \times 2, N$                                                                                                                                                    | $f_o = 5$                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Match                                                                                                                                                                                                                                           |
| Flight                                                                                                                                                        | MARD                                                                                                | Test 1<br>Happy<br>BMSE                                                                                                                                                                                                                                                                                                            | 4 - Emo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | otion Rec                                                                                                                                                                                                                                                                                                               | cognition<br>Sad<br>BMSE                                                                                                                                                                                                                  | $+ \mathbf{RTC}$                                                                                                                                           | R [HR+                                                                                                                                                          | $\frac{\mathbf{EEG}] - \varphi}{\mathbf{Angry}}$                                                                                                                                                                       | $\frac{1}{\sum_{j \in V_j(n)}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = ReLU, <b>S</b>                                                                                   | opt='sgc<br>urprised<br>BMSE                                                                                                                                                | $N_h = MAE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $83 \times 2, N$                                                                                                                                                    | $f_o = 5$<br>Scared<br>RMSE                                                                                                                                                                                                 | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Match                                                                                                                                                                                                                                           |
| Flight<br>Dataset                                                                                                                                             | MARD<br>*                                                                                           | Test 1<br>Happy<br>RMSE                                                                                                                                                                                                                                                                                                            | 4 - Emo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | otion Rec<br>MARD<br>*                                                                                                                                                                                                                                                                                                  | cognition<br>Sad<br>RMSE                                                                                                                                                                                                                  | + RTC<br>MAE                                                                                                                                               | <b>R</b> [ <b>HR</b> +<br><i>MARD</i><br>77.85%                                                                                                                 | $\frac{\mathbf{EEG}] - \varphi}{\mathbf{Angry}}$ $\frac{RMSE}{0.50}$                                                                                                                                                   | $\frac{D}{D_j(v_j(n))}$ $\frac{MAE}{0.04}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = ReLU, $S$ $MARD$ $40.86%$                                                                        | opt='sgo<br>urprised<br>RMSE                                                                                                                                                | $\mathbf{I}^{\prime}, N_h = $ $\frac{MAE}{0.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\frac{83 \times 2, N}{MARD}$                                                                                                                                       | $f_o = 5$<br>Scared<br>RMSE                                                                                                                                                                                                 | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Match<br>Accuracy (%)                                                                                                                                                                                                                           |
| Flight<br>Dataset<br>DS:RC1<br>DS:BC2                                                                                                                         | MARD<br>*                                                                                           | <b>Test 1</b><br><b>Happy</b><br><i>RMSE</i><br>0.16<br>0.17                                                                                                                                                                                                                                                                       | <b>4 - Eme</b><br>MAE<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MARD                                                                                                                                                                                                                                                                                                                    | cognition<br>Sad<br>RMSE<br>0.42<br>0.82                                                                                                                                                                                                  | + RTC<br>MAE<br>0.04<br>0.07                                                                                                                               | <b>R</b> [ <b>HR</b> +<br><i>MARD</i><br>77.85%<br>69.82%                                                                                                       | <b>EEG] -</b> φ<br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29                                                                                                                                                         | $\frac{MAE}{0.04}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = ReLU, $S$ $MARD$ $40.86%$ $40.09%$                                                               | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12                                                                                                                                | $\frac{\mathbf{N}_{h}}{MAE}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $83 \times 2, N$ $MARD$ * *                                                                                                                                         |                                                                                                                                                                                                                             | MAE<br>0.02<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82 05 (64/78)                                                                                                                                                                                         |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3                                                                                                               | MARD<br>*<br>*                                                                                      | Test 1<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78                                                                                                                                                                                                                                                                             | <b>4 - Emo</b><br><u>MAE</u><br>0.02<br>0.02<br>0.02<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MARD           *           81.44%           91.25%                                                                                                                                                                                                                                                                      | cognition<br>Sad<br>RMSE<br>0.42<br>0.82<br>1.37                                                                                                                                                                                          | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11                                                                                                                | <b>R</b> [ <b>HR</b> +<br><i>MARD</i><br>77.85%<br>69.82%<br>61.95%                                                                                             | <b>EEG] -</b> φ<br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.28                                                                                                                                                 | $\frac{MAE}{0.04}$ 0.03 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = ReLU,<br><b>S</b><br>MARD<br>40.86%<br>40.09%<br>6.42%                                           | opt='sgd<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12                                                                                                                 | $   \begin{array}{l}     \mathbf{N}_{h} = \\     \underline{MAE} \\     \hline     0.01 \\     0.01 \\     0.01   \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83 × 2, N<br>MARD<br>*<br>*                                                                                                                                         |                                                                                                                                                                                                                             | MAE<br>0.02<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57 53 (42/73)                                                                                                                                                                        |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:CC1                                                                                                     | <i>MARD</i><br>*<br>*<br>*                                                                          | Test 1<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24                                                                                                                                                                                                                                                                     | 4 - Emo<br>MAE<br>0.02<br>0.02<br>0.07<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MARD           *           81.44%           91.25%           *                                                                                                                                                                                                                                                          | <b>Sad</b><br><i>RMSE</i><br>0.42<br>0.82<br>1.37<br>0.96                                                                                                                                                                                 | + <b>RTC</b><br>MAE<br>0.04<br>0.07<br>0.11<br>0.11                                                                                                        | <b>PR [HR+</b><br><i>MARD</i><br>77.85%<br>69.82%<br>61.95%<br>*                                                                                                | <b>EEG] -</b> φ<br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68                                                                                                                                         | $\frac{MAE}{0.04}$ 0.03 0.03 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = ReLU, <b>S</b> <i>MARD</i> 40.86% 40.09% 6.42% 56.91%                                            | opt='sgd<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.12<br>0.06                                                                                                 | $V, N_h = \frac{MAE}{0.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 83 × 2, N<br>MARD<br>*<br>*<br>*                                                                                                                                    | $f_o = 5$<br>Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.25                                                                                                                                                          | $\frac{MAE}{0.02} \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\$ | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22 66 (17/75)                                                                                                                                                       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3                                                                                           | MARD * * * * * *                                                                                    | Test 1<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22                                                                                                                                                                                                                                                             | <b>4 - Emo</b><br><i>MAE</i><br>0.02<br>0.02<br>0.07<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MARD           *           81.44%           91.25%           *                                                                                                                                                                                                                                                          | <b>Sad</b><br><i>RMSE</i><br>0.42<br>0.82<br>1.37<br>0.96<br>0.82                                                                                                                                                                         | + <b>RTC</b><br>MAE<br>0.04<br>0.07<br>0.11<br>0.11<br>0.09                                                                                                | <b>PR</b> [ <b>HR</b> +<br><u>MARD</u><br>77.85%<br>69.82%<br>61.95%<br>*<br>*                                                                                  | <b>EEG] -</b> <i>\varphi</i><br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69                                                                                                                    | $\frac{MAE}{0.04} \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\$ | = ReLU, <b>S</b> <i>MARD</i> 40.86% 40.09% 6.42% 56.91% *                                          | opt='sgd<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15                                                                                         | $\frac{V, N_h = 0.01}{0.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 83 × 2, N<br>MARD<br>*<br>*<br>*<br>*                                                                                                                               | $b_{o} = 5$<br>Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.25<br>0.27                                                                                                                                                | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)                                                                                                                                     |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1                                                                                 | MARD<br>*<br>*<br>*<br>*<br>*                                                                       | Test 1<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17                                                                                                                                                                                                                                                     | <b>4 - Em</b><br><i>MAE</i><br>0.02<br>0.02<br>0.07<br>0.03<br>0.03<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MARD         *           *         81.44%           91.25%         *           *         *                                                                                                                                                                                                                              | <b>Sad</b><br><i>RMSE</i><br>0.42<br>0.82<br>1.37<br>0.96<br>0.82<br>0.65                                                                                                                                                                 | + <b>RTC</b><br>MAE<br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06                                                                                        | PR [HR+<br><u>MARD</u><br>77.85%<br>69.82%<br>61.95%<br>*<br>*<br>*                                                                                             | EEG] - φ<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30                                                                                                                                       | $\frac{MAE}{0.04}$ 0.03 0.03 0.08 0.08 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = ReLU, <b>S</b> <i>MARD</i> 40.86% 40.09% 6.42% 56.91% * 53.04%                                   | opt='sgo<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07                                                                                         | $\frac{V, N_h = 0.01}{0.01}$ $\frac{MAE}{0.01}$ $\frac{0.01}{0.01}$ $\frac{0.01}{0.02}$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*                                                                                                                     | $b_o = 5$<br>Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.25<br>0.27<br>0.23                                                                                                                                          | $\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)                                                                                                                   |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2                                                                       | MARD<br>*<br>*<br>*<br>*<br>*<br>*                                                                  | Test 1<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22                                                                                                                                                                                                                                             | <b>4 - Eme</b><br><i>MAE</i><br>0.02<br>0.02<br>0.07<br>0.03<br>0.03<br>0.02<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MARD         *           *         81.44%           91.25%         *           *         *           59.94%         *                                                                                                                                                                                                   | <b>Sad</b><br><i>RMSE</i><br>0.42<br>0.82<br>1.37<br>0.96<br>0.82<br>0.65<br>0.38                                                                                                                                                         | $+ \mathbf{RTC}$ $MAE$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04                                                                                                  | PR [HR+<br><u>MARD</u><br>77.85%<br>69.82%<br>61.95%<br>*<br>*<br>*<br>39.85%                                                                                   | EEG] - ¢<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21                                                                                                                               | $\frac{MAE}{0.04}$ 0.03 0.03 0.08 0.08 0.02 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = ReLU, <b>S</b> <i>MARD</i> 40.86% 40.09% 6.42% 56.91% * 53.04% *                                 | opt='sgo<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11                                                                                 | $\begin{array}{l} \mathbf{P}, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 83 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                                           | $b_o = 5$<br>Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.25<br>0.27<br>0.23<br>0.06                                                                                                                                  | $\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)                                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1                                                             | MARD * * * * * * * * * *                                                                            | Test 1<br>Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13                                                                                                                                                                                                                                            | <b>4 - Eme</b><br><i>MAE</i><br>0.02<br>0.02<br>0.07<br>0.03<br>0.03<br>0.02<br>0.03<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MARD           *           81.44%           91.25%           *           *           59.94%           82.02%                                                                                                                                                                                                            | cognition           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65           0.38           0.32                                                                            | $+ \mathbf{RTC}$ $MAE$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04 0.04                                                                                             | PR [HR+<br><u>MARD</u><br>77.85%<br>69.82%<br>61.95%<br>*<br>*<br>39.85%<br>*                                                                                   | EEG] - ¢<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21<br>0.35                                                                                                                       | $\frac{MAE}{0.04}$ 0.03 0.03 0.08 0.08 0.02 0.02 0.02 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = ReLU, <b>S</b> <i>MARD</i> 40.86% 40.09% 6.42% 56.91% * 53.04% * 23.70%                          | opt='sgo<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04                                                                                | $\begin{array}{l} \mathbf{P}, \ N_h = \\ \hline \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 83 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>99.66%<br>78.94%                                                                             | $b_o = 5$<br>Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.25<br>0.27<br>0.23<br>0.06<br>1.01                                                                                                                          | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.01<br>0 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2                                                   | MARD * * * * * * * * * * * *                                                                        | Test 1           Happy           RMSE           0.16           0.17           0.78           0.24           0.22           0.17           0.22           0.17                                                                                                                                                                      | A - Eme           MAE           0.02           0.02           0.07           0.03           0.02           0.03           0.02           0.03           0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{c} \hline \textbf{MARD} \\ \hline \textbf{*} \\ 81.44\% \\ 91.25\% \\ \textbf{*} \\ \textbf{*} \\ \textbf{*} \\ 59.94\% \\ 82.02\% \\ \textbf{*} \end{array}$                                                                                                                                            | cognition           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65           0.38           0.32           0.42                                                             | $+ \mathbf{RTC}$ $\frac{MAE}{0.04}$ 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.06                                                                                | PR [HR+<br><u>MARD</u><br>77.85%<br>69.82%<br>61.95%<br>*<br>*<br>39.85%<br>*<br>*                                                                              | EEG] - ¢<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21<br>0.35<br>0.36                                                                                                                      | $\begin{array}{c} \hline mAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = ReLU, <b>S</b> <i>MARD</i> 40.86% 40.09% 6.42% 56.91% * 53.04% * 23.70% 28.62%                   | opt='sgo<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07                                                                | $\begin{array}{c} \mathbf{P}, \ N_h = \\ \hline \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 83 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>99.66%<br>78.94%<br>66.87%                                                                                       | $b_o = 5$<br>Scared<br>RMSE<br>0.19<br>0.26<br>0.24<br>0.25<br>0.27<br>0.23<br>0.06<br>1.01<br>0.55                                                                                                                         | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.13 \\ 0.07 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)                                                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CB1                               | MARD * * * * * * * * * * * * *                                                                      | Test 1           Happy           RMSE           0.16           0.17           0.78           0.24           0.22           0.17           0.22           0.17           0.23           0.14           0.12                                                                                                                         | A - Eme           MAE           0.02           0.02           0.07           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MARD           *           81.44%           91.25%           *           *           59.94%           82.02%           *           75.35%                                                                                                                                                                               | cognition           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65           0.38           0.32           0.42           2.58                                              | $+ \mathbf{RTC}$ $\frac{MAE}{0.04}$ 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.06 0.26                                                                           | PR [HR+<br><u>MARD</u><br>77.85%<br>69.82%<br>61.95%<br>*<br>*<br>39.85%<br>*<br>*<br>66.63%                                                                    | EEG] - ¢<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21<br>0.35<br>0.36<br>0.92                                                                                                              | $\begin{array}{c} MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = ReLU, <b>S</b> <i>MARD</i> 40.86% 40.09% 6.42% 56.91% * 53.04% * 23.70% 28.62% 38.25%            | opt='sgo<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12                                                        | $\begin{array}{c} \mathbf{P}, \ N_h = \\ \hline \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>99.66%<br>78.94%<br>66.87%<br>62.94%                                                                                  | $b_o = 5$<br>Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.25<br>0.27<br>0.23<br>0.06<br>1.01<br>0.55<br>0.40                                                                                                          | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.13 \\ 0.07 \\ 0.04 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)                                                |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1<br>DS:CR3                     | MARD * * * * * * * * * * * * * * *                                                                  | Test 1           Happy           RMSE           0.16           0.17           0.78           0.24           0.22           0.17           0.22           0.17           0.22           0.17           0.22           0.17           0.22           0.13           0.14           0.12           0.05                               | A - Eme           MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MARD           *           81.44%           91.25%           *           *           59.94%           82.02%           *           75.35%           52.41%                                                                                                                                                              | cognition           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65           0.38           0.32           0.42           2.58           0.55                               | $+ \mathbf{RTC}$ $\frac{MAE}{0.04}$ 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.06 0.26 0.15                                                                      | PR [HR+<br><u>MARD</u><br>77.85%<br>69.82%<br>61.95%<br>*<br>*<br>39.85%<br>*<br>*<br>66.63%<br>*                                                               | EEG] - ¢<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21<br>0.35<br>0.36<br>0.92<br>0.17                                                                                                      | $\begin{array}{c} \hline mAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = ReLU, <b>S</b> <i>MARD</i> 40.86% 40.09% 6.42% 56.91% * 53.04% * 23.70% 28.62% 38.25% 12.21%     | opt='sgo<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01                                                | $\begin{array}{c} \mathbf{P}, \ N_h = \\ \hline \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 83 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>99.66%<br>78.94%<br>66.87%<br>62.94%<br>67.04%                                                                             | $b_o = 5$<br><b>Scared</b><br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.25<br>0.27<br>0.23<br>0.06<br>1.01<br>0.55<br>0.40<br>0.29                                                                                           | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.08 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX | MARD * * * * * * * * * * * * * * * * * * *                                                          | Test         1           Happy         RMSE           0.16         0.17           0.78         0.24           0.22         0.17           0.22         0.17           0.22         0.17           0.22         0.13           0.14         0.12           0.05         0.76                                                        | $\begin{array}{c} \textbf{4 - Emo} \\ \hline \textbf{MAE} \\ \hline \textbf{0.02} \\ \textbf{0.02} \\ \textbf{0.02} \\ \textbf{0.03} \\ \textbf{0.03} \\ \textbf{0.02} \\ \textbf{0.03} \\ \textbf{0.02} \\ \textbf{0.02} \\ \textbf{0.01} \\ \textbf{0.02} \\ \textbf{0.21} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} \textbf{MARD} \\ \hline \\ \textbf{MARD} \\ \hline \\ \textbf{*} \\ \textbf{81.44\%} \\ \textbf{91.25\%} \\ \textbf{*} \\ \textbf{*} \\ \textbf{*} \\ \textbf{59.94\%} \\ \textbf{82.02\%} \\ \textbf{*} \\ \textbf{75.35\%} \\ \textbf{52.41\%} \\ \textbf{20.67\%} \end{array}$                     | $\begin{array}{c} \textbf{cognition} \\ \hline \textbf{Sad} \\ \hline RMSE \\ \hline 0.42 \\ 0.82 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.65 \\ 0.38 \\ 0.32 \\ 0.42 \\ 2.58 \\ 0.55 \\ 0.06 \\ \end{array}$                                         | $+ \text{ RTC}$ $\frac{MAE}{0.04}$ $\frac{0.07}{0.11}$ $\frac{0.11}{0.09}$ $\frac{0.06}{0.04}$ $\frac{0.04}{0.06}$ $\frac{0.26}{0.15}$ $\frac{0.02}{0.02}$ | PR [HR+<br><u>MARD</u><br>77.85%<br>69.82%<br>61.95%<br>*<br>*<br>39.85%<br>*<br>*<br>66.63%<br>*<br>56.01%                                                     | EEG] - ¢<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21<br>0.35<br>0.36<br>0.92<br>0.17<br>0.36                                                                                              | $\begin{array}{c} \hline mAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = ReLU, <b>S</b> <i>MARD</i> 40.86% 40.09% 6.42% 56.91% * 53.04% * 23.70% 28.62% 38.25% 12.21% *   | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04                                        | $\begin{array}{c} \mathbf{P}, \ N_h = \\ \hline \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>99.66%<br>78.94%<br>66.87%<br>62.94%<br>67.04%<br>60.48%                                                                   | $b_o = 5$<br><b>Scared</b><br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.25<br>0.27<br>0.23<br>0.06<br>1.01<br>0.55<br>0.40<br>0.29<br>0.14                                                                                   | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.08 \\ 0.04 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CL3 | MARD * * * * * * * * * * * * * * * * * * *                                                          | $\begin{array}{c} {\rm Test} \ 1 \\ {\rm Happy} \\ RMSE \\ \hline 0.16 \\ 0.17 \\ 0.78 \\ 0.24 \\ 0.22 \\ 0.17 \\ 0.22 \\ 0.13 \\ 0.14 \\ 0.12 \\ 0.05 \\ 0.76 \\ 0.36 \\ \end{array}$                                                                                                                                             | $\begin{array}{c} \textbf{4 - Emo} \\ \hline \textbf{MAE} \\ \hline \textbf{0.02} \\ \textbf{0.02} \\ \textbf{0.02} \\ \textbf{0.03} \\ \textbf{0.03} \\ \textbf{0.02} \\ \textbf{0.03} \\ \textbf{0.02} \\ \textbf{0.02} \\ \textbf{0.01} \\ \textbf{0.02} \\ \textbf{0.02} \\ \textbf{0.01} \\ \textbf{0.02} \\ \textbf{0.03} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MARD           *           81.44%           91.25%           *           *           59.94%           82.02%           *           75.35%           52.41%           20.67%           28.76%                                                                                                                            | $\begin{array}{c} \textbf{cognition} \\ \textbf{Sad} \\ \hline RMSE \\ 0.42 \\ 0.82 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.65 \\ 0.38 \\ 0.32 \\ 0.42 \\ 2.58 \\ 0.55 \\ 0.06 \\ 0.39 \\ \end{array}$                                               | $+ \mathbf{RTC}$ $\frac{MAE}{0.04}$ 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.06 0.26 0.15 0.02 0.03                                                            | PR [HR+<br><u>MARD</u><br>77.85%<br>69.82%<br>61.95%<br>*<br>*<br>39.85%<br>*<br>*<br>66.63%<br>*<br>56.01%<br>60.11%                                           | $\begin{array}{c} \textbf{EEG]} - \varphi \\ \hline \textbf{Angry} \\ \hline \textbf{RMSE} \\ \hline 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \\ 0.30 \\ 0.21 \\ 0.35 \\ 0.36 \\ 0.92 \\ 0.17 \\ 0.36 \\ 1.10 \end{array}$ | $\begin{array}{c} \hline mAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = ReLU, <b>S</b> <i>MARD</i> 40.86% 40.09% 6.42% 56.91% * 53.04% * 23.70% 28.62% 38.25% 12.21% * * | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.04<br>0.01                                | $\begin{array}{c} \mathbf{P}, \ N_h = \\ \hline \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.$ | 83 × 2, N<br>MARD<br>*<br>*<br>*<br>99.66%<br>78.94%<br>66.87%<br>62.94%<br>67.04%<br>60.48%<br>28.65%                                                              | $b_o = 5$<br><b>Scared</b><br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.25<br>0.27<br>0.23<br>0.06<br>1.01<br>0.55<br>0.40<br>0.29<br>0.14<br>0.18                                                                           | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.08 \\ 0.04 \\ 0.01 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CL3 | MARD * * * * * * * * * * * * * * * * * * *                                                          | Test         1           Happy         RMSE           0.16         0.17           0.78         0.24           0.22         0.17           0.22         0.13           0.14         0.12           0.15         0.76           0.36         0.36                                                                                    | $\begin{array}{c} \textbf{4 - Emo} \\ \hline \textbf{MAE} \\ \hline \textbf{0.02} \\ \textbf{0.02} \\ \textbf{0.02} \\ \textbf{0.03} \\ \textbf{0.03} \\ \textbf{0.02} \\ \textbf{0.03} \\ \textbf{0.02} \\ \textbf{0.02} \\ \textbf{0.02} \\ \textbf{0.01} \\ \textbf{0.02} \\ \textbf{0.21} \\ \textbf{0.03} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \textbf{MARD} \\ \hline \\ \textbf{MARD} \\ \hline \\ \textbf{*} \\ \textbf{81.44\%} \\ \textbf{91.25\%} \\ \textbf{*} \\ \textbf{*} \\ \textbf{*} \\ \textbf{59.94\%} \\ \textbf{82.02\%} \\ \textbf{*} \\ \textbf{75.35\%} \\ \textbf{52.41\%} \\ \textbf{20.67\%} \\ \textbf{28.76\%} \end{array}$ | $\begin{array}{c} \textbf{cognition} \\ \textbf{Sad} \\ RMSE \\ \hline 0.42 \\ 0.82 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.65 \\ 0.38 \\ 0.32 \\ 0.42 \\ 2.58 \\ 0.55 \\ 0.06 \\ 0.39 \\ \end{array}$                                               | $+ \mathbf{RTC}$ $\frac{MAE}{0.04}$ 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.04 0.06 0.26 0.15 0.02 0.03                                                       | MARD           77.85%           69.82%           61.95%           *           39.85%           *           66.63%           *           56.01%           60.11% | $\begin{array}{c} \textbf{EEG]} - \varphi \\ \hline \textbf{Angry} \\ \hline \textbf{RMSE} \\ \hline 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \\ 0.30 \\ 0.21 \\ 0.35 \\ 0.36 \\ 0.92 \\ 0.17 \\ 0.36 \\ 1.10 \end{array}$ | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = ReLU, <b>S</b> <i>MARD</i> 40.86% 40.09% 6.42% 56.91% * 53.04% * 23.70% 28.62% 38.25% 12.21% * * | opt='sgo<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.01                                | $\begin{array}{c} \mathbf{P}, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.01 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 83 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>99.66%<br>78.94%<br>66.87%<br>62.94%<br>67.04%<br>60.48%<br>28.65%                                                         | $b_o = 5$<br><b>Scared</b><br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.25<br>0.27<br>0.23<br>0.06<br>1.01<br>0.55<br>0.40<br>0.29<br>0.14<br>0.18                                                                           | $\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.08 \\ 0.04 \\ 0.01 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CL3                     | MARD * * * * * * * * * * * * * * * * * * *                                                          | Test 1           Happy           RMSE           0.16           0.17           0.78           0.24           0.22           0.17           0.22           0.17           0.22           0.17           0.22           0.17           0.23           0.16           0.76           0.76           0.76           0.36                | 4 - Eme<br><i>MAE</i><br>0.02<br>0.02<br>0.02<br>0.03<br>0.03<br>0.02<br>0.03<br>0.02<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.21<br>0.03<br>0.02<br>0.02<br>0.01<br>0.02<br>0.02<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.03<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.04<br>0.04<br>0.04<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0. | $\begin{array}{c} \textbf{MARD} \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$                                                                                                                                                                                                                                 | cognition<br>Sad<br>RMSE<br>0.42<br>0.82<br>1.37<br>0.96<br>0.82<br>0.65<br>0.38<br>0.32<br>0.42<br>2.58<br>0.55<br>0.06<br>0.39                                                                                                          | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br><b>9</b>            | MARD           77.85%           69.82%           61.95%           *           39.85%           *           66.63%           56.01%           60.11%             | EEG] - ♀<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21<br>0.35<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10                                                                               | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = ReLU, <b>S</b> <i>MARD</i> 40.86% 40.09% 6.42% 56.91% * 53.04% * 23.70% 28.62% 38.25% 12.21% * * | opt='sgo<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.01<br>0.04<br>0.11                 | $   \begin{array}{r} \mathbf{P}, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $83 \times 2, N$ $MARD$ * * * * 99.66% 78.94% 66.87% 62.94% 67.04% 60.48% 28.65%                                                                                    |                                                                                                                                                                                                                             | <i>MAE</i><br>0.02<br>0.03<br>0.03<br>0.03<br>0.02<br>0.01<br>0.13<br>0.07<br>0.04<br>0.08<br>0.04<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * *                                                          | Test 1           Happy           RMSE           0.16           0.17           0.78           0.24           0.22           0.17           0.22           0.17           0.22           0.13           0.14           0.12           0.05           0.76           0.36                                                             | A - Eme           MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.21           0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MARD           *           81.44%           91.25%           *           *           59.94%           82.02%           *           75.35%           52.41%           20.67%           28.76%                                                                                                                            | cognition           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65           0.38           0.32           0.42           2.58           0.55           0.06           0.39 | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br>900                         | MARD           77.85%           69.82%           61.95%           *           39.85%           *           66.63%           56.01%           60.11%             | EEG] - ¢ Angry RMSE 0.50 0.29 0.28 0.68 0.69 0.30 0.21 0.35 0.36 0.92 0.17 0.36 1.10                                                                                                                                   | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \hline \hline \\ \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = ReLU, <b>S</b> <i>MARD</i> 40.86% 40.09% 6.42% 56.91% * 53.04% * 23.70% 28.62% 38.25% 12.21% * * | opt='sgo<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.01<br>0.04<br>0.01                        | $\begin{array}{c} \mathbf{I'}, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.00 \\ 0.0$      | $\begin{array}{c} 83 \times 2, \ N\\ \hline MARD \\ * \\ * \\ * \\ * \\ * \\ 99.66\% \\ 78.94\% \\ 66.87\% \\ 62.94\% \\ 67.04\% \\ 60.48\% \\ 28.65\% \end{array}$ | \$\overline{o} = 5\$         Scared         RMSE         0.19         0.26         0.24         0.25         0.27         0.23         0.06         1.01         0.55         0.40         0.29         0.14         0.18   | <i>MAE</i><br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.01<br>0.13<br>0.07<br>0.04<br>0.08<br>0.04<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * *                                                          | Test 1           Happy           RMSE           0.16           0.17           0.78           0.24           0.22           0.17           0.22           0.17           0.22           0.13           0.14           0.12           0.05           0.76           0.36                                                             | 4 - Ema<br>MAE<br>0.02<br>0.02<br>0.02<br>0.03<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.21<br>0.03<br>0.02<br>0.02<br>0.01<br>0.02<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.01<br>0.02<br>0.03<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.02<br>0.01<br>0.02<br>0.02<br>0.02<br>0.01<br>0.02<br>0.03<br>0.02<br>0.02<br>0.02<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.04<br>0.04<br>0.04<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0       | MARD           *           81.44%           91.25%           *           59.94%           82.02%           *           52.41%           20.67%           28.76%                                                                                                                                                         | cognition           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65           0.38           0.32           0.42           2.58           0.55           0.06           0.39 | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br>9000                | MARD           77.85%           69.82%           61.95%           *           39.85%           *           66.63%           *           56.01%           60.11% | EEG] - ¢<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21<br>0.35<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10                                                                                      | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = ReLU, <b>S</b> <i>MARD</i> 40.86% 40.09% 6.42% 56.91% * 53.04% * 23.70% 28.62% 38.25% 12.21% * * | opt='sgo<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.01<br>0.04<br>0.01                        | $\begin{array}{c} \mathbf{I'}, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ \hline 0.00 \\ 0.01 \\ 0.01 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} 83 \times 2, \ N\\ \hline MARD \\ * \\ * \\ * \\ * \\ * \\ 99.66\% \\ 78.94\% \\ 66.87\% \\ 62.94\% \\ 67.04\% \\ 60.48\% \\ 28.65\% \end{array}$ | \$\$\overline{c} = 5\$         Scared         RMSE         0.19         0.26         0.24         0.25         0.27         0.23         0.06         1.01         0.55         0.40         0.29         0.14         0.18 | <i>MAE</i><br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.01<br>0.13<br>0.07<br>0.04<br>0.08<br>0.04<br>0.01<br><b>€0:0</b><br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | Test 1           Happy           RMSE           0.16           0.17           0.78           0.24           0.22           0.17           0.22           0.17           0.22           0.17           0.22           0.17           0.22           0.13           0.14           0.12           0.05           0.76           0.36 | 4 - Ema         MAE         0.02         0.02         0.02         0.03         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.04         0.05         0.06         0.07         0.03         0.04         0.05         0.06         0.07         0.08         0.09         0.01         0.02         0.03         0.04         0.05         0.07         0.03         0.04         0.05         0.07         0.08         90000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000         10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \textbf{MARD} \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$                                                                                                                                                                                                                                 | cognition           Sad           RMSE           0.42           0.82           1.37           0.96           0.82           0.65           0.38           0.32           0.42           2.58           0.55           0.06           0.39 | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br>90.0<br>H<br>80             | MARD           77.85%           69.82%           61.95%           *           39.85%           *           66.63%           *           56.01%           60.11% | EEG] - ¢<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21<br>0.35<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10                                                                                      | Dj (vj (n))         MAE         0.04         0.03         0.03         0.08         0.02         0.05         0.06         0.09         0.05         0.11         0.11         0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = ReLU, <b>S</b> <i>MARD</i> 40.86% 40.09% 6.42% 56.91% * 53.04% * 23.70% 28.62% 38.25% 12.21% * * | opt='sgo<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.11 | $\begin{array}{c} \mathbf{I'}, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 83 \times 2, \ N\\ \hline MARD \\ * \\ * \\ * \\ * \\ * \\ 99.66\% \\ 78.94\% \\ 66.87\% \\ 62.94\% \\ 67.04\% \\ 60.48\% \\ 28.65\% \end{array}$ | © = 5<br>Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.25<br>0.27<br>0.23<br>0.06<br>1.01<br>0.55<br>0.40<br>0.29<br>0.14<br>0.18                                                                                      | <i>MAE</i><br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.01<br>0.13<br>0.07<br>0.04<br>0.08<br>0.04<br>0.01<br><b>€00</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.66 (17/75)<br>100.00 (78/78)<br>22.54 (23/102)<br>68.00 (51/75)<br>16.66 (8/48)<br>28.94 (11/38)<br>93.15 (68/73)<br>77.77 (7/9)<br>0.00 (0/10)<br>15.11 (13/86) |

TABLE 9.9. Emotion recognition results tests 13 and 14. ANN with  $6 \times 10^3$  train epochs and input data with feature extraction.

|                                                                                                                                                               |                                              | Test 15                                                                                                                                                                                                                                   | 5 - Emo                                                                                                                                                                                                                                                                                          | tion Reco                                                                                                                 | ognition -                                                                                                                                                                                                                                                                        | + RTO                                                                                                                                                                | R [HR+C                                                                                           | $\mathbf{GSR}$ ] - $arphi_j$                                                                                                                                                                               | $(v_j(n)) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = ReLU, c                                                                                                    | pt='adaı                                                                                                                                                                      | m', $N_h$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $= 18 \times 2, 1$                                                                                            | $N_o = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                   |                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flight                                                                                                                                                        |                                              | Happy                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |                                                                                                                           | Sad                                                                                                                                                                                                                                                                               |                                                                                                                                                                      |                                                                                                   | Angry                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S                                                                                                            | urprised                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               | Scared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                   | Match                                                                                                                                                                                                                                           |
| Dataset                                                                                                                                                       | MARD                                         | RMSE                                                                                                                                                                                                                                      | MAE                                                                                                                                                                                                                                                                                              | MARD                                                                                                                      | RMSE                                                                                                                                                                                                                                                                              | MAE                                                                                                                                                                  | MARD                                                                                              | RMSE                                                                                                                                                                                                       | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MARD                                                                                                         | RMSE                                                                                                                                                                          | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MARD                                                                                                          | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAE                                                                                                                                               | Accuracy (%)                                                                                                                                                                                                                                    |
| DS:RC1                                                                                                                                                        | *                                            | 0.25                                                                                                                                                                                                                                      | 0.02                                                                                                                                                                                                                                                                                             | *                                                                                                                         | 1.54                                                                                                                                                                                                                                                                              | 0.15                                                                                                                                                                 | *                                                                                                 | 0.67                                                                                                                                                                                                       | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38.40%                                                                                                       | 0.09                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                             | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                                                                                                                              | <b>50.75</b> (34/67)                                                                                                                                                                                                                            |
| DS:RC2                                                                                                                                                        | *                                            | 0.21                                                                                                                                                                                                                                      | 0.02                                                                                                                                                                                                                                                                                             | 65.65%                                                                                                                    | 1.07                                                                                                                                                                                                                                                                              | 0.09                                                                                                                                                                 | 55.46%                                                                                            | 0.39                                                                                                                                                                                                       | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 45.73%                                                                                                       | 0.14                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                             | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.03                                                                                                                                              | $82.05 \ (64/78)$                                                                                                                                                                                                                               |
| DS:RC3                                                                                                                                                        | *                                            | 0.82                                                                                                                                                                                                                                      | 0.08                                                                                                                                                                                                                                                                                             | 75.87%                                                                                                                    | 1.57                                                                                                                                                                                                                                                                              | 0.13                                                                                                                                                                 | 30.77%                                                                                            | 0.28                                                                                                                                                                                                       | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.20%                                                                                                        | 0.13                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                             | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02                                                                                                                                              | <b>54.79</b> (40/73)                                                                                                                                                                                                                            |
| DS:GC1                                                                                                                                                        | *                                            | 0.22                                                                                                                                                                                                                                      | 0.02                                                                                                                                                                                                                                                                                             | *                                                                                                                         | 0.73                                                                                                                                                                                                                                                                              | 0.08                                                                                                                                                                 | *                                                                                                 | 0.51                                                                                                                                                                                                       | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 59.59%                                                                                                       | 0.06                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                             | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.03                                                                                                                                              | <b>22.67</b> (17/75)                                                                                                                                                                                                                            |
| DS:GC3                                                                                                                                                        | *                                            | 0.50                                                                                                                                                                                                                                      | 0.06                                                                                                                                                                                                                                                                                             | *                                                                                                                         | 0.85                                                                                                                                                                                                                                                                              | 0.09                                                                                                                                                                 | *                                                                                                 | 1.13                                                                                                                                                                                                       | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                            | 0.13                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                             | 0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.03                                                                                                                                              | 32.05 (25/78)                                                                                                                                                                                                                                   |
| DS:LS1                                                                                                                                                        | *                                            | 0.13                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                             | 43.02%                                                                                                                    | 0.31                                                                                                                                                                                                                                                                              | 0.02                                                                                                                                                                 | 45.99%                                                                                            | 0.56                                                                                                                                                                                                       | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38.62%                                                                                                       | 0.07                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                             | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02                                                                                                                                              | <b>26.47</b> (27/102)                                                                                                                                                                                                                           |
| DS:LS2                                                                                                                                                        | *                                            | 0.10                                                                                                                                                                                                                                      | 0.01                                                                                                                                                                                                                                                                                             | 48.43%                                                                                                                    | 0.51                                                                                                                                                                                                                                                                              | 0.05                                                                                                                                                                 | 60.50%                                                                                            | 0.46                                                                                                                                                                                                       | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                            | 0.08                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                             | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.03                                                                                                                                              | <b>66.67</b> (50/75)                                                                                                                                                                                                                            |
| DS:VC1                                                                                                                                                        | *                                            | 0.19                                                                                                                                                                                                                                      | 0.02                                                                                                                                                                                                                                                                                             | *                                                                                                                         | 0.88                                                                                                                                                                                                                                                                              | 0.08                                                                                                                                                                 | *                                                                                                 | 0.54                                                                                                                                                                                                       | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 42.03%                                                                                                       | 0.06                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81.53%                                                                                                        | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.13                                                                                                                                              | 18.75 (9/48)                                                                                                                                                                                                                                    |
| DS:VC2                                                                                                                                                        | *                                            | 0.20                                                                                                                                                                                                                                      | 0.03                                                                                                                                                                                                                                                                                             | *                                                                                                                         | 0.59                                                                                                                                                                                                                                                                              | 0.07                                                                                                                                                                 | *                                                                                                 | 0.32                                                                                                                                                                                                       | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.24%                                                                                                       | 0.06                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 99.98%                                                                                                        | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.09                                                                                                                                              | <b>28.95</b> (11/38)                                                                                                                                                                                                                            |
| DS:CR1                                                                                                                                                        | *                                            | 0.25                                                                                                                                                                                                                                      | 0.03                                                                                                                                                                                                                                                                                             | 74.29%                                                                                                                    | 2.45                                                                                                                                                                                                                                                                              | 0.25                                                                                                                                                                 | 84.93%                                                                                            | 0.67                                                                                                                                                                                                       | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 38.20%                                                                                                       | 0.12                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 62.07%                                                                                                        | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                                                                                                                              | <b>41.10</b> (30/73)                                                                                                                                                                                                                            |
| DS:CR3                                                                                                                                                        | 51.71%                                       | 0.02                                                                                                                                                                                                                                      | 0.00                                                                                                                                                                                                                                                                                             | 67.73%                                                                                                                    | 0.65                                                                                                                                                                                                                                                                              | 0.19                                                                                                                                                                 | *                                                                                                 | 0.21                                                                                                                                                                                                       | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 20.81%                                                                                                       | 0.01                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 77.24%                                                                                                        | 0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.09                                                                                                                                              | <b>77.78</b> (7/9)                                                                                                                                                                                                                              |
| DS:CLX                                                                                                                                                        | 87.40%                                       | 0.76                                                                                                                                                                                                                                      | 0.21                                                                                                                                                                                                                                                                                             | 70.18%                                                                                                                    | 0.33                                                                                                                                                                                                                                                                              | 0.06                                                                                                                                                                 | 61.44%                                                                                            | 0.38                                                                                                                                                                                                       | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                            | 0.05                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 59.79%                                                                                                        | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                                                                                                                              | <b>10.00</b> (1/10)                                                                                                                                                                                                                             |
| DS:CL3                                                                                                                                                        | *                                            | 0.58                                                                                                                                                                                                                                      | 0.05                                                                                                                                                                                                                                                                                             | 42.02%                                                                                                                    | 0.62                                                                                                                                                                                                                                                                              | 0.05                                                                                                                                                                 | 58.21%                                                                                            | 1.07                                                                                                                                                                                                       | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                            | 0.10                                                                                                                                                                          | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 53.55%                                                                                                        | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02                                                                                                                                              | <b>30.23</b> (26/86)                                                                                                                                                                                                                            |
|                                                                                                                                                               |                                              |                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                  |                                                                                                                           | •                                                                                                                                                                                                                                                                                 |                                                                                                                                                                      |                                                                                                   |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                              |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                   | 04                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                              | .24                                                                                                                                                                                                                                       | -02                                                                                                                                                                                                                                                                                              |                                                                                                                           | .51                                                                                                                                                                                                                                                                               | .06                                                                                                                                                                  |                                                                                                   | 26                                                                                                                                                                                                         | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                              | 03                                                                                                                                                                            | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                               | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 03                                                                                                                                                | 57.0                                                                                                                                                                                                                                            |
|                                                                                                                                                               |                                              | 0                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                |                                                                                                                           | 0                                                                                                                                                                                                                                                                                 | 0                                                                                                                                                                    |                                                                                                   | 0                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                              | 0.0                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0                                                                                                                                               | <b>7</b><br>++                                                                                                                                                                                                                                  |
|                                                                                                                                                               |                                              | 3<br>H                                                                                                                                                                                                                                    | <b>4</b><br>++                                                                                                                                                                                                                                                                                   |                                                                                                                           | ++<br>60                                                                                                                                                                                                                                                                          | +0                                                                                                                                                                   |                                                                                                   | 14<br>24                                                                                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                              | ⇒<br>∞                                                                                                                                                                        | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                               | <b>4</b><br>++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>5</b> +                                                                                                                                        | 71                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                              | 0.3                                                                                                                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                              |                                                                                                                           | 0.0                                                                                                                                                                                                                                                                               | 0.1                                                                                                                                                                  |                                                                                                   | 0.5                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                              | 0.0                                                                                                                                                                           | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                               | <b>1</b> 1.                                                                                                                                                                                                                                     |
|                                                                                                                                                               |                                              | _                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                |                                                                                                                           | -                                                                                                                                                                                                                                                                                 | _                                                                                                                                                                    |                                                                                                   | _                                                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                              | _                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                 | •                                                                                                                                                                                                                                               |
|                                                                                                                                                               |                                              | Test 10                                                                                                                                                                                                                                   | 6 - Emo                                                                                                                                                                                                                                                                                          | tion Reco                                                                                                                 | ognition                                                                                                                                                                                                                                                                          | + RTO                                                                                                                                                                | R [HR+0                                                                                           | $\mathbf{GSR}$ ] - $\varphi$                                                                                                                                                                               | $(v_i(n)) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = siamoid                                                                                                    | opt='sg                                                                                                                                                                       | d'. $N_h =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 18 × 2, <i>1</i>                                                                                            | $V_{0} = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                   |                                                                                                                                                                                                                                                 |
| Flight                                                                                                                                                        |                                              | Test 10<br>Happy                                                                                                                                                                                                                          | 6 - Emo                                                                                                                                                                                                                                                                                          | tion Reco                                                                                                                 | ognition -<br>Sad                                                                                                                                                                                                                                                                 | $+ \mathbf{RTO}$                                                                                                                                                     | R [HR+0                                                                                           | $GSR$ ] - $\varphi_{j}$<br>Angry                                                                                                                                                                           | $(v_j(n)) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = sigmoid                                                                                                    | , opt='sg<br>urprised                                                                                                                                                         | d', $N_h =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $= 18 \times 2, 1$                                                                                            | $N_o = 5$<br>Scared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                   | Match                                                                                                                                                                                                                                           |
| Flight<br>Dataset                                                                                                                                             | MARD                                         | Test 10<br>Happy<br>RMSE                                                                                                                                                                                                                  | 6 - Emo<br>MAE                                                                                                                                                                                                                                                                                   | tion Reco                                                                                                                 | ognition<br>Sad<br>RMSE                                                                                                                                                                                                                                                           | + <b>RTO</b>                                                                                                                                                         | $\mathbf{R} \ [\mathbf{HR} + \mathbf{C}]$                                                         | $\begin{array}{l} \mathbf{GSR}] - \varphi_{\mathcal{I}} \\ \mathbf{Angry} \\ RMSE \end{array}$                                                                                                             | $(v_j(n)) = MAE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = sigmoid<br>S<br>MARD                                                                                       | opt='sg<br>urprised<br>RMSE                                                                                                                                                   | <b>d'</b> , $N_h = MAE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $= 18 \times 2, 1$<br>MARD                                                                                    | $N_o = 5$<br>Scared<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAE                                                                                                                                               | Match<br>Accuracy (%)                                                                                                                                                                                                                           |
| Flight<br>Dataset<br>DS:RC1                                                                                                                                   | MARD<br>*                                    | Test 10<br>Happy<br>RMSE<br>0.36                                                                                                                                                                                                          | <b>6 - Emo</b><br><u>MAE</u><br>0.04                                                                                                                                                                                                                                                             | tion Reco<br>MARD<br>*                                                                                                    | Sad<br>RMSE<br>0.47                                                                                                                                                                                                                                                               | $+ \mathbf{RTO}$ $\frac{MAE}{0.05}$                                                                                                                                  | $\begin{array}{c} \mathbf{R} \ [\mathbf{HR} + \mathbf{C} \\ MARD \\ * \end{array}$                | $\begin{array}{c} \textbf{GSR} \end{bmatrix} - \varphi_{\beta} \\ \textbf{Angry} \\ RMSE \\ \hline 0.48 \end{array}$                                                                                       | $\frac{MAE}{0.05}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = sigmoid<br>S<br>MARD<br>*                                                                                  | opt='sg<br>urprised<br>RMSE<br>0.32                                                                                                                                           | $\mathbf{d'}, N_h = \frac{MAE}{0.04}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 18 × 2, 1<br>MARD<br>*                                                                                      | $N_o = 5$ <b>Scared</b> $RMSE$ $0.55$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <i>MAE</i> 0.07                                                                                                                                   | Match<br>Accuracy (%)<br>53.73 (36/67)                                                                                                                                                                                                          |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2                                                                                                                         | MARD<br>*<br>*                               | Test 10<br>Happy<br><i>RMSE</i><br>0.36<br>0.45                                                                                                                                                                                           | <b>6 - Emo</b><br><u>MAE</u><br>0.04<br>0.05                                                                                                                                                                                                                                                     | tion Reco<br><i>MARD</i><br>*<br>89.10%                                                                                   | <b>Sad</b><br><i>RMSE</i><br>0.47<br>0.78                                                                                                                                                                                                                                         | + <b>RTO</b><br><i>MAE</i><br>0.05<br>0.07                                                                                                                           | R [HR+0<br>MARD<br>*                                                                              | <b>GSR</b> ] - $\varphi_3$<br><b>Angry</b><br><i>RMSE</i><br>0.48<br>0.38                                                                                                                                  | $\frac{MAE}{0.05}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = sigmoid<br>S<br>MARD<br>*<br>*                                                                             | opt='sg<br>urprised<br><i>RMSE</i><br>0.32<br>0.37                                                                                                                            | <b>d'</b> , $N_h = \frac{MAE}{0.04}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 18 × 2, 1<br>MARD<br>*                                                                                      | $     \underbrace{ \begin{array}{l} N_o = 5 \\ \textbf{Scared} \\ RMSE \\ \hline 0.55 \\ 0.65 \\ \end{array} }   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{MAE}{0.07}$                                                                                                                                | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)                                                                                                                                                                                         |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3                                                                                                               | <i>MARD</i><br>*<br>*                        | Test 10<br>Happy<br><i>RMSE</i><br>0.36<br>0.45<br>0.54                                                                                                                                                                                   | <b>5 - Emo</b><br><i>MAE</i><br>0.04<br>0.05<br>0.05                                                                                                                                                                                                                                             | tion Reco<br><i>MARD</i><br>*<br>89.10%<br>99.06%                                                                         | Sad           RMSE           0.47           0.78           1.33                                                                                                                                                                                                                   | + RTO $MAE$ 0.05 0.07 0.11                                                                                                                                           | R [HR+0<br><i>MARD</i><br>*<br>*                                                                  | $\begin{array}{c} \textbf{GSR] - \varphi_3 \\ \textbf{Angry} \\ RMSE \\ 0.48 \\ 0.38 \\ 0.40 \end{array}$                                                                                                  | MAE<br>0.05<br>0.04<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = sigmoid. $S$ $MARD$ $*$ $*$ $11.28%$                                                                       | opt='sg<br>urprised<br><i>RMSE</i><br>0.32<br>0.37<br>0.35                                                                                                                    | <b>d'</b> , $N_h = \frac{MAE}{0.04}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 18 × 2, 1<br>MARD<br>*<br>*                                                                                 | $     \underbrace{ \frac{N_o = 5}{\text{Scared}} }                                  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MAE<br>0.07<br>0.07<br>0.07                                                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)                                                                                                                                                                        |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1                                                                                                     | <i>MARD</i><br>*<br>*<br>*                   | Test 10<br>Happy<br><i>RMSE</i><br>0.36<br>0.45<br>0.54<br>0.63                                                                                                                                                                           | 6 - Emo<br><i>MAE</i><br>0.04<br>0.05<br>0.05<br>0.07                                                                                                                                                                                                                                            | tion Reco<br><i>MARD</i><br>*<br>89.10%<br>99.06%<br>*                                                                    | Sad           RMSE           0.47           0.78           1.33           1.04                                                                                                                                                                                                    | + RTO<br><i>MAE</i><br>0.05<br>0.07<br>0.11<br>0.12                                                                                                                  | R [HR+0<br><i>MARD</i> * * * *                                                                    | $\begin{array}{c} \textbf{GSR]} - \varphi_3 \\ \textbf{Angry} \\ RMSE \\ 0.48 \\ 0.38 \\ 0.40 \\ 0.86 \end{array}$                                                                                         | $(v_j(n)) = \frac{MAE}{0.05}$<br>0.04<br>0.04<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = sigmoid<br>S<br>MARD<br>*<br>*<br>11.28%<br>*                                                              | opt='sg<br>urprised<br><i>RMSE</i><br>0.32<br>0.37<br>0.35<br>0.47                                                                                                            | $     d', N_h = \frac{MAE}{0.04} \\     0.04 \\     0.04 \\     0.04 \\     0.05   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 18 × 2, 1<br>MARD<br>*<br>*<br>*                                                                            | $N_o = 5$<br>Scared<br>RMSE<br>0.55<br>0.65<br>0.60<br>0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>MAE</i><br>0.07<br>0.07<br>0.07<br>0.07                                                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)                                                                                                                                                       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3                                                                                           | MARD<br>*<br>*<br>*<br>*                     | Test 10<br>Happy<br><i>RMSE</i><br>0.36<br>0.45<br>0.54<br>0.63<br>0.62                                                                                                                                                                   | <b>3 - Emo</b><br><i>MAE</i><br>0.04<br>0.05<br>0.05<br>0.07<br>0.07                                                                                                                                                                                                                             | tion Reco<br><i>MARD</i><br>* 89.10% 99.06%<br>* *                                                                        | Sad           RMSE           0.47           0.78           1.33           1.04           0.90                                                                                                                                                                                     | + RTO:<br><i>MAE</i><br>0.05<br>0.07<br>0.11<br>0.12<br>0.10                                                                                                         | R [HR+0<br><i>MARD</i><br>*<br>*<br>*<br>*<br>*                                                   | <b>GSR]</b> - φ <sub>3</sub><br><b>Angry</b><br><i>RMSE</i><br>0.48<br>0.48<br>0.40<br>0.86<br>0.87                                                                                                        | $\frac{MAE}{0.05}$ 0.04<br>0.004<br>0.004<br>0.10<br>0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = sigmoid.<br>S<br>MARD<br>*<br>*<br>11.28%<br>*<br>*                                                        | opt='sg<br>urprised<br><i>RMSE</i><br>0.32<br>0.37<br>0.35<br>0.47<br>0.59                                                                                                    | $     d', N_h = \frac{MAE}{0.04} \\     0.04 \\     0.04 \\     0.05 \\     0.07   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 18 × 2, 7<br><u>MARD</u> * * * * * *                                                                        | $     \frac{N_o = 5}{Scared} \\     \underline{RMSE} \\     0.55 \\     0.65 \\     0.60 \\     0.64 \\     0.65     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAE<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07                                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)                                                                                                                                     |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1                                                                                 | <i>MARD</i> * * * * * * *                    | Test 10<br>Happy<br>RMSE<br>0.36<br>0.45<br>0.54<br>0.63<br>0.62<br>0.60                                                                                                                                                                  | <b>3 - Emo</b><br><i>MAE</i><br>0.04<br>0.05<br>0.05<br>0.07<br>0.07<br>0.06                                                                                                                                                                                                                     | tion Reco<br><i>MARD</i><br>* 89.10% 99.06%<br>* * *                                                                      | ognition           Sad           RMSE           0.47           0.78           1.33           1.04           0.90           0.73                                                                                                                                                   | + RTO<br><i>MAE</i><br>0.05<br>0.07<br>0.11<br>0.12<br>0.10<br>0.07                                                                                                  | R [HR+0<br><i>MARD</i><br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                               | <b>GSR] -</b> $\varphi_2$<br><b>Angry</b><br><i>RMSE</i><br>0.48<br>0.38<br>0.40<br>0.86<br>0.87<br>0.37                                                                                                   | $\frac{MAE}{0.05}$ 0.04 0.04 0.10 0.10 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = sigmoid.<br>S<br>MARD<br>*<br>*<br>11.28%<br>*<br>*<br>*                                                   | opt='sg<br>urprised<br>RMSE<br>0.32<br>0.37<br>0.35<br>0.47<br>0.59<br>0.53                                                                                                   | $     d', N_h = \frac{MAE}{0.04} \\     0.04 \\     0.04 \\     0.05 \\     0.07 \\     0.05     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = 18 × 2, 1<br><u>MARD</u> * * * * * * * *                                                                    | $N_o = 5$<br>Scared<br>RMSE<br>0.55<br>0.65<br>0.60<br>0.64<br>0.65<br>0.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>MAE</i><br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07                                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)                                                                                                                   |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2                                                                       | <i>MARD</i> * * * * * * * * *                | Test 10<br>Happy<br><i>RMSE</i><br>0.36<br>0.45<br>0.54<br>0.63<br>0.62<br>0.60<br>0.59                                                                                                                                                   | <b>3 - Emo</b><br><i>MAE</i><br>0.04<br>0.05<br>0.05<br>0.07<br>0.07<br>0.06<br>0.07                                                                                                                                                                                                             | tion Reco<br><i>MARD</i><br>* 89.10% 99.06%<br>* * * 70.43%                                                               | Sad           RMSE           0.47           0.78           1.33           1.04           0.90           0.73           0.42                                                                                                                                                       | $+ \mathbf{RTO}$ $\frac{MAE}{0.05}$ 0.07 0.11 0.12 0.10 0.07 0.04                                                                                                    | R [HR+0<br><i>MARD</i><br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                               | <b>GSR] -</b> $\varphi_2$<br><b>Angry</b><br><i>RMSE</i><br>0.48<br>0.38<br>0.40<br>0.86<br>0.87<br>0.37<br>0.28                                                                                           | $\frac{MAE}{0.05}$ 0.04 0.04 0.04 0.10 0.10 0.03 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = sigmoid.<br>S<br>MARD<br>*<br>11.28%<br>*<br>*<br>*<br>*<br>*                                              | opt='sg<br>urprised<br>RMSE<br>0.32<br>0.37<br>0.35<br>0.47<br>0.59<br>0.53<br>0.52                                                                                           | $     d', N_h = \frac{MAE}{0.04} \\     0.04 \\     0.04 \\     0.04 \\     0.05 \\     0.07 \\     0.05 \\     0.06   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 18 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAE<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)                                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1                                                             | MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | Test 10<br>Happy<br>RMSE<br>0.36<br>0.45<br>0.54<br>0.63<br>0.62<br>0.60<br>0.59<br>0.42                                                                                                                                                  | <b>MAE</b> 0.04           0.05           0.05           0.07           0.06           0.07                                                                                                                                                                                                       | tion Reco<br><i>MARD</i><br>* 89.10% 99.06%<br>* * * 70.43% 97.66%                                                        | ognition           Sad           RMSE           0.47           0.78           1.33           1.04           0.90           0.73           0.42           0.38                                                                                                                     | + RTO<br><i>MAE</i><br>0.05<br>0.07<br>0.11<br>0.12<br>0.10<br>0.07<br>0.04<br>0.05                                                                                  | R [HR+0<br><i>MARD</i><br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                               | <b>GSR] -</b> $\varphi_2$<br><b>Angry</b><br><i>RMSE</i><br>0.48<br>0.38<br>0.40<br>0.86<br>0.87<br>0.37<br>0.28<br>0.49                                                                                   | $\frac{MAE}{0.05}$ 0.04 0.04 0.04 0.10 0.10 0.03 0.03 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = sigmoid.<br>S<br>MARD<br>*<br>11.28%<br>*<br>*<br>*<br>*<br>*<br>*                                         | opt='sg<br>urprised<br>RMSE<br>0.32<br>0.37<br>0.35<br>0.47<br>0.59<br>0.53<br>0.52<br>0.35                                                                                   | $\mathbf{d', } N_h = \frac{MAE}{0.04}$ $\frac{0.04}{0.04}$ $\frac{0.04}{0.05}$ $\frac{0.07}{0.05}$ $\frac{0.06}{0.05}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 18 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                          | $N_o = 5$<br>Scared<br>RMSE<br>0.55<br>0.65<br>0.66<br>0.64<br>0.65<br>0.66<br>0.65<br>0.66<br>0.59<br>0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAE<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.0                                                                                | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2                                                   | MARD * * * * * * * * * * * * *               | Test 10<br>Happy<br>RMSE<br>0.36<br>0.45<br>0.54<br>0.63<br>0.62<br>0.60<br>0.59<br>0.42<br>0.41                                                                                                                                          | <b>MAE</b> 0.04           0.05           0.07           0.06           0.07           0.06           0.07                                                                                                                                                                                        | tion Reco<br><i>MARD</i><br>* 89.10% 99.06%<br>* * * 70.43% 97.66% * *                                                    | Sad           RMSE           0.47           0.78           1.33           1.04           0.90           0.73           0.42           0.38           0.47                                                                                                                         | $+ \mathbf{RTO}$ $\frac{MAE}{0.05}$ 0.07 0.11 0.12 0.10 0.07 0.04 0.05 0.07                                                                                          | R [HR+0<br><i>MARD</i><br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                               | <b>GSR] -</b> $\varphi_2$<br><b>Angry</b><br><i>RMSE</i><br>0.48<br>0.38<br>0.40<br>0.86<br>0.87<br>0.37<br>0.28<br>0.49<br>0.49                                                                           | $\frac{MAE}{0.05}$ 0.04 0.04 0.04 0.10 0.10 0.03 0.03 0.03 0.07 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = sigmoid.<br>S<br>MARD<br>*<br>*<br>11.28%<br>*<br>*<br>*<br>*<br>*<br>*<br>*                               | opt='sg<br>urprised<br>RMSE<br>0.32<br>0.37<br>0.35<br>0.47<br>0.59<br>0.53<br>0.52<br>0.35<br>0.28                                                                           | $\mathbf{d', } N_h = \frac{MAE}{0.04}$ $0.04$ $0.04$ $0.04$ $0.05$ $0.07$ $0.05$ $0.06$ $0.05$ $0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = 18 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                          | $     \begin{array}{l} N_o = 5 \\ \hline \textbf{Scared} \\ \hline \textbf{RMSE} \\ \hline 0.55 \\ 0.65 \\ 0.66 \\ 0.64 \\ 0.65 \\ 0.66 \\ 0.59 \\ 0.73 \\ 0.37 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MAE<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.0                                                                                | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)                                                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1                               | MARD * * * * * * * * * * * * * * * * * * *   | Test 10<br>Happy<br>RMSE<br>0.36<br>0.45<br>0.54<br>0.63<br>0.62<br>0.60<br>0.59<br>0.42<br>0.41<br>0.46                                                                                                                                  | <b>MAE</b> 0.04           0.05           0.05           0.07           0.06           0.07           0.06           0.07           0.06           0.07           0.06           0.07                                                                                                             | tion Reco<br><i>MARD</i><br>* 89.10% 99.06%<br>* * 70.43% 97.66% * 73.98%                                                 | Sad           RMSE           0.47           0.78           1.33           1.04           0.90           0.73           0.42           0.38           0.47                                                                                                                         | $+ \mathbf{RTO}$ $\frac{MAE}{0.05}$ 0.07 0.11 0.12 0.10 0.07 0.04 0.05 0.07 0.25                                                                                     | R [HR+0<br><i>MARD</i><br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                               | <b>GSR] -</b> $\varphi_2$<br><b>Angry</b><br><i>RMSE</i><br>0.48<br>0.38<br>0.40<br>0.86<br>0.87<br>0.37<br>0.28<br>0.49<br>0.49<br>0.49<br>0.76                                                           | $\frac{MAE}{0.05}$ 0.04 0.04 0.04 0.10 0.10 0.03 0.03 0.03 0.07 0.08 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = sigmoid.<br>S<br>MARD<br>*<br>*<br>11.28%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                          | opt='sg<br>urprised<br>RMSE<br>0.32<br>0.37<br>0.35<br>0.47<br>0.59<br>0.53<br>0.52<br>0.35<br>0.28<br>0.34                                                                   | $\mathbf{d', N_h} = \frac{MAE}{0.04}$ $0.04$ $0.04$ $0.05$ $0.07$ $0.05$ $0.06$ $0.05$ $0.04$ $0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 18 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                          | $N_o = 5$ Scared <i>RMSE</i> 0.55 0.65 0.60 0.64 0.65 0.66 0.59 0.73 0.37 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\begin{array}{c} MAE \\ \hline 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.09 \\ 0.05 \\ 0.01 \end{array}$                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)                                                |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1<br>DS:CR3                     | MARD * * * * * * * * * * * * * * * * * * *   | Test 10<br>Happy<br>RMSE<br>0.36<br>0.45<br>0.54<br>0.63<br>0.62<br>0.60<br>0.59<br>0.42<br>0.41<br>0.46<br>0.19                                                                                                                          | $\begin{array}{c} \mathbf{3 - Emo} \\ \hline MAE \\ 0.04 \\ 0.05 \\ 0.05 \\ 0.07 \\ 0.07 \\ 0.06 \\ 0.07 \\ 0.06 \\ 0.07 \\ 0.05 \\ 0.06 \end{array}$                                                                                                                                            | tion Reco<br><i>MARD</i><br>* 89.10% 99.06%<br>* * 70.43% 97.66% * 73.98% 52.27%                                          | $\begin{array}{c} \textbf{pgnition} \\ \hline \textbf{Sad} \\ \hline RMSE \\ \hline 0.47 \\ 0.78 \\ 1.33 \\ 1.04 \\ 0.90 \\ 0.73 \\ 0.42 \\ 0.38 \\ 0.47 \\ 2.46 \\ 0.52 \end{array}$                                                                                             | $+ \mathbf{RTO}$ $\frac{MAE}{0.05}$ 0.07 0.11 0.12 0.10 0.07 0.04 0.05 0.07 0.25 0.15                                                                                | R [HR+0<br><i>MARD</i> * * * * * 60.37% * 63.97% *                                                | $\begin{array}{l} \textbf{GSR] - \varphi_{2} \\ \textbf{Angry} \\ RMSE \\ \hline 0.48 \\ 0.38 \\ 0.40 \\ 0.86 \\ 0.87 \\ 0.37 \\ 0.28 \\ 0.49 \\ 0.49 \\ 0.49 \\ 0.76 \\ 0.16 \end{array}$                 | $\frac{MAE}{0.05}$ 0.04 0.04 0.04 0.10 0.10 0.03 0.03 0.03 0.07 0.08 0.07 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = sigmoid.<br>S<br>MARD<br>*<br>*<br>11.28%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                     | opt='sg<br>urprised<br>RMSE<br>0.32<br>0.37<br>0.35<br>0.47<br>0.59<br>0.53<br>0.52<br>0.35<br>0.28<br>0.34<br>0.15                                                           | $\begin{array}{c} \mathbf{d', } N_{h} = \\ \hline MAE \\ \hline 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.07 \\ 0.05 \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.04 \\ 0.05 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 18 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                          | $     \begin{array}{l} N_o = 5 \\ \hline \textbf{Scared} \\ \hline \textbf{RMSE} \\ \hline 0.55 \\ 0.65 \\ 0.66 \\ 0.66 \\ 0.65 \\ 0.66 \\ 0.59 \\ 0.73 \\ 0.73 \\ 0.37 \\ 0.15 \\ 0.20 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} MAE \\ \hline 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.09 \\ 0.05 \\ 0.01 \\ 0.05 \end{array}$         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX | MARD * * * * * * * * * * * * * * * * * * *   | $\begin{array}{c} {\rm Test \ 10} \\ {\rm Happy} \\ RMSE \\ \hline 0.36 \\ 0.45 \\ 0.54 \\ 0.63 \\ 0.62 \\ 0.60 \\ 0.59 \\ 0.42 \\ 0.41 \\ 0.46 \\ 0.19 \\ 0.63 \end{array}$                                                              | $\begin{array}{c} \mathbf{3 - Emo} \\ \hline MAE \\ 0.04 \\ 0.05 \\ 0.05 \\ 0.07 \\ 0.07 \\ 0.06 \\ 0.07 \\ 0.06 \\ 0.07 \\ 0.05 \\ 0.06 \\ 0.17 \end{array}$                                                                                                                                    | tion Reco<br><i>MARD</i><br>* 89.10% 99.06%<br>* * 70.43% 97.66% * 73.98% 52.27% 31.81%                                   | $\begin{array}{c} \textbf{pgnition} \\ \hline \textbf{Sad} \\ \hline RMSE \\ \hline 0.47 \\ 0.78 \\ 1.33 \\ 1.04 \\ 0.90 \\ 0.73 \\ 0.42 \\ 0.38 \\ 0.47 \\ 2.46 \\ 0.52 \\ 0.09 \end{array}$                                                                                     | $+ \mathbf{RTO}$ $\frac{MAE}{0.05}$ 0.07 0.11 0.12 0.10 0.07 0.04 0.05 0.07 0.25 0.15 0.03                                                                           | R [HR+0<br><i>MARD</i><br>*<br>*<br>*<br>60.37%<br>*<br>63.97%<br>*<br>43.29%                     | $\begin{array}{c} \textbf{SR]} - \varphi_{2} \\ \textbf{Angry} \\ RMSE \\ \hline 0.48 \\ 0.38 \\ 0.40 \\ 0.86 \\ 0.87 \\ 0.37 \\ 0.28 \\ 0.49 \\ 0.49 \\ 0.49 \\ 0.76 \\ 0.16 \\ 0.30 \end{array}$         | $\frac{MAE}{0.05}$ 0.04 0.04 0.04 0.10 0.10 0.03 0.03 0.03 0.07 0.08 0.07 0.05 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = sigmoid.<br>S<br>MARD<br>*<br>*<br>11.28%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                | opt='sg<br>urprised<br>RMSE<br>0.32<br>0.37<br>0.35<br>0.47<br>0.59<br>0.53<br>0.52<br>0.35<br>0.28<br>0.34<br>0.15<br>0.15                                                   | $\begin{array}{c} \mathbf{d', } N_{h} = \\ \hline MAE \\ \hline 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.07 \\ 0.05 \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.05 \\ 0.05 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 18 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>63.25%<br>81.42%<br>22.85%<br>43.72%<br>18.07% | $     \begin{array}{l} N_o = 5 \\ \hline \textbf{Scared} \\ \hline \textbf{RMSE} \\ \hline 0.55 \\ 0.65 \\ 0.66 \\ 0.66 \\ 0.65 \\ 0.66 \\ 0.59 \\ 0.73 \\ 0.73 \\ 0.37 \\ 0.15 \\ 0.20 \\ 0.04 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} MAE \\ \hline 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.09 \\ 0.05 \\ 0.01 \\ 0.05 \\ 0.01 \end{array}$ | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * 63.30% *        | $\begin{array}{c} \text{Test 10} \\ \textbf{Happy} \\ RMSE \\ \hline 0.36 \\ 0.45 \\ 0.54 \\ 0.63 \\ 0.62 \\ 0.60 \\ 0.59 \\ 0.42 \\ 0.41 \\ 0.46 \\ 0.19 \\ 0.63 \\ 0.33 \\ \end{array}$                                                 | $\begin{array}{c} \mathbf{3 - Emo} \\ \hline MAE \\ 0.04 \\ 0.05 \\ 0.05 \\ 0.07 \\ 0.07 \\ 0.06 \\ 0.07 \\ 0.06 \\ 0.07 \\ 0.05 \\ 0.06 \\ 0.17 \\ 0.03 \end{array}$                                                                                                                            | tion Reco $MARD$<br>*<br>89.10%<br>99.06%<br>*<br>*<br>70.43%<br>97.66%<br>*<br>73.98%<br>52.27%<br>31.81%<br>32.52%      | Sad           RMSE           0.47           0.78           1.33           1.04           0.90           0.73           0.42           0.38           0.47           2.46           0.52           0.09           0.38                                                             | $+ \mathbf{RTO}$ $MAE$ 0.05 0.07 0.11 0.12 0.10 0.07 0.04 0.05 0.07 0.25 0.15 0.03 0.03                                                                              | R [HR+0<br><i>MARD</i><br>*<br>*<br>*<br>60.37%<br>*<br>63.97%<br>*<br>43.29%<br>43.68%           | $\begin{array}{c} \textbf{SR]} - \varphi_{2} \\ \textbf{Angry} \\ RMSE \\ \hline 0.48 \\ 0.38 \\ 0.40 \\ 0.86 \\ 0.87 \\ 0.37 \\ 0.28 \\ 0.49 \\ 0.49 \\ 0.49 \\ 0.76 \\ 0.16 \\ 0.30 \\ 0.87 \end{array}$ | $\frac{MAE}{0.05}$ $\frac{0.04}{0.04}$ $\frac{0.04}{0.10}$ $\frac{0.03}{0.03}$ $\frac{0.03}{0.07}$ $\frac{0.08}{0.07}$ $\frac{0.05}{0.08}$ $\frac{0.08}{0.08}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = sigmoid.<br>S<br>MARD<br>*<br>*<br>11.28%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*           | opt='sg<br>urprised<br>RMSE<br>0.32<br>0.37<br>0.35<br>0.47<br>0.59<br>0.53<br>0.52<br>0.35<br>0.28<br>0.34<br>0.15<br>0.15<br>0.57                                           | $\begin{array}{c} \mathbf{d', } N_{h} = \\ \hline MAE \\ \hline 0.04 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.07 \\ 0.05 \\ 0.06 \\ 0.05 \\ 0.04 \\ 0.04 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.06 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = 18 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\begin{array}{c} MAE \\ \hline 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.05 \\ 0.01 \\ 0.05 \\ 0.01 \\ 0.04 \end{array}$ | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * 63.30%            | $\begin{array}{c} \textbf{Test 10} \\ \textbf{Happy} \\ RMSE \\ \hline 0.36 \\ 0.45 \\ 0.54 \\ 0.63 \\ 0.62 \\ 0.60 \\ 0.59 \\ 0.42 \\ 0.41 \\ 0.46 \\ 0.19 \\ 0.63 \\ 0.33 \\ \end{array}$                                               | <b>MAE</b> 0.04           0.05           0.07           0.06           0.07           0.06           0.07           0.06           0.07           0.06           0.07           0.06           0.07           0.06           0.07           0.05           0.06           0.17           0.03    | tion Reco $MARD$<br>*<br>89.10%<br>99.06%<br>*<br>*<br>*<br>70.43%<br>97.66%<br>*<br>73.98%<br>52.27%<br>31.81%<br>32.52% | Sad           RMSE           0.47           0.78           1.33           1.04           0.90           0.73           0.42           0.38           0.47           2.46           0.52           0.09           0.38                                                             | $+ \mathbf{RTO}$ $MAE$ 0.05 0.07 0.11 0.12 0.10 0.07 0.04 0.05 0.07 0.25 0.15 0.03 0.03                                                                              | R [HR+0<br>*<br>*<br>*<br>*<br>60.37%<br>*<br>63.97%<br>*<br>43.29%<br>43.68%                     | $\begin{array}{c} \textbf{GSR]} - \varphi_3 \\ \textbf{Angry} \\ RMSE \\ 0.48 \\ 0.38 \\ 0.40 \\ 0.86 \\ 0.87 \\ 0.37 \\ 0.28 \\ 0.49 \\ 0.49 \\ 0.76 \\ 0.16 \\ 0.30 \\ 0.87 \end{array}$                 | $\frac{MAE}{0.05}$ 0.04 0.04 0.04 0.00 0.10 0.03 0.03 0.07 0.08 0.07 0.05 0.08 0.08 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = sigmoid.<br>S<br>MARD<br>*<br>*<br>11.28%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br>urprised<br>RMSE<br>0.32<br>0.37<br>0.35<br>0.47<br>0.59<br>0.53<br>0.52<br>0.35<br>0.52<br>0.35<br>0.28<br>0.34<br>0.15<br>0.15<br>0.15<br>0.57                   | $\mathbf{d', } N_h = \frac{MAE}{0.04}$ $0.04$ $0.04$ $0.05$ $0.07$ $0.05$ $0.06$ $0.05$ $0.04$ $0.04$ $0.05$ $0.05$ $0.05$ $0.05$ $0.05$ $0.05$ $0.06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | = 18 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>63.25%<br>81.42%<br>22.85%<br>43.72%<br>18.07%<br>*           | $     \begin{array}{l} N_o = 5 \\ \hline \textbf{Scared} \\ \hline \textbf{RMSE} \\ \hline \textbf{0.55} \\ 0.65 \\ 0.66 \\ 0.66 \\ 0.65 \\ 0.66 \\ 0.59 \\ 0.73 \\ 0.37 \\ 0.15 \\ 0.20 \\ 0.04 \\ 0.35 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} MAE \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.05 \\ 0.01 \\ 0.05 \\ 0.01 \\ 0.04 \end{array}$        | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * 63.30%            | Test 10           Happy           RMSE           0.36           0.45           0.54           0.63           0.62           0.60           0.59           0.42           0.41           0.63           0.19           0.63           0.33 | <b>3</b> - Emo         MAE         0.04         0.05         0.07         0.06         0.07         0.06         0.07         0.06         0.07         0.06         0.07         0.06         0.07         0.06         0.17         0.03                                                       | tion Reco $MARD$<br>*<br>89.10%<br>99.06%<br>*<br>*<br>70.43%<br>97.66%<br>*<br>73.98%<br>52.27%<br>31.81%<br>32.52%      | Sad           RMSE           0.47           0.78           1.33           1.04           0.90           0.73           0.42           0.38           0.47           0.38           0.47           0.38           0.47           2.46           0.52           0.09           0.38 | + RTO<br><i>MAE</i><br>0.05<br>0.07<br>0.11<br>0.12<br>0.10<br>0.07<br>0.04<br>0.05<br>0.07<br>0.25<br>0.15<br>0.03<br>0.03<br>0.03                                  | R [HR+0<br>*<br>*<br>*<br>*<br>60.37%<br>*<br>63.97%<br>*<br>43.29%<br>43.68%                     | <b>GSR</b> ] - φ <sub>2</sub><br><b>Angry</b><br><i>RMSE</i><br>0.48<br>0.38<br>0.40<br>0.86<br>0.87<br>0.37<br>0.28<br>0.49<br>0.49<br>0.49<br>0.76<br>0.16<br>0.30<br>0.87<br><b>ε</b>                   | $\frac{MAE}{0.05}$ 0.04 0.04 0.04 0.10 0.10 0.03 0.03 0.07 0.08 0.07 0.08 0.07 0.08 0.08 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = sigmoid.<br>S<br>MARD<br>*<br>11.28%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*      | opt='sg<br>urprised<br><u>RMSE</u><br>0.32<br>0.37<br>0.35<br>0.47<br>0.59<br>0.53<br>0.52<br>0.35<br>0.28<br>0.34<br>0.15<br>0.57<br>                                        | $     d', N_h = \frac{MAE}{0.04} \\     0.04 \\     0.04 \\     0.05 \\     0.05 \\     0.05 \\     0.06 \\     0.05 \\     0.04 \\     0.05 \\     0.05 \\     0.05 \\     0.06 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\     006 \\   $ | = 18 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>63.25%<br>81.42%<br>22.85%<br>43.72%<br>18.07%<br>*           | $     \begin{array}{r} N_o = 5 \\ \hline \textbf{Scared} \\ \hline \textbf{RMSE} \\ \hline 0.55 \\ 0.65 \\ 0.66 \\ 0.66 \\ 0.65 \\ 0.66 \\ 0.59 \\ 0.73 \\ 0.37 \\ 0.15 \\ 0.20 \\ 0.04 \\ 0.35 \end{array} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MAE<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.09<br>0.05<br>0.01<br>0.05<br>0.01<br>0.04                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * 63.30%              | Test 10<br>Happy<br>RMSE<br>0.36<br>0.45<br>0.54<br>0.63<br>0.62<br>0.60<br>0.59<br>0.42<br>0.41<br>0.46<br>0.19<br>0.63<br>0.33                                                                                                          | MAE           0.04           0.05           0.07           0.06           0.07           0.06           0.07           0.06           0.07           0.06           0.07           0.06           0.07           0.06           0.07           0.05           0.06           0.17           0.03 | tion Reco<br><i>MARD</i><br>* 89.10% 99.06%<br>* * 70.43% 97.66% * 73.98% 52.27% 31.81% 32.52%                            | Sad           RMSE           0.47           0.78           1.33           1.04           0.90           0.73           0.42           0.38           0.47           0.38           0.47           0.38           0.47           2.46           0.52           0.09           0.38 | + RTO<br><i>MAE</i><br>0.05<br>0.07<br>0.11<br>0.12<br>0.10<br>0.07<br>0.04<br>0.05<br>0.07<br>0.25<br>0.15<br>0.03<br>0.03<br>0.03                                  | R [HR+0<br>*<br>*<br>*<br>*<br>60.37%<br>*<br>63.97%<br>*<br>43.29%<br>43.68%                     | GSR] - φ         Angry         RMSE         0.48         0.38         0.40         0.86         0.87         0.28         0.49         0.76         0.16         0.30         0.87                         | MAE<br>0.05<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.00<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = sigmoid.<br>S<br>MARD<br>*<br>11.28%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*      | opt='sg<br>urprised<br>RMSE<br>0.32<br>0.37<br>0.35<br>0.47<br>0.59<br>0.53<br>0.52<br>0.35<br>0.28<br>0.34<br>0.15<br>0.57<br><b>E</b><br>0.57                               | $     d', N_h = \frac{MAE}{0.04} \\     0.04 \\     0.04 \\     0.05 \\     0.05 \\     0.05 \\     0.04 \\     0.05 \\     0.04 \\     0.05 \\     0.05 \\     0.06 \\     000     000     000   $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 18 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>63.25%<br>81.42%<br>22.85%<br>43.72%<br>18.07%<br>*           | $     \begin{array}{r} N_o = 5 \\ \hline \textbf{Scared} \\ \hline \textbf{RMSE} \\ \hline \textbf{0.55} \\ 0.65 \\ 0.66 \\ 0.66 \\ 0.65 \\ 0.66 \\ 0.59 \\ 0.73 \\ 0.37 \\ 0.15 \\ 0.20 \\ 0.04 \\ 0.35 \\ \hline \textbf{17.0} \\ \hline 17$ | <i>MAE</i><br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.0                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * 63.30%                | Test 10<br>Happy<br><i>RMSE</i><br>0.36<br>0.45<br>0.54<br>0.63<br>0.62<br>0.60<br>0.59<br>0.42<br>0.41<br>0.46<br>0.19<br>0.63<br>0.33<br><b>ET:0</b><br>+ <b>8</b>                                                                      | <b>3 - Emo</b><br><i>MAE</i><br>0.04<br>0.05<br>0.05<br>0.07<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.06<br>0.07<br>0.05<br>0.06<br>0.17<br>0.03<br><b>80.0</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b><br><b>1</b>                              | tion Reco $MARD$<br>*<br>89.10%<br>99.06%<br>*<br>*<br>70.43%<br>97.66%<br>*<br>73.98%<br>52.27%<br>31.81%<br>32.52%      | ognition         Sad         RMSE         0.47         0.78         1.33         1.04         0.90         0.73         0.42         0.38         0.47         2.46         0.52         0.09         0.38                                                                        | + RTO<br><i>MAE</i><br>0.05<br>0.07<br>0.11<br>0.12<br>0.10<br>0.07<br>0.04<br>0.05<br>0.07<br>0.25<br>0.15<br>0.03<br>0.03<br><b>'CO</b><br><b>'OO</b><br><b>'H</b> | R [HR+0<br><i>MARD</i><br>*<br>*<br>*<br>*<br>*<br>60.37%<br>*<br>63.97%<br>*<br>43.29%<br>43.68% | GSR] - φ         Angry         RMSE         0.48         0.38         0.40         0.86         0.87         0.37         0.28         0.49         0.76         0.16         0.30         0.87            | $\begin{array}{c} (v_j(n)) = \\ \hline MAE \\ 0.05 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.10 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.08 \\ 0.08 \\ \hline \\ \hline \\ 0.08 \\ \hline 0.08 \\ \hline 0.08 \\ \hline \\ 0.08 \\ \hline 0$ | = sigmoid.<br>S<br>MARD<br>*<br>11.28%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*           | opt='sg<br>urprised<br>RMSE<br>0.32<br>0.37<br>0.35<br>0.47<br>0.59<br>0.53<br>0.52<br>0.35<br>0.28<br>0.34<br>0.15<br>0.57<br><b>Elion</b><br>₩                              | $     d', N_h = \frac{MAE}{0.04} \\     0.04 \\     0.04 \\     0.05 \\     0.05 \\     0.05 \\     0.04 \\     0.05 \\     0.04 \\     0.05 \\     0.05 \\     0.06 \\     0.05 \\     0.06 \\     0.05 \\     0.06 \\     0.06 \\     0.01 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\     0.02 \\  $                  | = 18 × 2, 1<br><u>MARD</u><br>*<br>*<br>*<br>63.25%<br>81.42%<br>22.85%<br>43.72%<br>18.07%<br>*              | $N_o = 5$<br>Scared<br>RMSE<br>0.55<br>0.65<br>0.60<br>0.64<br>0.65<br>0.66<br>0.59<br>0.73<br>0.37<br>0.15<br>0.20<br>0.04<br>0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <i>MAE</i><br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.0                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * 63.30%              | Test 10           Happy           RMSE           0.36           0.45           0.54           0.63           0.62           0.60           0.59           0.42           0.41           0.63           0.33                               | <b>a</b> - Emo         MAE         0.04         0.05         0.07         0.07         0.06         0.07         0.06         0.07         0.06         0.07         0.06         0.07         0.06         0.17         0.03         80.04         0.05         0.04                            | tion Reco $MARD$<br>*<br>89.10%<br>99.06%<br>*<br>*<br>70.43%<br>97.66%<br>*<br>73.98%<br>52.27%<br>31.81%<br>32.52%      | Sad           RMSE           0.47           0.78           1.33           1.04           0.90           0.73           0.42           0.38           0.47           2.46           0.52           0.09           0.38                                                             | + RTO<br><i>MAE</i><br>0.05<br>0.07<br>0.11<br>0.12<br>0.10<br>0.07<br>0.04<br>0.05<br>0.07<br>0.25<br>0.15<br>0.03<br>0.03<br>************************************  | R [HR+0<br><i>MARD</i><br>*<br>*<br>*<br>*<br>60.37%<br>*<br>63.97%<br>43.29%<br>43.68%           | GSR] - φ         Angry         RMSE         0.48         0.38         0.40         0.86         0.87         0.37         0.28         0.49         0.76         0.16         0.30         0.87            | $(v_j(n)) = \frac{MAE}{0.05}$ 0.04 0.04 0.04 0.10 0.10 0.03 0.03 0.07 0.08 0.07 0.08 0.07 0.08 0.08 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = sigmoid.<br>S<br>MARD<br>*<br>11.28%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                     | opt='sg<br>urprised<br><i>RMSE</i><br>0.32<br>0.37<br>0.35<br>0.47<br>0.59<br>0.53<br>0.52<br>0.35<br>0.28<br>0.34<br>0.15<br>0.15<br>0.57<br><b>Elio</b><br>++<br><b>Sec</b> | $     d', N_h = \frac{MAE}{0.04} \\     0.04 \\     0.04 \\     0.05 \\     0.05 \\     0.05 \\     0.05 \\     0.04 \\     0.05 \\     0.05 \\     0.05 \\     0.06 \\     0000 \\     +19000 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 18 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>63.25%<br>81.42%<br>22.85%<br>43.72%<br>18.07%<br>*                | $N_o = 5$<br>Scared<br>RMSE<br>0.55<br>0.65<br>0.60<br>0.64<br>0.65<br>0.66<br>0.59<br>0.73<br>0.15<br>0.20<br>0.04<br>0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <i>MAE</i><br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.07<br>0.0                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |

TABLE 9.10. Emotion recognition results tests 15 and 16. ANN with  $6 \times 10^3$  train epochs and input data with feature extraction.

|                                                                                                                                                               |                                            | Test 17                                                                                                                                                                                                                                         | - Emot                                                                                                                                                                                                                                                                                                                                                               | ion Reco                                                                                                                                                                                             | gnition +                                                                                                                                                                                                                                 | - RTOR                                                                                                                                              | l [HR+G                                                                                                                                                                                 | $\mathbf{SR}$ ] - $\varphi_j$                                                                                                            | $(v_j(n)) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | sigmoid,                                                                                                         | opt='ada                                                                                                                                                          | m', $N_h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $= 18 \times 2,$                                                                                                                            | $N_o = 5$                                                                                                                                                                                                                |                                                                                                                                                    |                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{Flight}$                                                                                                                                             |                                            | Happy                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      | Sad                                                                                                                                                                                                                                       |                                                                                                                                                     |                                                                                                                                                                                         | Angry                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S                                                                                                                | urprised                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             | Scared                                                                                                                                                                                                                   |                                                                                                                                                    | Match                                                                                                                                                                                                                                           |
| Dataset                                                                                                                                                       | MARD                                       | RMSE                                                                                                                                                                                                                                            | MAE                                                                                                                                                                                                                                                                                                                                                                  | MARD                                                                                                                                                                                                 | RMSE                                                                                                                                                                                                                                      | MAE                                                                                                                                                 | MARD                                                                                                                                                                                    | RMSE                                                                                                                                     | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MARD                                                                                                             | RMSE                                                                                                                                                              | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MARD                                                                                                                                        | RMSE                                                                                                                                                                                                                     | MAE                                                                                                                                                | Accuracy (%)                                                                                                                                                                                                                                    |
| DS:RC1                                                                                                                                                        | 89.18%                                     | 0.16                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                 | 95.43%                                                                                                                                                                                               | 0.41                                                                                                                                                                                                                                      | 0.04                                                                                                                                                | 72.83%                                                                                                                                                                                  | 0.52                                                                                                                                     | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 44.25%                                                                                                           | 0.14                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                                                           | 0.19                                                                                                                                                                                                                     | 0.02                                                                                                                                               | <b>53.73</b> ( <b>36</b> /67)                                                                                                                                                                                                                   |
| DS:RC2                                                                                                                                                        | *                                          | 0.19                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                 | 83.59%                                                                                                                                                                                               | 0.85                                                                                                                                                                                                                                      | 0.08                                                                                                                                                | 70.13%                                                                                                                                                                                  | 0.30                                                                                                                                     | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 47.99%                                                                                                           | 0.13                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                                                           | 0.24                                                                                                                                                                                                                     | 0.03                                                                                                                                               | $82.05 \ (64/78)$                                                                                                                                                                                                                               |
| DS:RC3                                                                                                                                                        | *                                          | 0.80                                                                                                                                                                                                                                            | 0.08                                                                                                                                                                                                                                                                                                                                                                 | 90.09%                                                                                                                                                                                               | 1.41                                                                                                                                                                                                                                      | 0.12                                                                                                                                                | 49.78%                                                                                                                                                                                  | 0.26                                                                                                                                     | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17.21%                                                                                                           | 0.15                                                                                                                                                              | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                                                           | 0.21                                                                                                                                                                                                                     | 0.02                                                                                                                                               | <b>57.53</b> ( <b>42</b> /73)                                                                                                                                                                                                                   |
| DS:GC1                                                                                                                                                        | *                                          | 0.23                                                                                                                                                                                                                                            | 0.03                                                                                                                                                                                                                                                                                                                                                                 | *                                                                                                                                                                                                    | 0.95                                                                                                                                                                                                                                      | 0.11                                                                                                                                                | *                                                                                                                                                                                       | 0.67                                                                                                                                     | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65.26%                                                                                                           | 0.08                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                                                           | 0.26                                                                                                                                                                                                                     | 0.03                                                                                                                                               | <b>22.67</b> (17/75)                                                                                                                                                                                                                            |
| DS:GC3                                                                                                                                                        | *                                          | 0.18                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                 | *                                                                                                                                                                                                    | 0.72                                                                                                                                                                                                                                      | 0.08                                                                                                                                                | *                                                                                                                                                                                       | 0.61                                                                                                                                     | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                | 0.12                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                                                           | 0.23                                                                                                                                                                                                                     | 0.03                                                                                                                                               | <b>100.00</b> ( <b>78</b> /78)                                                                                                                                                                                                                  |
| DS:LS1                                                                                                                                                        | *                                          | 0.14                                                                                                                                                                                                                                            | 0.01                                                                                                                                                                                                                                                                                                                                                                 | *                                                                                                                                                                                                    | 0.57                                                                                                                                                                                                                                      | 0.05                                                                                                                                                | *                                                                                                                                                                                       | 0.35                                                                                                                                     | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32.60%                                                                                                           | 0.08                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                                                           | 0.18                                                                                                                                                                                                                     | 0.02                                                                                                                                               | <b>22.55</b> ( <b>23</b> /102)                                                                                                                                                                                                                  |
| DS:LS2                                                                                                                                                        | *                                          | 0.19                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                 | 50.82%                                                                                                                                                                                               | 0.34                                                                                                                                                                                                                                      | 0.03                                                                                                                                                | 36.44%                                                                                                                                                                                  | 0.23                                                                                                                                     | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                | 0.09                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                                                           | 0.19                                                                                                                                                                                                                     | 0.02                                                                                                                                               | 68.00 (51/75)                                                                                                                                                                                                                                   |
| DS:VC1                                                                                                                                                        | *                                          | 0.16                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                 | 89.02%                                                                                                                                                                                               | 0.36                                                                                                                                                                                                                                      | 0.05                                                                                                                                                | *                                                                                                                                                                                       | 0.40                                                                                                                                     | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43.75%                                                                                                           | 0.06                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 77.37%                                                                                                                                      | 0.98                                                                                                                                                                                                                     | 0.12                                                                                                                                               | <b>16.67</b> ( <b>8</b> /48)                                                                                                                                                                                                                    |
| DS:VC2                                                                                                                                                        | *                                          | 0.10                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                 | *                                                                                                                                                                                                    | 0.36                                                                                                                                                                                                                                      | 0.05                                                                                                                                                | *                                                                                                                                                                                       | 0.30                                                                                                                                     | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34.69%                                                                                                           | 0.08                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 69.00%                                                                                                                                      | 0.57                                                                                                                                                                                                                     | 0.08                                                                                                                                               | <b>28.95</b> (11/38)                                                                                                                                                                                                                            |
| DS:CR1                                                                                                                                                        | *                                          | 0.12                                                                                                                                                                                                                                            | 0.01                                                                                                                                                                                                                                                                                                                                                                 | 75.34%                                                                                                                                                                                               | 2.58                                                                                                                                                                                                                                      | 0.26                                                                                                                                                | 66.53%                                                                                                                                                                                  | 0.92                                                                                                                                     | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 38.42%                                                                                                           | 0.12                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 63.33%                                                                                                                                      | 0.40                                                                                                                                                                                                                     | 0.04                                                                                                                                               | <b>93.15</b> ( <b>68</b> /73)                                                                                                                                                                                                                   |
| DS:CR3                                                                                                                                                        | *                                          | 0.05                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                                                                                                                                 | 49.08%                                                                                                                                                                                               | 0.54                                                                                                                                                                                                                                      | 0.15                                                                                                                                                | *                                                                                                                                                                                       | 0.16                                                                                                                                     | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.85%                                                                                                            | 0.01                                                                                                                                                              | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67.53%                                                                                                                                      | 0.29                                                                                                                                                                                                                     | 0.08                                                                                                                                               | <b>77.78</b> ( <b>7</b> /9)                                                                                                                                                                                                                     |
| DS:CLX                                                                                                                                                        | 86.01%                                     | 0.74                                                                                                                                                                                                                                            | 0.21                                                                                                                                                                                                                                                                                                                                                                 | 34.87%                                                                                                                                                                                               | 0.12                                                                                                                                                                                                                                      | 0.03                                                                                                                                                | 52.43%                                                                                                                                                                                  | 0.37                                                                                                                                     | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                | 0.04                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53.00%                                                                                                                                      | 0.14                                                                                                                                                                                                                     | 0.04                                                                                                                                               | <b>0.00</b> ( <b>0</b> /10)                                                                                                                                                                                                                     |
| DS:CL3                                                                                                                                                        | 74.84%                                     | 0.36                                                                                                                                                                                                                                            | 0.03                                                                                                                                                                                                                                                                                                                                                                 | 32.35%                                                                                                                                                                                               | 0.41                                                                                                                                                                                                                                      | 0.04                                                                                                                                                | 58.97%                                                                                                                                                                                  | 1.09                                                                                                                                     | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                | 0.13                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32.20%                                                                                                                                      | 0.17                                                                                                                                                                                                                     | 0.01                                                                                                                                               | $15.12\;(13/86)$                                                                                                                                                                                                                                |
|                                                                                                                                                               |                                            |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                                                                                                           |                                                                                                                                                     |                                                                                                                                                                                         |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                  |                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                             |                                                                                                                                                                                                                          |                                                                                                                                                    | 00                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                            | 22                                                                                                                                                                                                                                              | 05                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                      | <b>62</b>                                                                                                                                                                                                                                 | 00                                                                                                                                                  |                                                                                                                                                                                         | 26                                                                                                                                       | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                  | 04                                                                                                                                                                | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             | 22                                                                                                                                                                                                                       | 03                                                                                                                                                 | .5.0                                                                                                                                                                                                                                            |
|                                                                                                                                                               |                                            | 0                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                       | 0.0                                                                                                                                                 |                                                                                                                                                                                         | 0                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  | 0.0                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             | 0                                                                                                                                                                                                                        | 0.0                                                                                                                                                | +<br>+                                                                                                                                                                                                                                          |
|                                                                                                                                                               |                                            | +<br>9                                                                                                                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                      | 4<br>++                                                                                                                                                                                                                                   | <b>%</b>                                                                                                                                            |                                                                                                                                                                                         | _+<br>∞                                                                                                                                  | + <b>9</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                  | +6                                                                                                                                                                | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                             | ++                                                                                                                                                                                                                       | 4                                                                                                                                                  | 60                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                            | 0.2                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                      | 7.0                                                                                                                                                                                                                                       | 0.0                                                                                                                                                 |                                                                                                                                                                                         | .4                                                                                                                                       | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  | 0.0                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             | ).3                                                                                                                                                                                                                      | 0.0                                                                                                                                                | <b>1</b> 9.                                                                                                                                                                                                                                     |
|                                                                                                                                                               |                                            | -                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                      | -                                                                                                                                                                                                                                         | -                                                                                                                                                   |                                                                                                                                                                                         | _                                                                                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                  | _                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                             | -                                                                                                                                                                                                                        | _                                                                                                                                                  | N N                                                                                                                                                                                                                                             |
|                                                                                                                                                               |                                            | Test 1                                                                                                                                                                                                                                          | 8 - Em                                                                                                                                                                                                                                                                                                                                                               | otion Red                                                                                                                                                                                            | cognition                                                                                                                                                                                                                                 | + RTC                                                                                                                                               | R HR+                                                                                                                                                                                   | GSR] - u                                                                                                                                 | $2_i(v_i(n))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = ReLU.                                                                                                          | opt='sgd                                                                                                                                                          | $N_h =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $18 \times 2$ , N                                                                                                                           | 5 = 5                                                                                                                                                                                                                    |                                                                                                                                                    |                                                                                                                                                                                                                                                 |
| Flight                                                                                                                                                        |                                            | Test 1<br>Happy                                                                                                                                                                                                                                 | l8 - Em                                                                                                                                                                                                                                                                                                                                                              | otion Red                                                                                                                                                                                            | cognition<br>Sad                                                                                                                                                                                                                          | + RTC                                                                                                                                               | DR [HR+                                                                                                                                                                                 | GSR] - 4<br>Angry                                                                                                                        | $\varphi_j(v_j(n))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = ReLU,<br>S                                                                                                     | opt='sgd<br>urprised                                                                                                                                              | l', $N_h =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $18 \times 2, N$                                                                                                                            | $\overline{f_o = 5}$<br>Scared                                                                                                                                                                                           |                                                                                                                                                    | Match                                                                                                                                                                                                                                           |
| Flight<br>Dataset                                                                                                                                             | MARD                                       | Test 1<br>Happy<br>RMSE                                                                                                                                                                                                                         | 1 <b>8 - Em</b><br>MAE                                                                                                                                                                                                                                                                                                                                               | otion Red                                                                                                                                                                                            | cognition<br>Sad<br>RMSE                                                                                                                                                                                                                  | $+ \mathbf{RTC}$                                                                                                                                    | <b>DR</b> [ <b>HR</b> + $MARD$                                                                                                                                                          | GSR] - 4<br>Angry<br>RMSE                                                                                                                | $p_j(v_j(n))$ $MAE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = ReLU, $S$ $MARD$                                                                                               | opt='sgd<br>urprised<br>RMSE                                                                                                                                      | $\mathbf{l}^{\prime}, N_h = MAE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $18 \times 2, N$<br>MARD                                                                                                                    | $f_o = 5$<br>Scared<br>RMSE                                                                                                                                                                                              | MAE                                                                                                                                                | Match<br>Accuracy (%)                                                                                                                                                                                                                           |
| Flight<br>Dataset<br>DS:RC1                                                                                                                                   | MARD<br>*                                  | Test 1<br>Happy<br>RMSE<br>0.16                                                                                                                                                                                                                 | 18 - Em<br>MAE<br>0.02                                                                                                                                                                                                                                                                                                                                               | otion Red<br>MARD<br>*                                                                                                                                                                               | cognition<br>Sad<br>RMSE<br>0.42                                                                                                                                                                                                          | + RTC<br>MAE<br>0.04                                                                                                                                | DR [HR+<br><i>MARD</i><br>78.23%                                                                                                                                                        | <b>GSR] -</b> 4<br><b>Angry</b><br><i>RMSE</i><br>0.50                                                                                   | $\frac{c_j(v_j(n))}{MAE}$ 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $= ReLU,$ $\mathbf{S}$ $MARD$ $41.33\%$                                                                          | opt='sgd<br>urprised<br>RMSE<br>0.13                                                                                                                              | $\mathbf{I'}, N_h = \frac{MAE}{0.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\frac{18 \times 2, N}{MARD}$                                                                                                               |                                                                                                                                                                                                                          | MAE<br>0.02                                                                                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)                                                                                                                                                                                                          |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2                                                                                                                         | MARD<br>*<br>*                             | Test 1           Happy           RMSE           0.16           0.17                                                                                                                                                                             | 18 - Em<br>MAE<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                       | otion Red<br><i>MARD</i><br>*<br>81.63%                                                                                                                                                              | cognition<br>Sad<br>RMSE<br>0.42<br>0.81                                                                                                                                                                                                  | + RTC<br><i>MAE</i><br>0.04<br>0.07                                                                                                                 | DR [HR+<br><i>MARD</i><br>78.23%<br>70.02%                                                                                                                                              | GSR] - 4<br>Angry<br><i>RMSE</i><br>0.50<br>0.29                                                                                         | $\frac{\rho_j(v_j(n))}{MAE}$ $\frac{MAE}{0.04}$ $0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = ReLU,<br><b>S</b><br><i>MARD</i><br>41.33%<br>39.41%                                                           | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12                                                                                                                      | $N_h = \frac{MAE}{0.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $18 \times 2, N$ $MARD$ $*$ $*$                                                                                                             |                                                                                                                                                                                                                          | MAE<br>0.02<br>0.03                                                                                                                                | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)                                                                                                                                                                                         |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3                                                                                                               | <i>MARD</i><br>*<br>*                      | Test 1<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78                                                                                                                                                                                          | MAE           0.02           0.02           0.07                                                                                                                                                                                                                                                                                                                     | otion Red<br><i>MARD</i><br>*<br>81.63%<br>91.36%                                                                                                                                                    | cognition<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37                                                                                                                                                                                   | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11                                                                                                         | DR [HR+<br><i>MARD</i><br>78.23%<br>70.02%<br>61.92%                                                                                                                                    | GSR] - 4<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28                                                                                 | $\frac{MAE}{0.04} \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\$ | $= ReLU, \\ S \\ MARD \\ 41.33\% \\ 39.41\% \\ 7.02\%$                                                           | opt='sgd<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12                                                                                                       | $\frac{N_{h}}{MAE}$ $\frac{MAE}{0.01}$ 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $ \begin{array}{c} 18 \times 2, N \\ \hline MARD \\ * \\ * \\ * \end{array} $                                                               | $f_o = 5$<br>Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24                                                                                                                                                               | MAE<br>0.02<br>0.03<br>0.03                                                                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)                                                                                                                                                                        |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1                                                                                                     | MARD<br>*<br>*<br>*                        | Test 1<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24                                                                                                                                                                                  | MAE           0.02           0.02           0.07           0.03                                                                                                                                                                                                                                                                                                      | otion Rec<br><i>MARD</i><br>*<br>81.63%<br>91.36%<br>*                                                                                                                                               | cognition<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96                                                                                                                                                                           | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11                                                                                                 | DR [HR+<br><i>MARD</i><br>78.23%<br>70.02%<br>61.92%<br>*                                                                                                                               | GSR] - 4<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68                                                                         | $\frac{D_{j}(v_{j}(n))}{MAE}$ 0.04 0.03 0.03 0.03 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = ReLU, <b>S</b> <i>MARD</i> 41.33% 39.41% 7.02% 56.94%                                                          | opt='sgd<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.12<br>0.06                                                                                       | $V, N_h = \frac{MAE}{0.01}$<br>0.01<br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 × 2, N<br>MARD<br>*<br>*<br>*                                                                                                            | $f_o = 5$<br>Scared<br>RMSE<br>0.19<br>0.26<br>0.24<br>0.26                                                                                                                                                              | MAE<br>0.02<br>0.03<br>0.03<br>0.03                                                                                                                | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)                                                                                                                                                       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3                                                                                           | MARD<br>*<br>*<br>*<br>*                   | Test 1<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22                                                                                                                                                                          | MAE           0.02           0.02           0.07           0.03                                                                                                                                                                                                                                                                                                      | 00000 Rec<br>MARD<br>*<br>81.63%<br>91.36%<br>*<br>*                                                                                                                                                 | cognition<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82                                                                                                                                                                   | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09                                                                                         | DR [HR+<br><i>MARD</i><br>78.23%<br>70.02%<br>61.92%<br>*<br>*                                                                                                                          | GSR] - 4<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69                                                                 | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline \\ \hline \\ MAE \\ \hline \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ \hline \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = ReLU, <b>S</b> <i>MARD</i> 41.33% 39.41% 7.02% 56.94% 754.16%                                                  | opt='sgd<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15                                                                               | $\frac{V, N_h = 0.01}{0.01}$ 0.01 0.01 0.01 0.01 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18 × 2, N<br>MARD<br>*<br>*<br>*<br>*                                                                                                       | $f_o = 5$<br>Scared<br>RMSE<br>0.19<br>0.26<br>0.24<br>0.26<br>0.27                                                                                                                                                      | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03                                                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)                                                                                                                                     |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1                                                                                 | MARD * * * * * * * *                       | Test 1<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17                                                                                                                                                                  | MAE           0.02           0.02           0.07           0.03           0.03                                                                                                                                                                                                                                                                                       | MARD         *           *         81.63%           91.36%         *           *         *                                                                                                           | <b>Sad</b><br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64                                                                                                                                                                 | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06                                                                                 | DR [HR+<br><u>MARD</u><br>78.23%<br>70.02%<br>61.92%<br>*<br>*<br>*                                                                                                                     | GSR] - 4<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30                                                         | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = ReLU, <b>S</b> <i>MARD</i> 41.33% 39.41% 7.02% 56.94% 754.16% 49.92%                                           | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07                                                                              | $     \begin{array}{l}         V, N_h = \\             \hline             \hline          $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*                                                                                                  | $f_o = 5$<br>Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23                                                                                                                                       | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02                                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)                                                                                                                   |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2                                                                       | MARD * * * * * * * * * *                   | Test 1<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22                                                                                                                                                          | MAE           0.02           0.02           0.07           0.03           0.02                                                                                                                                                                                                                                                                                       | MARD           *           81.63%           91.36%           *           *           59.79%                                                                                                          | Cognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38                                                                                           | $+ \mathbf{RTC}$ $\frac{MAE}{0.04}$ 0.07 0.11 0.11 0.09 0.06 0.04                                                                                   | DR [HR+<br><u>MARD</u><br>78.23%<br>70.02%<br>61.92%<br>*<br>*<br>*<br>39.79%                                                                                                           | GSR] - 4<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22                                                        | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = ReLU, <b>S</b> <i>MARD</i> 41.33% 39.41% 7.02% 56.94% 754.16% 49.92% *                                         | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11                                                                      | $     I', N_h = \frac{MAE}{0.01} \\     0.01 \\     0.01 \\     0.01 \\     0.02 \\     0.01 \\     0.01 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                        | $f_o = 5$<br>Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23<br>0.21                                                                                                                               | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02                                                                                | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)                                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1                                                             | MARD * * * * * * * * * * * *               | Test 1<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13                                                                                                                                                  | MAE           0.02           0.02           0.07           0.03           0.02           0.03           0.02                                                                                                                                                                                                                                                         | MARD           *           81.63%           91.36%           *           *           59.79%           81.48%                                                                                         | Cognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31                                                                            | $+ \mathbf{RTC}$ $\frac{MAE}{0.04}$ 0.07 0.11 0.11 0.09 0.06 0.04 0.04                                                                              | DR [HR+<br>MARD<br>78.23%<br>70.02%<br>61.92%<br>*<br>*<br>*<br>39.79%<br>*                                                                                                             | GSR] - 4<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.34                                         | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = ReLU, <b>S</b> <i>MARD</i> 41.33% 39.41% 7.02% 56.94% 754.16% 49.92% * 24.00%                                  | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04                                                              | $P, N_h = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.01$ $0.01$ $0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                    | $f_o = 5$<br>Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23<br>0.21<br>1.01                                                                                                                       | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \end{array}$                                          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2                                                   | MARD * * * * * * * * * * * * *             | Test 1<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13<br>0.14                                                                                                                                          | MAE           0.02           0.02           0.07           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02                                                                                                                                                               | MARD           *           81.63%           91.36%           *           *           59.79%           81.48%                                                                                         | <b>Sequence</b><br><b>Sad</b><br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64<br>0.38<br>0.31<br>0.42                                                                                                                      | $+ \mathbf{RTC}$ $\frac{MAE}{0.04}$ 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.06                                                                         | DR [HR+<br>MARD<br>78.23%<br>70.02%<br>61.92%<br>*<br>*<br>39.79%<br>*<br>*                                                                                                             | GSR] - 4<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.34<br>0.36                                        | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = ReLU, <b>S</b> <i>MARD</i> 41.33% 39.41% 7.02% 56.94% 754.16% 49.92% * 24.00% 28.36%                           | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07                                                      | $P, N_h = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.01$ $0.00$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>78.96%<br>99.98%                                                | $f_o = 5$<br>Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23<br>0.21<br>1.01<br>0.67                                                                                                               | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.09 \end{array}$                                  | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)                                                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1                               | MARD * * * * * * * * * * * * * *           | Test 1<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12                                                                                                                                  | MAE           0.02           0.02           0.02           0.07           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03                                       | MARD           *           81.63%           91.36%           *           59.79%           81.48%           *                                                                                         | <b>Sognition</b><br><b>Sad</b><br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64<br>0.38<br>0.31<br>0.42<br>2.58                                                                                                             | $+ \mathbf{RTC}$ $\frac{MAE}{0.04}$ 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.04 0.06 0.26                                                               | DR [HR+<br>MARD<br>78.23%<br>70.02%<br>61.92%<br>*<br>*<br>39.79%<br>*<br>*<br>66.51%                                                                                                   | GSR] - 4<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.34<br>0.36<br>0.92                                | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | = ReLU, <b>S</b> <i>MARD</i> 41.33% 39.41% 7.02% 56.94% 754.16% 49.92% * 24.00% 28.36% 37.92%                    | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12                                              | $P, N_h = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.01$ $0.00$ $0.01$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>78.96%<br>99.98%<br>62.94%                                                |                                                                                                                                                                                                                          | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.09 \\ 0.04 \end{array}$                          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)                                                |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1<br>DS:CR3                     | MARD * * * * * * * * * * * * * * * * * * * | Test 1<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05                                                                                                                          | MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03                                                                                                   | $\begin{array}{c} \textbf{MARD} \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$                                                                                                              | <b>cognition</b><br><b>Sad</b><br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64<br>0.38<br>0.31<br>0.42<br>2.58<br>0.55                                                                                                     | $+ \mathbf{RTC}$ $MAE$ $0.04$ $0.07$ $0.11$ $0.11$ $0.09$ $0.06$ $0.04$ $0.04$ $0.06$ $0.26$ $0.15$                                                 | DR [HR+<br><i>MARD</i><br>78.23%<br>70.02%<br>61.92%<br>*<br>*<br>39.79%<br>*<br>66.51%<br>*                                                                                            | GSR] - 4<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.34<br>0.36<br>0.92<br>0.32                 | $\begin{array}{c} p_j(v_j(n)) \\ \hline MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = ReLU, $S$ $MARD$ $41.33%$ $39.41%$ $7.02%$ $56.94%$ $754.16%$ $49.92%$ $*$ $24.00%$ $28.36%$ $37.92%$ $11.58%$ | opt='sgd<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01                                       | $I', N_h = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.01$ $0.00$ $0.01$ $0.01$ $0.00$ $0.01$ $0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                            |                                                                                                                                                                                                                          | $\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.09 \\ 0.04 \\ 0.08 \end{array}$                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX                     | MARD * * * * * * * * * * * * * * * * * * * | Test         1           Happy         RMSE           0.16         0.17           0.78         0.24           0.22         0.17           0.22         0.13           0.14         0.12           0.15         0.76                             | MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.02           0.02           0.01           0.02           0.21         | $\begin{array}{c} \textbf{MARD} \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$                                                                                                              | Cognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06                | $+ \mathbf{RTC}$ $MAE$ $0.04$ $0.07$ $0.11$ $0.11$ $0.09$ $0.06$ $0.04$ $0.04$ $0.06$ $0.26$ $0.15$ $0.02$                                          | DR [HR+<br><i>MARD</i><br>78.23%<br>70.02%<br>61.92%<br>*<br>*<br>39.79%<br>*<br>66.51%<br>*<br>56.07%                                                                                  | GSR] - 4<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36         | $\begin{array}{c} p_j(v_j(n))\\ \hline MAE\\ 0.04\\ 0.03\\ 0.03\\ 0.03\\ 0.08\\ 0.02\\ 0.02\\ 0.02\\ 0.02\\ 0.05\\ 0.06\\ 0.09\\ 0.05\\ 0.11\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = ReLU, <b>S</b> <i>MARD</i> 41.33% 39.41% 7.02% 56.94% 754.16% 49.92% * 24.00% 28.36% 37.92% 11.58% *           | opt='sgd<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04                               | $I', N_h = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 18\times 2,\ N\\ \hline MARD\\ *\\ *\\ *\\ *\\ *\\ *\\ *\\ 78.96\%\\ 99.98\%\\ 62.94\%\\ 67.73\%\\ 60.50\%\\ \end{array}$ |                                                                                                                                                                                                                          | $\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.09 \\ 0.04 \\ 0.08 \\ 0.04 \end{array}$                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | Test         1           Happy         RMSE           0.16         0.17           0.78         0.24           0.22         0.17           0.22         0.13           0.14         0.12           0.50         0.76           0.36         0.36 | $\begin{array}{c} \textbf{MAE} \\ \hline \textbf{MAE} \\ \hline \textbf{0.02} \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.21 \\ 0.03 \end{array}$                                                                                                                                                   | otion Rec           MARD           *           \$1.63%           91.36%           *           \$59.79%           \$1.48%           \$75.31%           \$52.57%           20.21%           28.68%     | $\begin{array}{c} \textbf{cognition} \\ \textbf{Sad} \\ \hline RMSE \\ 0.42 \\ 0.81 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.31 \\ 0.42 \\ 2.58 \\ 0.55 \\ 0.06 \\ 0.39 \end{array}$                                                  | $+ \mathbf{RTC}$ $MAE$ $0.04$ $0.07$ $0.11$ $0.11$ $0.09$ $0.06$ $0.04$ $0.04$ $0.06$ $0.26$ $0.15$ $0.02$ $0.03$                                   | DR [HR+<br><u>MARD</u><br>78.23%<br>70.02%<br>61.92%<br>*<br>*<br>39.79%<br>*<br>*<br>66.51%<br>*<br>56.07%<br>60.20%                                                                   | GSR] - 4<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10        | $\begin{array}{c} p_j(v_j(n)) \\ \hline MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = ReLU, <b>S</b> <i>MARD</i> 41.33% 39.41% 7.02% 56.94% 754.16% 49.92% * 24.00% 28.36% 37.92% 11.58% * *         | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04      | $I', N_h = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.01$ $0.01$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                            |                                                                                                                                                                                                                          | $\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.09 \\ 0.04 \\ 0.08 \\ 0.04 \\ 0.01 \end{array}$ | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | Test         1           Happy         RMSE           0.16         0.17           0.78         0.24           0.22         0.17           0.22         0.13           0.14         0.12           0.15         0.76           0.36         0.36 | MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.21           0.03                                                      | MARD           *           81.63%           91.36%           *           *           59.79%           81.48%           75.31%           52.57%           20.21%           28.68%                     | $\begin{array}{c} \textbf{cognition} \\ \textbf{Sad} \\ RMSE \\ 0.42 \\ 0.81 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.31 \\ 0.42 \\ 2.58 \\ 0.55 \\ 0.06 \\ 0.39 \\ \end{array}$                                                      | $+ \mathbf{RTC}$ $MAE$ $0.04$ $0.07$ $0.11$ $0.11$ $0.09$ $0.06$ $0.04$ $0.04$ $0.06$ $0.26$ $0.15$ $0.02$ $0.03$                                   | DR [HR+<br><u>MARD</u><br>78.23%<br>70.02%<br>61.92%<br>*<br>*<br>39.79%<br>*<br>66.51%<br>*<br>56.07%<br>60.20%                                                                        | GSR] - 4<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10        | $\begin{array}{c} p_j(v_j(n)) \\ \hline MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = ReLU, <b>S</b> <i>MARD</i> 41.33% 39.41% 7.02% 56.94% 754.16% 49.92% * 24.00% 28.36% 37.92% 11.58% * *         | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.04<br>0.12              | $I', N_h = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 18 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>78.96%<br>99.98%<br>62.94%<br>67.73%<br>60.50%<br>28.93%                                 |                                                                                                                                                                                                                          | $\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.09 \\ 0.04 \\ 0.08 \\ 0.04 \\ 0.01 \end{array}$         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:CR3<br>DS:CR3<br>DS:CLX<br>DS:CL3 | MARD * * * * * * * * * * * * * * * * * * * | Test         1           Happy         RMSE           0.16         0.17           0.78         0.24           0.22         0.17           0.22         0.13           0.14         0.12           0.05         0.76           0.36         C    | MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.21           0.03                                                      | MARD           *           81.63%           91.36%           *           *           59.79%           81.48%           75.31%           52.57%           20.21%           28.68%                     | cognition<br>Sad<br>RMSE<br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64<br>0.38<br>0.31<br>0.42<br>2.58<br>0.55<br>0.06<br>0.39                                                                                                          | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br><b>90</b>            | DR [HR+<br><u>MARD</u><br>78.23%<br>70.02%<br>61.92%<br>*<br>*<br>39.79%<br>*<br>66.51%<br>*<br>56.07%<br>60.20%                                                                        | GSR] - 4<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10 | $\begin{array}{c} p_j(v_j(n)) \\ \hline MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = ReLU, <b>S</b> <i>MARD</i> 41.33% 39.41% 7.02% 56.94% 754.16% 49.92% * 24.00% 28.36% 37.92% 11.58% * *         | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.12<br>0.01<br>2<br>0.04 | $     P, N_h = \frac{MAE}{0.01} \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.02 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\   $ | 18 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>78.96%<br>99.98%<br>62.94%<br>67.73%<br>60.50%<br>28.93%                                      |                                                                                                                                                                                                                          | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.04<br>0.09<br>0.04<br>0.08<br>0.04<br>0.01<br><b>E</b>    | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:CR3<br>DS:CR3<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | Test 1<br>Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36                                                                                                                 | MAE           0.02           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.01           0.02           0.03                        | MARD           *           81.63%           91.36%           *           *           59.79%           81.48%           75.31%           52.57%           20.21%           28.68%                     | cognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06           0.39 | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br>9000                 | DR [HR+<br><u>MARD</u><br>78.23%<br>70.02%<br>61.92%<br>*<br>*<br>39.79%<br>*<br>66.51%<br>*<br>56.07%<br>60.20%                                                                        | GSR] - 4<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10        | $\begin{array}{c} p_j(v_j(n)) \\ \hline MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = ReLU, <b>S</b> <i>MARD</i> 41.33% 39.41% 7.02% 56.94% 754.16% 49.92% * 24.00% 28.36% 37.92% 11.58% * *         | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.12                      | $P, N_h = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.0$                                                                                                                                                                                          | 18 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>78.96%<br>99.98%<br>62.94%<br>67.73%<br>60.50%<br>28.93%                                      | Scared           RMSE           0.19           0.26           0.24           0.26           0.27           0.23           0.21           1.01           0.67           0.40           0.30           0.14           0.18 | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.02<br>0.13<br>0.09<br>0.04<br>0.04<br>0.04<br>0.04<br>0.01<br><b>E0</b>           | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR3<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | Test 1<br>Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36                                                                                                                 | MAE         0.02         0.02         0.02         0.02         0.03         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.01         0.02         0.01         0.02         0.03         0.04         0.05         0.07         0.08         \$0.01         0.02         0.03 | otion Rec           MARD           *           81.63%           91.36%           *           *           59.79%           81.48%           75.31%           52.57%           20.21%           28.68% | cognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06           0.39 | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br>9000<br>+ 88 | $\begin{array}{c} \textbf{DR} \ [\textbf{HR} + \\ \hline MARD \\ \hline 78.23\% \\ 70.02\% \\ 61.92\% \\ * \\ * \\ 39.79\% \\ * \\ * \\ 66.51\% \\ * \\ 56.07\% \\ 60.20\% \end{array}$ | GSR] - 4<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10        | $\begin{array}{c} p_{j}(v_{j}(n)) \\ \hline MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \hline \\ \begin{array}{c} \\ & \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = ReLU, <b>S</b> <i>MARD</i> 41.33% 39.41% 7.02% 56.94% 754.16% 49.92% * 24.00% 28.36% 37.92% 11.58% * *         | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.12                              | $\begin{array}{c} \mathbf{I'}, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ \hline 0.00 \\ 0.01 \\ \hline 0.01 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>78.96%<br>99.98%<br>62.94%<br>67.73%<br>60.50%<br>28.93%                                      |                                                                                                                                                                                                                          | <i>MAE</i><br>0.02<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.02<br>0.02                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |

TABLE 9.11. Emotion recognition results tests 17 and 18. ANN with  $6 \times 10^3$  train epochs and input data with feature extraction.

|                                                                                                  |                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Test 19                                                                                                                                                                              | - Emotion                                                                                                                   | n Recogn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ition $+$                                                                                                                   | RTOR -                                                                                              | $\varphi_j(v_j(n))$                                                                                                                    | = ReLU                                                                                                                                        | ', opt='a                                                     | dam', $N_h$                                                                                                        | $= 50 \times 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $2, N_o = 5$                                                                 |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{Flight}$                                                                                |                                           | Happy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                      |                                                                                                                             | Sad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             |                                                                                                     | Angry                                                                                                                                  |                                                                                                                                               | S                                                             | urprised                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              | Scared                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Match                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Dataset                                                                                          | MARD                                      | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAE                                                                                                                                                                                  | MARD                                                                                                                        | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MAE                                                                                                                         | MARD                                                                                                | RMSE                                                                                                                                   | MAE                                                                                                                                           | MARD                                                          | RMSE                                                                                                               | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MARD                                                                         | RMSE                                                                                                                        | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Accuracy (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DS:RC1                                                                                           | *                                         | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02                                                                                                                                                                                 | *                                                                                                                           | 1.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.13                                                                                                                        | 111.92%                                                                                             | 0.60                                                                                                                                   | 0.06                                                                                                                                          | 34.33%                                                        | 0.10                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                            | 0.30                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>46.27</b> ( <b>31</b> /67)                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DS:RC2                                                                                           | *                                         | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02                                                                                                                                                                                 | 76.07%                                                                                                                      | 1.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.09                                                                                                                        | 62.81%                                                                                              | 0.43                                                                                                                                   | 0.04                                                                                                                                          | 39.64%                                                        | 0.12                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                            | 0.12                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>79.49</b> ( <b>62</b> /78)                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DS:RC3                                                                                           | 78.92%                                    | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.07                                                                                                                                                                                 | *                                                                                                                           | 1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.17                                                                                                                        | *                                                                                                   | 0.75                                                                                                                                   | 0.07                                                                                                                                          | 9.39%                                                         | 0.10                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                            | 0.45                                                                                                                        | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>52.05</b> ( <b>38</b> /73)                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DS:GC1                                                                                           | *                                         | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02                                                                                                                                                                                 | *                                                                                                                           | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.07                                                                                                                        | *                                                                                                   | 0.70                                                                                                                                   | 0.07                                                                                                                                          | 47.64%                                                        | 0.06                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                            | 0.08                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>16.00</b> ( <b>12</b> /75)                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DS:GC3                                                                                           | *                                         | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                 | *                                                                                                                           | 0.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.06                                                                                                                        | *                                                                                                   | 0.76                                                                                                                                   | 0.08                                                                                                                                          | *                                                             | 0.17                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                            | 0.33                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>55.13</b> ( <b>43</b> /78)                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DS:LS1                                                                                           | *                                         | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.01                                                                                                                                                                                 | *                                                                                                                           | 0.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.06                                                                                                                        | *                                                                                                   | 0.60                                                                                                                                   | 0.05                                                                                                                                          | 56.62%                                                        | 0.09                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                            | 0.20                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>31.37</b> ( <b>32</b> /102)                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DS:LS2                                                                                           | *                                         | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02                                                                                                                                                                                 | 46.08%                                                                                                                      | 0.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.04                                                                                                                        | 51.09%                                                                                              | 0.37                                                                                                                                   | 0.04                                                                                                                                          | *                                                             | 0.12                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                            | 0.43                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>52.00</b> ( <b>39</b> /75)                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DS:VC1                                                                                           | *                                         | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                 | *                                                                                                                           | 0.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.07                                                                                                                        | *                                                                                                   | 0.56                                                                                                                                   | 0.07                                                                                                                                          | 41.08%                                                        | 0.06                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 76.99%                                                                       | 1.00                                                                                                                        | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>20.83</b> (10/48)                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| DS:VC2                                                                                           | *                                         | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                 | *                                                                                                                           | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.10                                                                                                                        | *                                                                                                   | 0.32                                                                                                                                   | 0.05                                                                                                                                          | 34.99%                                                        | 0.06                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 75.78%                                                                       | 0.59                                                                                                                        | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>21.05</b> (8/38)                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DS:CR1                                                                                           | *                                         | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02                                                                                                                                                                                 | 67.72%                                                                                                                      | 2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.24                                                                                                                        | 57.93%                                                                                              | 0.89                                                                                                                                   | 0.08                                                                                                                                          | 34.98%                                                        | 0.10                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 89.92%                                                                       | 0.55                                                                                                                        | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>63.01</b> ( <b>46</b> /73)                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DS:CR3                                                                                           | *                                         | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02                                                                                                                                                                                 | 51.63%                                                                                                                      | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.11                                                                                                                        | *                                                                                                   | 0.20                                                                                                                                   | 0.05                                                                                                                                          | 26.57%                                                        | 0.02                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 61.88%                                                                       | 0.29                                                                                                                        | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 77.78 (7/9)                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DS:CLX                                                                                           | 81.52%                                    | 0.72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.20                                                                                                                                                                                 | 94.39%                                                                                                                      | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.08                                                                                                                        | 66.44%                                                                                              | 0.41                                                                                                                                   | 0.12                                                                                                                                          | *                                                             | 0.06                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 72.31%                                                                       | 0.19                                                                                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>10.00</b> (1/10)                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DS:CL3                                                                                           | 81.79%                                    | 0.36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                 | 76.16%                                                                                                                      | 0.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.08                                                                                                                        | 56.92%                                                                                              | 1.08                                                                                                                                   | 0.10                                                                                                                                          | *                                                             | 0.15                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                            | 0.38                                                                                                                        | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>18.60</b> ( <b>16</b> /86)                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                      |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                             |                                                                                                     |                                                                                                                                        |                                                                                                                                               |                                                               |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                              |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                  |                                           | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 04                                                                                                                                                                                   |                                                                                                                             | 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 05                                                                                                                          |                                                                                                     | 53                                                                                                                                     | 02                                                                                                                                            |                                                               | 03                                                                                                                 | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              | 23                                                                                                                          | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.8                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                  |                                           | 0.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                  |                                                                                                                             | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.0                                                                                                                         |                                                                                                     | 0.:                                                                                                                                    | 0.0                                                                                                                                           |                                                               | 0.0                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                              | 0.:                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>7</b><br>+                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                  |                                           | +0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                                                                                                                                                                                    |                                                                                                                             | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                             |                                                                                                     | +6                                                                                                                                     | 4                                                                                                                                             |                                                               | +6                                                                                                                 | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                              | ++<br>x0                                                                                                                    | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                  |                                           | ē.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                                                                                                                                  |                                                                                                                             | 6.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .1                                                                                                                          |                                                                                                     | .5                                                                                                                                     | 0.0                                                                                                                                           |                                                               | 0.0                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                              | .3                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E.                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                  |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\overline{\mathbf{T}_{ost}}$ 20                                                                                                                                                     | Fractio                                                                                                                     | n Bocogr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vition 1                                                                                                                    | PTOP                                                                                                | $(\alpha, (\alpha, (\alpha)))$                                                                                                         | - aiam                                                                                                                                        | oid ont-                                                      | read' M                                                                                                            | $-50 \times 50$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N = 5                                                                        |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | V                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Flight                                                                                           |                                           | Hanny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lest 20                                                                                                                                                                              | - Emotio                                                                                                                    | Fad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                             | 111011 -                                                                                            | $\varphi_j(v_j(n))$                                                                                                                    | - siymi                                                                                                                                       | $\frac{nu, opt}{c}$                                           | sgu, N <sub>h</sub>                                                                                                | - 00 × 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $1_{0} = 0$                                                                  | Sagnad                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Motab                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Datasot                                                                                          | MARD                                      | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAE                                                                                                                                                                                  | MARD                                                                                                                        | BMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $M \Delta F$                                                                                                                | MARD                                                                                                | RMSE                                                                                                                                   | MAE                                                                                                                                           | MARD                                                          | RMSE                                                                                                               | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MARD                                                                         | BMSE                                                                                                                        | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Accuracy (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DS-RC1                                                                                           | *                                         | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02                                                                                                                                                                                 | *                                                                                                                           | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.04                                                                                                                        | 84 78%                                                                                              | 0.40                                                                                                                                   | 0.04                                                                                                                                          | 70.01%                                                        | 0.15                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                            | 0.27                                                                                                                        | MAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Accuracy</b> (70)<br><b>53 73</b> (36/67)                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DS.RC1                                                                                           | *                                         | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.02                                                                                                                                                                                 |                                                                                                                             | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.04                                                                                                                        | 04.1070                                                                                             | 0.49                                                                                                                                   | 0.04                                                                                                                                          | 19.9170                                                       | 0.15                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                              |                                                                                                                             | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DS-RC3                                                                                           |                                           | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                 | 82 12%                                                                                                                      | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.07                                                                                                                        | 77.40%                                                                                              | 0.30                                                                                                                                   | 0.03                                                                                                                                          | *                                                             | 0.10                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                            | 0.37                                                                                                                        | $0.04 \\ 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82.05(64/78)                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                  | *                                         | 0.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.03                                                                                                                                                                                 | 82.12%                                                                                                                      | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.07                                                                                                                        | 77.49%                                                                                              | 0.30                                                                                                                                   | 0.03                                                                                                                                          | *                                                             | 0.19<br>0.17                                                                                                       | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                            | 0.37<br>0.45<br>0.42                                                                                                        | $0.04 \\ 0.05 \\ 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82.05 (64/78) 57 53 (42/73)                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DS:CC1                                                                                           | *                                         | $0.28 \\ 0.63 \\ 0.43$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $0.03 \\ 0.06 \\ 0.05$                                                                                                                                                               | $82.12\% \\ 91.97\% \\ *$                                                                                                   | $0.81 \\ 1.37 \\ 0.96$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $0.07 \\ 0.11 \\ 0.11$                                                                                                      | 77.49%<br>71.00%<br>*                                                                               | $0.30 \\ 0.30 \\ 0.72$                                                                                                                 | $0.03 \\ 0.03 \\ 0.08$                                                                                                                        | $^*_{39.93\%}$                                                | $0.19 \\ 0.17 \\ 0.28$                                                                                             | $0.02 \\ 0.02 \\ 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *<br>*<br>*                                                                  | 0.37<br>0.45<br>0.42<br>0.45                                                                                                | $0.04 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 82.05 (64/78) 57.53 (42/73) 22.67 (17/75)                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DS:GC1                                                                                           | * * *                                     | $0.28 \\ 0.63 \\ 0.43 \\ 0.42$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $0.03 \\ 0.06 \\ 0.05 \\ 0.05$                                                                                                                                                       | 82.12%<br>91.97%<br>*                                                                                                       | $0.81 \\ 1.37 \\ 0.96 \\ 0.82$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.07<br>0.11<br>0.11<br>0.09                                                                                                | 77.49%<br>71.00%<br>*<br>*                                                                          | $0.30 \\ 0.30 \\ 0.72 \\ 0.73$                                                                                                         | 0.03<br>0.03<br>0.08<br>0.08                                                                                                                  | *<br>39.93%<br>*<br>*                                         | 0.19<br>0.17<br>0.28<br>0.39                                                                                       | $0.02 \\ 0.02 \\ 0.03 \\ 0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *<br>*<br>*                                                                  | $\begin{array}{c} 0.37 \\ 0.45 \\ 0.42 \\ 0.45 \\ 0.46 \end{array}$                                                         | $0.04 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ $                                                                                                                                                                                                                                                                                                                                                                                                   | 82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)                                                                                                                                                                                                                                                                                                                                                                                                              |
| DS:GC1<br>DS:GC3<br>DS:LS1                                                                       | *<br>*<br>*                               | $\begin{array}{c} 0.28 \\ 0.63 \\ 0.43 \\ 0.42 \\ 0.38 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $0.03 \\ 0.06 \\ 0.05 \\ 0.05 \\ 0.04$                                                                                                                                               | 82.12%<br>91.97%<br>*<br>*                                                                                                  | $\begin{array}{c} 0.81 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.07<br>0.11<br>0.11<br>0.09<br>0.06                                                                                        | 77.49%<br>71.00%<br>*<br>*                                                                          | $\begin{array}{c} 0.30 \\ 0.30 \\ 0.72 \\ 0.73 \\ 0.30 \end{array}$                                                                    | $\begin{array}{c} 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \end{array}$                                                                           | *<br>39.93%<br>*<br>*                                         | $\begin{array}{c} 0.19 \\ 0.17 \\ 0.28 \\ 0.39 \\ 0.31 \end{array}$                                                | $\begin{array}{c} 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *<br>*<br>*<br>*                                                             | $\begin{array}{c} 0.37 \\ 0.45 \\ 0.42 \\ 0.45 \\ 0.46 \\ 0.45 \end{array}$                                                 | $\begin{array}{c} 0.04 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.04 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22 55 (23/102)                                                                                                                                                                                                                                                                                                                                                                          |
| DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2                                                             | *<br>*<br>*<br>*                          | $\begin{array}{c} 0.28 \\ 0.63 \\ 0.43 \\ 0.42 \\ 0.38 \\ 0.41 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 0.03 \\ 0.06 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \end{array}$                                                                                                          | 82.12%<br>91.97%<br>*<br>*                                                                                                  | $\begin{array}{c} 0.81 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \end{array}$                                                 | 77.49%<br>71.00%<br>*<br>*<br>*                                                                     | $\begin{array}{c} 0.30 \\ 0.30 \\ 0.72 \\ 0.73 \\ 0.30 \\ 0.22 \end{array}$                                                            | $\begin{array}{c} 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \end{array}$                                                           | *<br>39.93%<br>*<br>*<br>*                                    | $\begin{array}{c} 0.19 \\ 0.17 \\ 0.28 \\ 0.39 \\ 0.31 \\ 0.33 \end{array}$                                        | $\begin{array}{c} 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.04 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *<br>*<br>*<br>*<br>*                                                        | $\begin{array}{c} 0.37 \\ 0.45 \\ 0.42 \\ 0.45 \\ 0.46 \\ 0.45 \\ 0.40 \end{array}$                                         | $\begin{array}{c} 0.04 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)                                                                                                                                                                                                                                                                                                                                                         |
| DS:ICC3<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1                                                  | *<br>*<br>*<br>*                          | $\begin{array}{c} 0.28 \\ 0.63 \\ 0.43 \\ 0.42 \\ 0.38 \\ 0.41 \\ 0.27 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.03 \\ 0.06 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \end{array}$                                                                                                  | 82.12%<br>91.97%<br>*<br>*<br>60.17%<br>82.11%                                                                              | $\begin{array}{c} 0.81 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.32 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.04 \end{array}$                                         | 77.49%<br>71.00%<br>*<br>*<br>43.47%<br>*                                                           | $\begin{array}{c} 0.30 \\ 0.30 \\ 0.72 \\ 0.73 \\ 0.30 \\ 0.22 \\ 0.38 \end{array}$                                                    | $\begin{array}{c} 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \end{array}$                                                   | *<br>39.93%<br>*<br>*<br>*<br>*                               | $\begin{array}{c} 0.19 \\ 0.17 \\ 0.28 \\ 0.39 \\ 0.31 \\ 0.33 \\ 0.20 \end{array}$                                | $\begin{array}{c} 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *<br>*<br>*<br>*<br>*<br>66 16%                                              | $\begin{array}{c} 0.37\\ 0.45\\ 0.42\\ 0.45\\ 0.46\\ 0.45\\ 0.40\\ 0.85\\ \end{array}$                                      | $\begin{array}{c} 0.04 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.10 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)                                                                                                                                                                                                                                                                                                                                         |
| DS:RC1<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2                               | *<br>*<br>*<br>*<br>*                     | $\begin{array}{c} 0.28 \\ 0.63 \\ 0.43 \\ 0.42 \\ 0.38 \\ 0.41 \\ 0.27 \\ 0.27 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 0.03 \\ 0.06 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.04 \end{array}$                                                                                          | 82.12%<br>91.97%<br>*<br>*<br>60.17%<br>82.11%                                                                              | $\begin{array}{c} 0.81 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.32 \\ 0.42 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.04 \\ 0.06 \end{array}$                                 | 77.49%<br>71.00%<br>*<br>*<br>43.47%<br>*                                                           | $\begin{array}{c} 0.30 \\ 0.30 \\ 0.72 \\ 0.73 \\ 0.30 \\ 0.22 \\ 0.38 \\ 0.39 \end{array}$                                            | $\begin{array}{c} 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \end{array}$                                           | *<br>39.93%<br>*<br>*<br>*<br>*<br>*                          | $\begin{array}{c} 0.19 \\ 0.17 \\ 0.28 \\ 0.39 \\ 0.31 \\ 0.33 \\ 0.20 \\ 0.15 \end{array}$                        | $\begin{array}{c} 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *<br>*<br>*<br>*<br>66.16%<br>65.65%                                         | $\begin{array}{c} 0.37\\ 0.45\\ 0.42\\ 0.45\\ 0.46\\ 0.45\\ 0.40\\ 0.85\\ 0.44\end{array}$                                  | $\begin{array}{c} 0.04 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.10 \\ 0.06 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \textbf{82.05} \ (\textbf{64}/\textbf{78}) \\ \textbf{57.53} \ (\textbf{42}/\textbf{73}) \\ \textbf{22.67} \ (\textbf{17}/\textbf{75}) \\ \textbf{100.00} \ (\textbf{78}/\textbf{78}) \\ \textbf{22.55} \ (\textbf{23}/\textbf{102}) \\ \textbf{68.00} \ (\textbf{51}/\textbf{75}) \\ \textbf{16.67} \ (\textbf{8}/\textbf{48}) \\ \textbf{28.95} \ (\textbf{11}/\textbf{38}) \end{array}$                                                 |
| DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CB1                               | *<br>*<br>*<br>*<br>*<br>*                | $\begin{array}{c} 0.28 \\ 0.63 \\ 0.43 \\ 0.42 \\ 0.38 \\ 0.41 \\ 0.27 \\ 0.27 \\ 0.29 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.03 \\ 0.06 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.04 \\ 0.03 \end{array}$                                                                                  | 82.12%<br>91.97%<br>*<br>*<br>60.17%<br>82.11%<br>*<br>75.05%                                                               | $\begin{array}{c} 0.81 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.32 \\ 0.42 \\ 2.56 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.04 \\ 0.06 \\ 0.26 \end{array}$                         | 77.49%<br>71.00%<br>*<br>*<br>43.47%<br>*<br>*                                                      | $\begin{array}{c} 0.30 \\ 0.30 \\ 0.72 \\ 0.73 \\ 0.30 \\ 0.22 \\ 0.38 \\ 0.39 \\ 0.87 \end{array}$                                    | $\begin{array}{c} 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \end{array}$                                   | *<br>39.93%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*           | $\begin{array}{c} 0.19\\ 0.17\\ 0.28\\ 0.39\\ 0.31\\ 0.33\\ 0.20\\ 0.15\\ 0.16\end{array}$                         | $\begin{array}{c} 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *<br>*<br>*<br>66.16%<br>65.65%<br>26.21%                                    | $\begin{array}{c} 0.37\\ 0.45\\ 0.42\\ 0.45\\ 0.46\\ 0.45\\ 0.40\\ 0.85\\ 0.44\\ 0.22\\ \end{array}$                        | $\begin{array}{c} 0.04 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.10 \\ 0.06 \\ 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \textbf{82.05} \ (\textbf{64}/7\textbf{8}) \\ \textbf{57.53} \ (\textbf{42}/7\textbf{3}) \\ \textbf{22.67} \ (\textbf{17}/75) \\ \textbf{100.00} \ (\textbf{78}/7\textbf{8}) \\ \textbf{22.55} \ (\textbf{23}/102) \\ \textbf{68.00} \ (\textbf{51}/75) \\ \textbf{16.67} \ (\textbf{8}/4\textbf{8}) \\ \textbf{28.95} \ (\textbf{11}/3\textbf{8}) \\ \textbf{93} \ \textbf{15} \ (\textbf{68}/7\textbf{3}) \end{array}$                   |
| DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CB3                     | * * * * * * * * *                         | $\begin{array}{c} 0.28 \\ 0.63 \\ 0.43 \\ 0.42 \\ 0.38 \\ 0.41 \\ 0.27 \\ 0.27 \\ 0.27 \\ 0.29 \\ 0.12 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.03 \\ 0.06 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.04 \\ 0.03 \\ 0.04 \end{array}$                                                                          | 82.12%<br>91.97%<br>*<br>*<br>60.17%<br>82.11%<br>*<br>75.05%<br>52.55%                                                     | $\begin{array}{c} 0.81 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.32 \\ 0.42 \\ 2.56 \\ 0.55 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.07 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.04 \\ 0.06 \\ 0.26 \\ 0.15 \end{array}$                         | 77.49%<br>71.00%<br>*<br>*<br>43.47%<br>*<br>65.40%<br>*                                            | $\begin{array}{c} 0.30\\ 0.30\\ 0.72\\ 0.73\\ 0.30\\ 0.22\\ 0.38\\ 0.39\\ 0.87\\ 0.16\end{array}$                                      | $\begin{array}{c} 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \end{array}$                                   | *<br>39.93%<br>*<br>*<br>*<br>*<br>*<br>*<br>76.95%<br>*      | $\begin{array}{c} 0.19\\ 0.17\\ 0.28\\ 0.39\\ 0.31\\ 0.33\\ 0.20\\ 0.15\\ 0.16\\ 0.08 \end{array}$                 | $\begin{array}{c} 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *<br>*<br>*<br>66.16%<br>65.65%<br>26.21%<br>45.65%                          | $\begin{array}{c} 0.37\\ 0.45\\ 0.42\\ 0.45\\ 0.46\\ 0.45\\ 0.40\\ 0.85\\ 0.44\\ 0.22\\ 0.24\end{array}$                    | $\begin{array}{c} 0.04 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.10 \\ 0.06 \\ 0.02 \\ 0.06 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \textbf{82.05} & \textbf{(64/78)} \\ \textbf{82.05} & \textbf{(64/78)} \\ \textbf{57.53} & \textbf{(42/73)} \\ \textbf{22.67} & \textbf{(17/75)} \\ \textbf{100.00} & \textbf{(78/78)} \\ \textbf{22.55} & \textbf{(23/102)} \\ \textbf{68.00} & \textbf{(51/75)} \\ \textbf{16.67} & \textbf{(8/48)} \\ \textbf{28.95} & \textbf{(11/38)} \\ \textbf{93.15} & \textbf{(68/73)} \\ \textbf{77} & \textbf{78} & \textbf{(7/0)} \end{array}$ |
| DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX           | *<br>*<br>*<br>*<br>*<br>*<br>*           | $\begin{array}{c} 0.28 \\ 0.63 \\ 0.43 \\ 0.42 \\ 0.38 \\ 0.41 \\ 0.27 \\ 0.27 \\ 0.29 \\ 0.12 \\ 0.69 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 0.03 \\ 0.06 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.19 \end{array}$                                                                  | 82.12%<br>91.97%<br>*<br>*<br>60.17%<br>82.11%<br>*<br>75.05%<br>52.55%<br>20.60%                                           | $\begin{array}{c} 0.81 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.32 \\ 0.42 \\ 2.56 \\ 0.55 \\ 0.06 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 0.07 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.04 \\ 0.06 \\ 0.26 \\ 0.15 \\ 0.02 \end{array}$                 | $77.49\% \\ 71.00\% \\ * \\ * \\ 43.47\% \\ * \\ 65.40\% \\ * \\ 52.26\% \\$                        | $\begin{array}{c} 0.30\\ 0.30\\ 0.72\\ 0.73\\ 0.30\\ 0.22\\ 0.38\\ 0.39\\ 0.87\\ 0.16\\ 0.35\\ \end{array}$                            | $\begin{array}{c} 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.10 \end{array}$                           | *<br>39.93%<br>*<br>*<br>*<br>*<br>*<br>*<br>76.95%<br>*      | $\begin{array}{c} 0.19\\ 0.17\\ 0.28\\ 0.39\\ 0.31\\ 0.33\\ 0.20\\ 0.15\\ 0.16\\ 0.08\\ 0.08\end{array}$           | $\begin{array}{c} 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *<br>*<br>*<br>*<br>66.16%<br>65.65%<br>26.21%<br>45.65%<br>27.11%           | $\begin{array}{c} 0.37\\ 0.45\\ 0.42\\ 0.45\\ 0.46\\ 0.45\\ 0.40\\ 0.85\\ 0.44\\ 0.22\\ 0.24\\ 0.08\end{array}$             | $\begin{array}{c} 0.04 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.10 \\ 0.06 \\ 0.02 \\ 0.06 \\ 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} 82.05 & (64/78) \\ 82.05 & (64/78) \\ 57.53 & (42/73) \\ 22.67 & (17/75) \\ 100.00 & (78/78) \\ 22.55 & (23/102) \\ 68.00 & (51/75) \\ 16.67 & (8/48) \\ 28.95 & (11/38) \\ 93.15 & (68/73) \\ 77.78 & (7/9) \\ 0.00 & (0/10) \end{array}$                                                                                                                                                                                                 |
| DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CL3           | *<br>*<br>*<br>*<br>*<br>70.67%           | $\begin{array}{c} 0.28 \\ 0.63 \\ 0.43 \\ 0.42 \\ 0.38 \\ 0.41 \\ 0.27 \\ 0.27 \\ 0.29 \\ 0.12 \\ 0.69 \\ 0.27 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} 0.03 \\ 0.06 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.19 \\ 0.02 \end{array}$                                                          | 82.12%<br>91.97%<br>*<br>*<br>60.17%<br>82.11%<br>*<br>75.05%<br>52.55%<br>20.69%<br>28.84%                                 | $\begin{array}{c} 0.81 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.32 \\ 0.42 \\ 2.56 \\ 0.55 \\ 0.06 \\ 0.39 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.07 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.04 \\ 0.06 \\ 0.26 \\ 0.15 \\ 0.02 \\ 0.03 \end{array}$         | 77.49%<br>71.00%<br>*<br>*<br>43.47%<br>*<br>65.40%<br>*<br>52.26%<br>54.35%                        | $\begin{array}{c} 0.30\\ 0.30\\ 0.72\\ 0.73\\ 0.30\\ 0.22\\ 0.38\\ 0.39\\ 0.87\\ 0.16\\ 0.35\\ 1.02\\ \end{array}$                     | $\begin{array}{c} 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.10 \\ 0.10 \end{array}$                   | *<br>39.93%<br>*<br>*<br>*<br>*<br>*<br>*<br>76.95%<br>*<br>* | $\begin{array}{c} 0.19\\ 0.17\\ 0.28\\ 0.39\\ 0.31\\ 0.33\\ 0.20\\ 0.15\\ 0.16\\ 0.08\\ 0.08\\ 0.37\\ \end{array}$ | $\begin{array}{c} 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.04 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *<br>*<br>*<br>*<br>66.16%<br>65.65%<br>26.21%<br>45.65%<br>27.11%<br>67.15% | $\begin{array}{c} 0.37\\ 0.45\\ 0.42\\ 0.45\\ 0.46\\ 0.45\\ 0.40\\ 0.85\\ 0.44\\ 0.22\\ 0.24\\ 0.08\\ 0.19\end{array}$      | $\begin{array}{c} 0.04 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.10 \\ 0.06 \\ 0.02 \\ 0.06 \\ 0.02 \\ 0.02 \\ 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15 12 (13/86)                                                                                                                                                                                                                                                        |
| DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CL3           | *<br>*<br>*<br>*<br>*<br>*<br>70.67%      | $\begin{array}{c} 0.28 \\ 0.63 \\ 0.43 \\ 0.42 \\ 0.38 \\ 0.41 \\ 0.27 \\ 0.27 \\ 0.29 \\ 0.12 \\ 0.69 \\ 0.27 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{c} 0.03 \\ 0.06 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.19 \\ 0.02 \\ \end{array}$                                                       | $\begin{array}{c} 82.12\%\\ 91.97\%\\ *\\ *\\ 60.17\%\\ 82.11\%\\ *\\ 75.05\%\\ 52.55\%\\ 20.69\%\\ 28.84\%\end{array}$     | $\begin{array}{c} 0.81 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.32 \\ 0.42 \\ 2.56 \\ 0.55 \\ 0.06 \\ 0.39 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.04 \\ 0.06 \\ 0.26 \\ 0.15 \\ 0.02 \\ 0.03 \end{array}$ | $77.49\% \\ 71.00\% \\ * \\ * \\ 43.47\% \\ * \\ 65.40\% \\ * \\ 52.26\% \\ 54.35\% \\ \end{cases}$ | $\begin{array}{c} 0.30\\ 0.30\\ 0.72\\ 0.73\\ 0.30\\ 0.22\\ 0.38\\ 0.39\\ 0.87\\ 0.16\\ 0.35\\ 1.02\\ \end{array}$                     | $\begin{array}{c} 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.10 \\ 0.10 \end{array}$                   | *<br>39.93%<br>*<br>*<br>*<br>*<br>*<br>76.95%<br>*<br>*      | $\begin{array}{c} 0.19\\ 0.17\\ 0.28\\ 0.39\\ 0.31\\ 0.33\\ 0.20\\ 0.15\\ 0.16\\ 0.08\\ 0.08\\ 0.37\\ \end{array}$ | $\begin{array}{c} 0.02 \\ 0.02 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.04 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *<br>*<br>*<br>*<br>66.16%<br>65.65%<br>26.21%<br>45.65%<br>27.11%<br>67.15% | $\begin{array}{c} 0.37\\ 0.45\\ 0.42\\ 0.45\\ 0.46\\ 0.45\\ 0.40\\ 0.85\\ 0.44\\ 0.22\\ 0.24\\ 0.08\\ 0.19\\ \end{array}$   | $\begin{array}{c} 0.04 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.10 \\ 0.06 \\ 0.02 \\ 0.06 \\ 0.02 \\ 0.02 \\ 0.02 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86)                                                                                                                                                                                                                                                        |
| DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3 | *<br>*<br>*<br>*<br>*<br>*<br>*<br>70.67% | 0.28<br>0.63<br>0.43<br>0.42<br>0.38<br>0.41<br>0.27<br>0.27<br>0.29<br>0.12<br>0.69<br>0.27<br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$10</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$100</b><br><b>\$1</b> | 0.03<br>0.06<br>0.05<br>0.05<br>0.04<br>0.05<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.05<br>0.04<br>0.05<br>0.05 | $\begin{array}{c} 82.12\%\\ 91.97\%\\ *\\ *\\ *\\ 60.17\%\\ 82.11\%\\ *\\ 75.05\%\\ 52.55\%\\ 20.69\%\\ 28.84\%\end{array}$ | 0.81<br>1.37<br>0.96<br>0.82<br>0.64<br>0.38<br>0.32<br>0.42<br>2.56<br>0.55<br>0.06<br>0.39<br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b> | 0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br>90.0<br>₩<br>80     | $77.49\% \\ 71.00\% \\ * \\ * \\ 43.47\% \\ * \\ 65.40\% \\ * \\ 52.26\% \\ 54.35\% \\$             | 0.30<br>0.30<br>0.72<br>0.73<br>0.30<br>0.22<br>0.38<br>0.39<br>0.87<br>0.16<br>0.35<br>1.02<br><b>57.0</b><br><b>487</b><br><b>87</b> | 0.03<br>0.03<br>0.08<br>0.02<br>0.02<br>0.02<br>0.05<br>0.06<br>0.09<br>0.05<br>0.10<br>0.10<br>0.10<br><b>₹00.0</b><br><b>4</b><br><b>90</b> | *<br>39.93%<br>*<br>*<br>*<br>*<br>*<br>*<br>76.95%<br>*<br>* | 0.19<br>0.17<br>0.28<br>0.39<br>0.31<br>0.33<br>0.20<br>0.15<br>0.16<br>0.08<br>0.08<br>0.37<br>010<br>++<br>22    | 0.02<br>0.02<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.02<br>0.02<br>0.02<br>0.03<br>0.02<br>0.04<br>0.02<br>0.04<br>0.03<br>0.02<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.04<br>0.03<br>0.02<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.03<br>0.02<br>0.04<br>0.03<br>0.02<br>0.04<br>0.03<br>0.02<br>0.04<br>0.03<br>0.02<br>0.04<br>0.03<br>0.02<br>0.04<br>0.03<br>0.02<br>0.04<br>0.03<br>0.02<br>0.04<br>0.04<br>0.03<br>0.02<br>0.04<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.04<br>0.02<br>0.04<br>0.04<br>0.02<br>0.04<br>0.04<br>0.02<br>0.04<br>0.04<br>0.04<br>0.04<br>0.02<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04 | *<br>*<br>*<br>*<br>66.16%<br>65.65%<br>26.21%<br>45.65%<br>27.11%<br>67.15% | 0.37<br>0.45<br>0.42<br>0.45<br>0.46<br>0.45<br>0.40<br>0.85<br>0.44<br>0.22<br>0.24<br>0.08<br>0.19<br><b>⊥1:0</b><br>++68 | 0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.06<br>0.05<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.06<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 | 82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86)                                                                                                                                                                                                                                                        |

TABLE 9.12. Emotion recognition results tests 19 and 20. ANN with  $6 \times 10^3$  train epochs and input data with feature extraction.

|                                                                                                                                                               |                                            | T                                                                                                                                                                                                                                                                                                    | est 21 -                                                                                                                                                                                                                                                                                                                                                                       | Emotion                                                                                                               | Recogni                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion + 1                                                                                                                                                                                                                                                                                                                                                                                  | RTOR -                                                                                                          | $\varphi_j(v_j(n))$                                                                                                                                                                        | = sigmo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | id, opt = ?                                                                                                                        | adam', $N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $h = 50 \times$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $2, N_o = 5$                                                                                                                                          | 5                                                                                                                                                                                                                             |                                                                                                                                    |                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{Flight}$                                                                                                                                             |                                            | Happy                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       | Sad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 | Angry                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S                                                                                                                                  | urprised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       | Scared                                                                                                                                                                                                                        |                                                                                                                                    | Match                                                                                                                                                                                                                                           |
| Dataset                                                                                                                                                       | MARD                                       | RMSE                                                                                                                                                                                                                                                                                                 | MAE                                                                                                                                                                                                                                                                                                                                                                            | MARD                                                                                                                  | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MAE                                                                                                                                                                                                                                                                                                                                                                                       | MARD                                                                                                            | RMSE                                                                                                                                                                                       | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MARD                                                                                                                               | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MARD                                                                                                                                                  | RMSE                                                                                                                                                                                                                          | MAE                                                                                                                                | Accuracy (%)                                                                                                                                                                                                                                    |
| DS:RC1                                                                                                                                                        | *                                          | 0.16                                                                                                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                           | *                                                                                                                     | 0.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.08                                                                                                                                                                                                                                                                                                                                                                                      | 85.96%                                                                                                          | 0.50                                                                                                                                                                                       | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 42.72%                                                                                                                             | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                                     | 0.24                                                                                                                                                                                                                          | 0.03                                                                                                                               | <b>53.73</b> ( <b>36</b> /67)                                                                                                                                                                                                                   |
| DS:RC2                                                                                                                                                        | *                                          | 0.18                                                                                                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                           | 78.38%                                                                                                                | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.09                                                                                                                                                                                                                                                                                                                                                                                      | 71.81%                                                                                                          | 0.31                                                                                                                                                                                       | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.98%                                                                                                                             | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                                     | 0.26                                                                                                                                                                                                                          | 0.03                                                                                                                               | $82.05 \ (64/78)$                                                                                                                                                                                                                               |
| DS:RC3                                                                                                                                                        | *                                          | 0.79                                                                                                                                                                                                                                                                                                 | 0.08                                                                                                                                                                                                                                                                                                                                                                           | *                                                                                                                     | 1.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.14                                                                                                                                                                                                                                                                                                                                                                                      | 78.75%                                                                                                          | 0.40                                                                                                                                                                                       | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.89%                                                                                                                             | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                                     | 0.29                                                                                                                                                                                                                          | 0.03                                                                                                                               | 57.53 (42/73)                                                                                                                                                                                                                                   |
| DS:GC1                                                                                                                                                        | *                                          | 0.18                                                                                                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                           | *                                                                                                                     | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.07                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                               | 0.56                                                                                                                                                                                       | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43.09%                                                                                                                             | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                                     | 0.21                                                                                                                                                                                                                          | 0.02                                                                                                                               | <b>22.67</b> (17/75)                                                                                                                                                                                                                            |
| DS:GC3                                                                                                                                                        | *                                          | 0.22                                                                                                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                           | *                                                                                                                     | 0.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.07                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                               | 0.67                                                                                                                                                                                       | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                                                                                                                  | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                                     | 0.25                                                                                                                                                                                                                          | 0.03                                                                                                                               | <b>100.00</b> ( <b>78</b> /78)                                                                                                                                                                                                                  |
| DS:LS1                                                                                                                                                        | *                                          | 0.17                                                                                                                                                                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                           | 56.53%                                                                                                                | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                               | 0.36                                                                                                                                                                                       | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 41.72%                                                                                                                             | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                                     | 0.22                                                                                                                                                                                                                          | 0.02                                                                                                                               | <b>22.55</b> ( <b>23</b> /102)                                                                                                                                                                                                                  |
| DS:LS2                                                                                                                                                        | *                                          | 0.21                                                                                                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                           | 41.88%                                                                                                                | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                                                                      | 37.51%                                                                                                          | 0.24                                                                                                                                                                                       | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                                                                                                                  | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | *                                                                                                                                                     | 0.20                                                                                                                                                                                                                          | 0.02                                                                                                                               | <b>68.00</b> ( <b>51</b> /75)                                                                                                                                                                                                                   |
| DS:VC1                                                                                                                                                        | *                                          | 0.13                                                                                                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                           | 64.26%                                                                                                                | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                               | 0.34                                                                                                                                                                                       | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 34.90%                                                                                                                             | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 83.66%                                                                                                                                                | 1.02                                                                                                                                                                                                                          | 0.13                                                                                                                               | <b>16.67</b> (8/48)                                                                                                                                                                                                                             |
| DS:VC2                                                                                                                                                        | *                                          | 0.12                                                                                                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                           | *                                                                                                                     | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                               | 0.30                                                                                                                                                                                       | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 33.94%                                                                                                                             | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 68.82%                                                                                                                                                | 0.57                                                                                                                                                                                                                          | 0.08                                                                                                                               | <b>28.95</b> (11/38)                                                                                                                                                                                                                            |
| DS:CR1                                                                                                                                                        | *                                          | 0.16                                                                                                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                           | 72.85%                                                                                                                | 2.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.26                                                                                                                                                                                                                                                                                                                                                                                      | 61.33%                                                                                                          | 0.88                                                                                                                                                                                       | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39.49%                                                                                                                             | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 60.34%                                                                                                                                                | 0.40                                                                                                                                                                                                                          | 0.04                                                                                                                               | <b>93.15</b> ( <b>68</b> /73)                                                                                                                                                                                                                   |
| DS:CR3                                                                                                                                                        | *                                          | 0.08                                                                                                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                           | 33.57%                                                                                                                | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.09                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                               | 0.12                                                                                                                                                                                       | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 45.90%                                                                                                                             | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 62.16%                                                                                                                                                | 0.29                                                                                                                                                                                                                          | 0.08                                                                                                                               | 77.78 (7/9)                                                                                                                                                                                                                                     |
| DS:CLX                                                                                                                                                        | 87.78%                                     | 0.76                                                                                                                                                                                                                                                                                                 | 0.21                                                                                                                                                                                                                                                                                                                                                                           | 55.36%                                                                                                                | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                                                                                                                                                                                                                                                                      | 57.29%                                                                                                          | 0.39                                                                                                                                                                                       | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 96.88%                                                                                                                             | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 62.19%                                                                                                                                                | 0.16                                                                                                                                                                                                                          | 0.05                                                                                                                               | <b>0.00</b> ( <b>0</b> /10)                                                                                                                                                                                                                     |
| DS:CL3                                                                                                                                                        | 79.33%                                     | 0.38                                                                                                                                                                                                                                                                                                 | 0.03                                                                                                                                                                                                                                                                                                                                                                           | 37.55%                                                                                                                | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.05                                                                                                                                                                                                                                                                                                                                                                                      | 63.14%                                                                                                          | 1.15                                                                                                                                                                                       | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | *                                                                                                                                  | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35.10%                                                                                                                                                | 0.19                                                                                                                                                                                                                          | 0.01                                                                                                                               | $15.12\;(13/86)$                                                                                                                                                                                                                                |
|                                                                                                                                                               |                                            |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                    | 00                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                            | 22                                                                                                                                                                                                                                                                                                   | 05                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                       | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 05                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 | 27                                                                                                                                                                                         | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                    | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                       | 22                                                                                                                                                                                                                            | 03                                                                                                                                 | 32.                                                                                                                                                                                                                                             |
|                                                                                                                                                               |                                            | -0.                                                                                                                                                                                                                                                                                                  | -0.                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                       | -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 | -0.                                                                                                                                                                                        | -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    | -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       | -0.                                                                                                                                                                                                                           | -0.                                                                                                                                | Ť                                                                                                                                                                                                                                               |
|                                                                                                                                                               |                                            | 7                                                                                                                                                                                                                                                                                                    | <b>4</b> ±                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                       | ນ<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ×9                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                 | ∞<br>T                                                                                                                                                                                     | <b>1</b> 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                    | <b>−6</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                       |                                                                                                                                                                                                                               | <b>4</b>                                                                                                                           | 00                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                            | 0.2                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                       | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                 | 0.4                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       | 0.3                                                                                                                                                                                                                           | 0.0                                                                                                                                | 49.                                                                                                                                                                                                                                             |
|                                                                                                                                                               |                                            |                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                 |                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                                                                    |                                                                                                                                                                                                                                                 |
|                                                                                                                                                               |                                            |                                                                                                                                                                                                                                                                                                      | Test 22                                                                                                                                                                                                                                                                                                                                                                        | - Emotio                                                                                                              | on Recog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nition -                                                                                                                                                                                                                                                                                                                                                                                  | + RTOR                                                                                                          | - $\varphi_i(v_i(n))$                                                                                                                                                                      | )) = ReL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U, opt='                                                                                                                           | sgd', $N_h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $= 50 \times 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $, N_o = 5$                                                                                                                                           |                                                                                                                                                                                                                               |                                                                                                                                    |                                                                                                                                                                                                                                                 |
| Flight                                                                                                                                                        |                                            | Нарру                                                                                                                                                                                                                                                                                                | Test 22                                                                                                                                                                                                                                                                                                                                                                        | - Emotio                                                                                                              | on Recog<br>Sad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nition -                                                                                                                                                                                                                                                                                                                                                                                  | + RTOR                                                                                                          | - $\varphi_j(v_j(n))$<br>Angry                                                                                                                                                             | )) = ReL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U,  opt='                                                                                                                          | sgd', $N_h$ = urprised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $= 50 \times 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $, N_o = 5$                                                                                                                                           | Scared                                                                                                                                                                                                                        |                                                                                                                                    | Match                                                                                                                                                                                                                                           |
| Flight<br>Dataset                                                                                                                                             | MARD                                       | Happy<br>RMSE                                                                                                                                                                                                                                                                                        | Test 22<br>MAE                                                                                                                                                                                                                                                                                                                                                                 | - Emotio                                                                                                              | on Recog<br>Sad<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nition -<br>MAE                                                                                                                                                                                                                                                                                                                                                                           | + RTOR                                                                                                          | $- \varphi_j(v_j(n)) = \frac{\varphi_j(v_j(n))}{Angry}$ $RMSE$                                                                                                                             | )) = ReL $MAE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U, opt='<br>S                                                                                                                      | sgd', $N_h$<br>surprised<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $= 50 \times 2$ $MAE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , $N_o = 5$<br>MARD                                                                                                                                   | Scared<br>RMSE                                                                                                                                                                                                                | MAE                                                                                                                                | Match<br>Accuracy (%)                                                                                                                                                                                                                           |
| Flight<br>Dataset<br>DS:RC1                                                                                                                                   | MARD                                       | Happy<br>RMSE<br>0.16                                                                                                                                                                                                                                                                                | Test 22<br>MAE<br>0.02                                                                                                                                                                                                                                                                                                                                                         | - Emotio<br>MARD                                                                                                      | on Recog<br>Sad<br>RMSE<br>0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>nition</b> -<br><u>MAE</u><br>0.04                                                                                                                                                                                                                                                                                                                                                     | + <b>RTOR</b><br><i>MARD</i><br>78.30%                                                                          | $- \varphi_j(v_j(n))$ <b>Angry</b> <i>RMSE</i> 0.50                                                                                                                                        | )) = ReL $MAE$ $0.04$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | U, opt='<br>S<br>MARD<br>41.39%                                                                                                    | sgd', $N_h$ =<br>burprised<br>RMSE<br>0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $= 50 \times 2$ $MAE$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $, N_o = 5$ $MARD$ *                                                                                                                                  | Scared<br>RMSE<br>0.19                                                                                                                                                                                                        | MAE<br>0.02                                                                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)                                                                                                                                                                                                          |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2                                                                                                                         | <i>MARD</i><br>*<br>*                      | Happy<br><i>RMSE</i><br>0.16<br>0.17                                                                                                                                                                                                                                                                 | Test 22           MAE           0.02           0.02                                                                                                                                                                                                                                                                                                                            | - Emotic<br><i>MARD</i><br>*<br>81.59%                                                                                | on Recog<br>Sad<br><i>RMSE</i><br>0.42<br>0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <u>mition</u> -<br><u>MAE</u><br>0.04<br>0.07                                                                                                                                                                                                                                                                                                                                             | + <b>RTOR</b><br><i>MARD</i><br>78.30%<br>69.99%                                                                | $- \varphi_j(v_j(n))$ Angry $RMSE$ $0.50$ $0.29$                                                                                                                                           | )) = ReL $MAE$ $0.04$ $0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | U, opt=' S $MARD$ $41.39%$ $39.55%$                                                                                                | sgd', $N_h$ = $\frac{1}{RMSE}$<br>0.13<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $= 50 \times 2$ $MAE$ $0.01$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $, N_o = 5$ $MARD$ $*$ $*$                                                                                                                            | <b>Scared</b><br><i>RMSE</i><br>0.19<br>0.26                                                                                                                                                                                  | MAE<br>0.02<br>0.03                                                                                                                | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)                                                                                                                                                                                         |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3                                                                                                               | MARD<br>*<br>*                             | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78                                                                                                                                                                                                                                                         | MAE           0.02           0.02           0.07                                                                                                                                                                                                                                                                                                                               | - Emotic<br><i>MARD</i><br>*<br>81.59%<br>91.40%                                                                      | on Recog<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>MAE</u><br>0.04<br>0.07<br>0.11                                                                                                                                                                                                                                                                                                                                                        | + <b>RTOR</b><br><i>MARD</i><br>78.30%<br>69.99%<br>61.98%                                                      | - $\varphi_j(v_j(n))$<br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.28                                                                                                               | MAE<br>MAE<br>0.04<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | U, opt=' S $MARD$ $41.39%$ $39.55%$ $7.21%$                                                                                        | sgd', $N_h =$<br>surprised<br>RMSE<br>0.13<br>0.12<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $= 50 \times 2$<br><u>MAE</u><br>0.01<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $, N_o = 5$ $MARD$ $*$ $*$ $*$                                                                                                                        | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24                                                                                                                                                                                 | MAE<br>0.02<br>0.03<br>0.03                                                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)                                                                                                                                                                        |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1                                                                                                     | MARD * * * * *                             | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24                                                                                                                                                                                                                                                 | Test 22           MAE           0.02           0.02           0.07           0.03                                                                                                                                                                                                                                                                                              | - Emotic<br><i>MARD</i> * 81.59% 91.40% *                                                                             | on Recog<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mition         -           MAE         0.04           0.07         0.11           0.11         0.11                                                                                                                                                                                                                                                                                       | + <b>RTOR</b><br><i>MARD</i><br>78.30%<br>69.99%<br>61.98%<br>*                                                 | - $\varphi_j(v_j(n))$<br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68                                                                                                       | $\frac{MAE}{0.04}$ 0.03 0.03 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U, opt=' S $MARD$ $41.39%$ $39.55%$ $7.21%$ $56.91%$                                                                               | sgd', $N_h = \frac{1}{8}$ surprised<br>RMSE = 0.13<br>0.12<br>0.12<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $= 50 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $, N_o = 5$ $MARD$ $*$ $*$ $*$                                                                                                                        | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26                                                                                                                                                                         | MAE<br>0.02<br>0.03<br>0.03<br>0.03                                                                                                | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)                                                                                                                                                       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3                                                                                           | MARD<br>*<br>*<br>*<br>*                   | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23                                                                                                                                                                                                                                         | Test 22           MAE           0.02           0.07           0.03                                                                                                                                                                                                                                                                                                             | - Emotio<br><i>MARD</i> * 81.59% 91.40% * *                                                                           | on Recog<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{r} \textbf{mition} & - \\ \hline MAE \\ \hline 0.04 \\ 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \end{array}$                                                                                                                                                                                                                                                                           | + RTOR<br><i>MARD</i><br>78.30%<br>69.99%<br>61.98%<br>*<br>*                                                   | - $\varphi_j(v_j(n))$<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69                                                                                                      | $\frac{MAE}{0.04}$ 0.03 0.03 0.08 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | U, opt=' S $MARD$ $41.39%$ $39.55%$ $7.21%$ $56.91%$ *                                                                             | $\begin{array}{c} {\bf sgd', \ N_h = } \\ {\bf surprised} \\ \hline {RMSE} \\ \hline 0.13 \\ 0.12 \\ 0.12 \\ 0.12 \\ 0.06 \\ 0.15 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $= 50 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $, N_o = 5$ $MARD$ $*$ $*$ $*$ $*$ $*$                                                                                                                | Scared<br><u>RMSE</u><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27                                                                                                                                                                 | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03                                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)                                                                                                                                     |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1                                                                                 | MARD * * * * * * * *                       | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17                                                                                                                                                                                                                                 | Test 22           MAE           0.02           0.07           0.03           0.02                                                                                                                                                                                                                                                                                              | - Emotio<br><i>MARD</i> * 81.59% 91.40% * *                                                                           | Recog           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mition         -           MAE         0.04           0.07         0.11           0.11         0.09           0.06         -                                                                                                                                                                                                                                                              | + RTOR<br><i>MARD</i><br>78.30%<br>69.99%<br>61.98%<br>*<br>*<br>*                                              | $\begin{array}{c} -\varphi_{j}(v_{j}(n)\\ \textbf{Angry}\\ RMSE\\ 0.50\\ 0.29\\ 0.28\\ 0.68\\ 0.69\\ 0.30\\ \end{array}$                                                                   | $\frac{MAE}{0.04}$ 0.03 0.03 0.08 0.08 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U, opt=' S $MARD$ 41.39% 39.55% 7.21% 56.91% * 50.14%                                                                              | $\begin{array}{c} {\bf sgd', \ N_h = } \\ \hline {\bf surprised} \\ \hline {RMSE} \\ \hline 0.13 \\ 0.12 \\ 0.12 \\ 0.12 \\ 0.06 \\ 0.15 \\ 0.07 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $= 50 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | , N <sub>o</sub> = 5<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*                                                                                            | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23                                                                                                                                                         | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)                                                                                                                   |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2                                                                       | MARD * * * * * * * * *                     | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22                                                                                                                                                                                                                         | Test 22           MAE           0.02           0.02           0.03           0.03           0.02                                                                                                                                                                                                                                                                               | - Emotio<br><i>MARD</i> * 81.59% 91.40% * * 59.83%                                                                    | Recog           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mition         -           MAE         0.04           0.07         0.11           0.11         0.09           0.06         0.04                                                                                                                                                                                                                                                           | + RTOR<br><i>MARD</i><br>78.30%<br>69.99%<br>61.98%<br>*<br>*<br>*<br>39.81%                                    | $\begin{array}{r} -\varphi_{j}(v_{j}(n)\\ \textbf{Angry}\\ RMSE\\ 0.50\\ 0.29\\ 0.28\\ 0.68\\ 0.69\\ 0.30\\ 0.22 \end{array}$                                                              | $\overline{)) = ReL} \\ \overline{MAE} \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 $ | U, opt=' S $MARD$ 41.39% 39.55% 7.21% 56.91% * 50.14% *                                                                            | $\begin{array}{c} {\bf sgd', \ N_h = } \\ \hline {\bf surprised} \\ \hline {RMSE} \\ \hline 0.13 \\ 0.12 \\ 0.12 \\ 0.12 \\ 0.06 \\ 0.15 \\ 0.07 \\ 0.11 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $= 50 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | , N <sub>o</sub> = 5<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                       | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23<br>0.21                                                                                                                                                 | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02                                                                | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)                                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1                                                             | MARD * * * * * * * * * *                   | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22<br>0.13                                                                                                                                                                                                                 | Test 22           MAE           0.02           0.02           0.03           0.03           0.02                                                                                                                                                                                                                                                                               | - Emotio<br><i>MARD</i> * 81.59% 91.40% * * 59.83% 81.52%                                                             | Recog           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mition         -           MAE         0.04           0.07         0.11           0.11         0.09           0.06         0.04           0.04         0.04                                                                                                                                                                                                                               | + RTOR<br><i>MARD</i><br>78.30%<br>69.99%<br>61.98%<br>*<br>*<br>39.81%<br>*                                    | $\begin{array}{c} -\varphi_{j}(v_{j}(n)\\ \hline \mathbf{Angry}\\ RMSE\\ 0.50\\ 0.29\\ 0.28\\ 0.68\\ 0.69\\ 0.30\\ 0.22\\ 0.34 \end{array}$                                                | $\overline{)) = ReL}$ $\overline{MAE}$ 0.04 0.03 0.03 0.03 0.08 0.08 0.02 0.02 0.02 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | U, opt='<br>S<br>MARD<br>41.39%<br>39.55%<br>7.21%<br>56.91%<br>*<br>50.14%<br>*<br>23.83%                                         | $\begin{array}{c} {\bf sgd', \ N_h = } \\ \hline {\bf surprised} \\ \hline {RMSE} \\ \hline 0.13 \\ 0.12 \\ 0.12 \\ 0.12 \\ 0.06 \\ 0.15 \\ 0.07 \\ 0.11 \\ 0.04 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $= 50 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $N_o = 5$<br>MARD * * * * * * * * * * 79.01%                                                                                                          | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23<br>0.21<br>1.01                                                                                                                                         | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \end{array}$                          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2                                                   | MARD * * * * * * * * * * *                 | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22<br>0.13<br>0.14                                                                                                                                                                                                         | Test 22           MAE           0.02           0.02           0.07           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02                                                                                                                                                       | - Emotio<br><i>MARD</i><br>*<br>81.59%<br>91.40%<br>*<br>*<br>59.83%<br>81.52%<br>*                                   | Recog           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mition         -           MAE         0.04           0.07         0.11           0.11         0.09           0.06         0.04           0.04         0.06                                                                                                                                                                                                                               | + RTOR<br><i>MARD</i><br>78.30%<br>69.99%<br>61.98%<br>*<br>*<br>39.81%<br>*<br>*                               | $\begin{array}{c} -\varphi_{j}(v_{j}(n)\\ \hline \mathbf{Angry}\\ RMSE\\ 0.50\\ 0.29\\ 0.28\\ 0.68\\ 0.69\\ 0.30\\ 0.22\\ 0.34\\ 0.36\\ \end{array}$                                       | $\overline{)) = ReL}$ $\overline{MAE}$ 0.04 0.03 0.03 0.03 0.08 0.08 0.02 0.02 0.02 0.05 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U, opt='<br>S<br>MARD<br>41.39%<br>39.55%<br>7.21%<br>56.91%<br>*<br>50.14%<br>*<br>23.83%<br>28.44%                               | $\begin{array}{c} {\bf sgd', \ N_h = } \\ \hline {\bf surprised} \\ \hline {RMSE} \\ \hline 0.13 \\ 0.12 \\ 0.12 \\ 0.12 \\ 0.06 \\ 0.15 \\ 0.07 \\ 0.11 \\ 0.04 \\ 0.07 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $= 50 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.00 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $N_o = 5$<br>MARD * * * * * * * * * * 79.01% 66.77%                                                                                                   | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23<br>0.21<br>1.01<br>0.55                                                                                                                                 | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \end{array}$                  | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)                                                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1                               | MARD * * * * * * * * * * * *               | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12                                                                                                                                                                                                 | Test 22           MAE           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03                                                                            | - Emotio<br><i>MARD</i><br>*<br>81.59%<br>91.40%<br>*<br>*<br>59.83%<br>81.52%<br>*<br>75.33%                         | Recog           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mition         -           MAE         0.04           0.07         0.11           0.11         0.09           0.06         0.04           0.04         0.06           0.04         0.06           0.26         0.26                                                                                                                                                                       | + RTOR<br><i>MARD</i><br>78.30%<br>69.99%<br>61.98%<br>*<br>*<br>39.81%<br>*<br>66.48%                          | $\begin{array}{r} -\varphi_{j}(v_{j}(n)\\ \hline \textbf{Angry}\\ RMSE\\ 0.50\\ 0.29\\ 0.28\\ 0.68\\ 0.69\\ 0.30\\ 0.22\\ 0.34\\ 0.36\\ 0.92\\ \end{array}$                                | $\begin{array}{l} \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U, opt='<br>S<br>MARD<br>41.39%<br>39.55%<br>7.21%<br>56.91%<br>*<br>50.14%<br>*<br>23.83%<br>28.44%<br>37.57%                     | $\begin{array}{c} {\bf sgd', \ N_h = } \\ \hline {\bf surprised} \\ \hline {RMSE} \\ \hline 0.13 \\ 0.12 \\ 0.12 \\ 0.12 \\ 0.06 \\ 0.15 \\ 0.07 \\ 0.11 \\ 0.04 \\ 0.07 \\ 0.12 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $= 50 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $N_o = 5$<br>MARD * * * * * * * * * * * * * * * * * * *                                                                                               | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23<br>0.21<br>1.01<br>0.55<br>0.40                                                                                                                         | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \end{array}$          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)                                                |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1<br>DS:CR3                     | MARD * * * * * * * * * * * *               | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05                                                                                                                                                                                         | Test 22           MAE           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03                                                                            | - Emotion<br>MARD<br>*<br>81.59%<br>91.40%<br>*<br>*<br>59.83%<br>81.52%<br>*<br>75.33%<br>52.58%                     | Recog           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\begin{array}{r} \textbf{mition} & - \\ \hline MAE \\ \hline 0.04 \\ 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.04 \\ 0.06 \\ 0.26 \\ 0.15 \end{array}$                                                                                                                                                                                                                           | + RTOR<br><i>MARD</i><br>78.30%<br>69.99%<br>61.98%<br>*<br>*<br>39.81%<br>*<br>66.48%<br>*                     | $\begin{array}{c} - \varphi_j(v_j(n) \\ \textbf{Angry} \\ RMSE \\ \hline 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \\ 0.30 \\ 0.22 \\ 0.34 \\ 0.36 \\ 0.92 \\ 0.17 \end{array}$                 | )) = ReL $MAE$ $0.04$ $0.03$ $0.03$ $0.08$ $0.02$ $0.02$ $0.02$ $0.05$ $0.06$ $0.09$ $0.05$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U, opt=' S $MARD$ 41.39% 39.55% 7.21% 56.91% * 50.14% * 23.83% 28.44% 37.57% 12.02%                                                | $\begin{array}{c} {\bf sgd', \ N_h :=} \\ \hline {\bf surprised} \\ \hline {\bf RMSE} \\ \hline 0.13 \\ 0.12 \\ 0.12 \\ 0.06 \\ 0.15 \\ 0.07 \\ 0.11 \\ 0.04 \\ 0.07 \\ 0.12 \\ 0.01 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $= 50 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $N_o = 5$<br>MARD<br>* * * * * * * * * * * * * * * * * *                                                                                              | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23<br>0.21<br>1.01<br>0.55<br>0.40<br>0.30                                                                                                                 | $\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.08 \end{array}$         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX           | MARD * * * * * * * * * * * * * * * * * * * | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76                                                                                                                                                                                 | Test 22           MAE           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.02           0.02           0.01           0.02           0.21                | - Emotion<br>MARD<br>*<br>81.59%<br>91.40%<br>*<br>*<br>59.83%<br>81.52%<br>*<br>75.33%<br>52.58%<br>20.33%           | Recog           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} \textbf{mition} \ - \\ \hline MAE \\ \hline 0.04 \\ 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.06 \\ 0.26 \\ 0.15 \\ 0.02 \end{array}$                                                                                                                                                                                                                           | + RTOR<br><i>MARD</i><br>78.30%<br>69.99%<br>61.98%<br>*<br>*<br>39.81%<br>*<br>66.48%<br>*<br>56.02%           | $\begin{array}{c} - \varphi_j(v_j(n) \\ \textbf{Angry} \\ RMSE \\ 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \\ 0.30 \\ 0.22 \\ 0.34 \\ 0.36 \\ 0.92 \\ 0.17 \\ 0.36 \end{array}$                | $\begin{array}{l} \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U, opt=' S $MARD$ 41.39% 39.55% 7.21% 56.91% * 50.14% * 23.83% 28.44% 37.57% 12.02% *                                              | $\begin{array}{c} {\bf sgd', \ N_h :=} \\ \hline {\bf surprised} \\ \hline {\bf RMSE} \\ \hline 0.13 \\ 0.12 \\ 0.12 \\ 0.06 \\ 0.15 \\ 0.07 \\ 0.11 \\ 0.06 \\ 0.07 \\ 0.12 \\ 0.01 \\ 0.04 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $= 50 \times 2$ $MAE$ 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $, N_o = 5$ $MARD$ * * * * * * * * * * * * * * * * * * *                                                                                              | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23<br>0.21<br>1.01<br>0.55<br>0.40<br>0.30<br>0.14                                                                                                         | $\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.08 \\ 0.04 \end{array}$ | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | $\begin{array}{c} \textbf{Happy}\\ RMSE \\ \hline 0.16 \\ 0.17 \\ 0.78 \\ 0.24 \\ 0.23 \\ 0.17 \\ 0.22 \\ 0.13 \\ 0.14 \\ 0.12 \\ 0.05 \\ 0.76 \\ 0.36 \\ \end{array}$                                                                                                                               | Test 22           MAE           0.02           0.02           0.07           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.21           0.03                                                             | - Emotion<br>MARD<br>*<br>81.59%<br>91.40%<br>*<br>*<br>59.83%<br>81.52%<br>*<br>75.33%<br>52.58%<br>20.33%<br>28.65% | $\begin{array}{c} \textbf{pn} \ \textbf{Recog} \\ \hline \textbf{Sad} \\ \hline \textbf{RMSE} \\ \hline 0.42 \\ 0.81 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.31 \\ 0.42 \\ 2.58 \\ 0.55 \\ 0.06 \\ 0.39 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \textbf{mition} & - \\ \hline MAE \\ \hline 0.04 \\ 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.06 \\ 0.04 \\ 0.06 \\ 0.26 \\ 0.15 \\ 0.02 \\ 0.03 \\ \end{array}$                                                                                                                                                                                                | + RTOR<br><i>MARD</i><br>78.30%<br>69.99%<br>61.98%<br>*<br>*<br>39.81%<br>*<br>66.48%<br>*<br>56.02%<br>60.20% | $\begin{array}{r} - \varphi_j(v_j(n) \\ \hline \textbf{Angry} \\ RMSE \\ 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \\ 0.30 \\ 0.22 \\ 0.34 \\ 0.36 \\ 0.92 \\ 0.17 \\ 0.36 \\ 1.10 \end{array}$ | $\begin{array}{l} \hline )) = ReL \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | U, opt=' S $MARD$ 41.39% 39.55% 7.21% 56.91% * 50.14% * 23.83% 28.44% 37.57% 12.02% * *                                            | $\begin{array}{c} {\bf sgd', \ N_h :=} \\ \hline {\bf surprised} \\ \hline {RMSE} \\ \hline 0.13 \\ 0.12 \\ 0.12 \\ 0.06 \\ 0.15 \\ 0.07 \\ 0.11 \\ 0.04 \\ 0.07 \\ 0.12 \\ 0.01 \\ 0.04 \\ 0.12 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $= 50 \times 2$ $MAE$ 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.00 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $N_o = 5$<br>MARD<br>* * * * * * 79.01% 66.77% 63.12% 67.68% 60.56% 28.81%                                                                            | $\begin{array}{c} \textbf{Scared} \\ \hline RMSE \\ 0.19 \\ 0.26 \\ 0.24 \\ 0.26 \\ 0.27 \\ 0.23 \\ 0.21 \\ 1.01 \\ 0.55 \\ 0.40 \\ 0.30 \\ 0.14 \\ 0.18 \end{array}$                                                         | $\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.08 \\ 0.04 \\ 0.01 \end{array}$ | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:CR3<br>DS:CR3<br>DS:CLX<br>DS:CL3 | MARD * * * * * * * * * * * * * * * * * * * | $\begin{array}{c} \textbf{Happy}\\ RMSE\\ \hline 0.16\\ 0.17\\ 0.78\\ 0.24\\ 0.23\\ 0.17\\ 0.22\\ 0.13\\ 0.14\\ 0.12\\ 0.05\\ 0.76\\ 0.36\\ \end{array}$                                                                                                                                             | Test 22           MAE           0.02           0.02           0.07           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.21           0.03                                                             | - Emotion<br>MARD<br>*<br>81.59%<br>91.40%<br>*<br>*<br>59.83%<br>81.52%<br>*<br>75.33%<br>52.58%<br>20.33%<br>28.65% | $\begin{array}{c} \textbf{pn} \ \textbf{Recog} \\ \hline \textbf{Sad} \\ \hline \textbf{RMSE} \\ \hline 0.42 \\ 0.81 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.31 \\ 0.42 \\ 2.58 \\ 0.55 \\ 0.06 \\ 0.39 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\begin{array}{c} \textbf{mition} \\ \hline MAE \\ \hline 0.04 \\ 0.07 \\ 0.11 \\ 0.11 \\ 0.09 \\ 0.06 \\ 0.04 \\ 0.04 \\ 0.06 \\ 0.26 \\ 0.15 \\ 0.02 \\ 0.03 \\ \hline \end{array}$                                                                                                                                                                                                     | + RTOR<br><i>MARD</i><br>78.30%<br>69.99%<br>61.98%<br>*<br>*<br>39.81%<br>*<br>66.48%<br>*<br>56.02%<br>60.20% | $\begin{array}{c} - \varphi_j(v_j(n) \\ \hline \mathbf{Angry} \\ RMSE \\ 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \\ 0.30 \\ 0.22 \\ 0.34 \\ 0.36 \\ 0.92 \\ 0.17 \\ 0.36 \\ 1.10 \end{array}$ | $\begin{array}{l} )) = ReL \\ \hline MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U, opt='<br>S<br>MARD<br>41.39%<br>39.55%<br>7.21%<br>56.91%<br>*<br>50.14%<br>*<br>23.83%<br>28.44%<br>37.57%<br>12.02%<br>*<br>* | $\begin{array}{c} {\bf sgd', \ N_h = } \\ \hline {\bf surprised} \\ \hline {\bf RMSE} \\ \hline 0.13 \\ 0.12 \\ 0.12 \\ 0.12 \\ 0.06 \\ 0.15 \\ 0.07 \\ 0.11 \\ 0.04 \\ 0.07 \\ 0.12 \\ 0.01 \\ 0.04 \\ 0.12 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $= 50 \times 2$ $MAE$ 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $N_o = 5$<br>MARD * * * * * * * 79.01% 66.77% 63.12% 67.68% 60.56% 28.81%                                                                             | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23<br>0.21<br>1.01<br>0.55<br>0.40<br>0.30<br>0.14<br>0.18                                                                                                 | $\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.08 \\ 0.04 \\ 0.01 \end{array}$ | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR3<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | Нарру<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36                                                                                                                                                                         | Test 22           MAE           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.03           0.02           0.01           0.02           0.03                | - Emotion<br>MARD<br>*<br>81.59%<br>91.40%<br>*<br>*<br>59.83%<br>81.52%<br>*<br>75.33%<br>52.58%<br>20.33%<br>28.65% | n         Recog           Sad         RMSE           0.42         0.81           1.37         0.96           0.82         0.64           0.38         0.31           0.42         2.58           0.55         0.06           0.39         39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | mition         -           MAE         0.04           0.07         0.11           0.11         0.11           0.09         0.06           0.04         0.04           0.05         0.04           0.06         0.04           0.06         0.04           0.06         0.04           0.06         0.04           0.06         0.26           0.15         0.02           0.03         90 | + RTOR<br><i>MARD</i><br>78.30%<br>69.99%<br>61.98%<br>*<br>*<br>39.81%<br>*<br>66.48%<br>*<br>56.02%<br>60.20% | $- \varphi_{j}(v_{j}(n) + \varphi_{j}(v_{j}(n) + \varphi_{j}(v_{j}(n) + \varphi_{j}(v_{j}(n) + \varphi_{j}(v_{j}(n) + \varphi_{j}(n))))) = 0$                                              | $\begin{array}{l} \hline \\ \hline $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U, opt=' S $MARD$ 41.39% 39.55% 7.21% 56.91% * 50.14% * 23.83% 28.44% 37.57% 12.02% * *                                            | sgd', N <sub>h</sub> =<br>surprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.12<br>0.01<br>0.04<br>0.12<br>0.01<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.05<br>0.13<br>0.12<br>0.05<br>0.15<br>0.07<br>0.11<br>0.04<br>0.02<br>0.01<br>0.12<br>0.05<br>0.13<br>0.12<br>0.05<br>0.15<br>0.07<br>0.11<br>0.02<br>0.12<br>0.06<br>0.15<br>0.07<br>0.12<br>0.01<br>0.12<br>0.06<br>0.15<br>0.07<br>0.12<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.02<br>0.01<br>0.02<br>0.02<br>0.02<br>0.01<br>0.02<br>0.02<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.01<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 | $= 50 \times 2$ $MAE$ 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} N_o = 5 \\ \hline MARD \\ * \\ * \\ * \\ * \\ * \\ * \\ 79.01\% \\ 66.77\% \\ 63.12\% \\ 67.68\% \\ 60.56\% \\ 28.81\% \end{array}$ | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23<br>0.21<br>1.01<br>0.55<br>0.40<br>0.30<br>0.14<br>0.18                                                                                                 | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.13<br>0.07<br>0.04<br>0.08<br>0.04<br>0.01<br>80                  | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR3<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | Нарру<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36                                                                                                                                                                         | Test 22           MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.01           0.02           0.03                               | - Emotion<br>MARD<br>*<br>81.59%<br>91.40%<br>*<br>*<br>59.83%<br>81.52%<br>*<br>75.33%<br>52.58%<br>20.33%<br>28.65% | Image: matrix of the state sta | mition       -         MAE       0.04         0.07       0.11         0.11       0.09         0.06       0.04         0.04       0.06         0.04       0.06         0.05       0.02         0.03       90.01                                                                                                                                                                            | + RTOR<br><i>MARD</i><br>78.30%<br>69.99%<br>61.98%<br>*<br>*<br>39.81%<br>*<br>66.48%<br>*<br>56.02%<br>60.20% | - φ <sub>j</sub> (v <sub>j</sub> (n)<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10                       | $\begin{array}{c} \hline method{AE} \\ \hline mAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \hline \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | U, opt=' S $MARD$ 41.39% 39.55% 7.21% 56.91% * 50.14% * 23.83% 28.44% 37.57% 12.02% * *                                            | sgd', N <sub>h</sub> =<br>surprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.12<br>0.01<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.05<br>0.04<br>0.05<br>0.07<br>0.12<br>0.06<br>0.15<br>0.07<br>0.12<br>0.06<br>0.15<br>0.07<br>0.12<br>0.06<br>0.15<br>0.07<br>0.12<br>0.04<br>0.02<br>0.01<br>0.02<br>0.04<br>0.02<br>0.04<br>0.05<br>0.07<br>0.12<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.02<br>0.04<br>0.04<br>0.02<br>0.04<br>0.04<br>0.02<br>0.04<br>0.04<br>0.04<br>0.04<br>0.05<br>0.07<br>0.12<br>0.04<br>0.04<br>0.05<br>0.07<br>0.12<br>0.04<br>0.04<br>0.04<br>0.04<br>0.12<br>0.04<br>0.04<br>0.12<br>0.04<br>0.04<br>0.04<br>0.12<br>0.04<br>0.04<br>0.04<br>0.12<br>0.04<br>0.04<br>0.12<br>0.04<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.12<br>0.04<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12<br>0.12 | $= 50 \times 2$ $MAE$ 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{c} N_o = 5 \\ \hline MARD \\ * \\ * \\ * \\ * \\ * \\ * \\ 79.01\% \\ 66.77\% \\ 63.12\% \\ 67.68\% \\ 60.56\% \\ 28.81\% \end{array}$ | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23<br>0.21<br>1.01<br>0.55<br>0.40<br>0.30<br>0.14<br>0.18                                                                                                 | <i>MAE</i><br>0.02<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.02<br>0.13<br>0.07<br>0.04<br>0.04<br>0.04<br>0.01<br><b>€0:0</b>  | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR3<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36<br><b>₹</b><br><b>₹</b><br><b>7</b><br><b>6</b><br><b>7</b><br><b>8</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b> | Test 22           MAE           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.03           0.04           0.05           0.05           0.06           0.07 | - Emotion<br>MARD<br>*<br>81.59%<br>91.40%<br>*<br>*<br>59.83%<br>81.52%<br>*<br>75.33%<br>52.58%<br>20.33%<br>28.65% | Image: matrix of the state sta | mition       -         MAE       0.04         0.07       0.11         0.11       0.09         0.06       0.04         0.04       0.06         0.04       0.06         0.05       0.02         0.03       90.03                                                                                                                                                                            | + RTOR<br><i>MARD</i><br>78.30%<br>69.99%<br>61.98%<br>*<br>*<br>39.81%<br>*<br>66.48%<br>*<br>56.02%<br>60.20% | - φ <sub>j</sub> (v <sub>j</sub> (n)<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10                       | $\begin{array}{c} \hline matherap )) = ReL \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \hline \hline \ensuremath{\mathfrak{E0.001}}_{++} \\ \hline \ensuremath{\mathfrak{g}}_{+-} \\ \hline \ensuremath{\mathfrak{g}}_{+} \\ \hline \ensuremath{\mathfrak{g}}_{+} \\ \hline \ensuremath{\mathfrak{g}}_{+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | U, opt=' S $MARD$ 41.39% 39.55% 7.21% 56.91% * 50.14% * 23.83% 28.44% 37.57% 12.02% * *                                            | sgd', N <sub>h</sub> =<br>surprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.12<br>0.01<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.05<br>0.07<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.06<br>0.15<br>0.07<br>0.12<br>0.06<br>0.15<br>0.07<br>0.12<br>0.06<br>0.15<br>0.07<br>0.12<br>0.04<br>0.07<br>0.12<br>0.06<br>0.15<br>0.07<br>0.12<br>0.04<br>0.07<br>0.12<br>0.04<br>0.07<br>0.12<br>0.04<br>0.07<br>0.12<br>0.04<br>0.07<br>0.12<br>0.04<br>0.07<br>0.12<br>0.04<br>0.07<br>0.12<br>0.04<br>0.07<br>0.12<br>0.04<br>0.07<br>0.12<br>0.06<br>0.12<br>0.07<br>0.12<br>0.07<br>0.12<br>0.06<br>0.07<br>0.12<br>0.07<br>0.12<br>0.01<br>0.04<br>0.07<br>0.12<br>0.04<br>0.07<br>0.12<br>0.04<br>0.04<br>0.07<br>0.12<br>0.04<br>0.04<br>0.04<br>0.12<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.12<br>0.04<br>0.04<br>0.12<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04 | = 50 × 2<br><u>MAE</u><br>0.01<br>0.01<br>0.01<br>0.01<br>0.02<br>0.01<br>0.00<br>0.01<br>0.01<br>0.00<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01<br>0.01 | $\begin{array}{c} N_{o}=5\\ \hline MARD\\ *\\ *\\ *\\ *\\ *\\ *\\ *\\ 79.01\%\\ 66.77\%\\ 63.12\%\\ 67.68\%\\ 60.56\%\\ 28.81\% \end{array}$          | Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23<br>0.21<br>1.01<br>0.55<br>0.40<br>0.30<br>0.14<br>0.18<br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b><br><b>C</b> | <i>MAE</i><br>0.02<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.02<br>0.13<br>0.07<br>0.04<br>0.08<br>0.04<br>0.01                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |

TABLE 9.13. Emotion recognition results tests 21 and 22. ANN with  $6 \times 10^3$  train epochs and input data with feature extraction.

|                                                                                                                                                               |                                                                                                     | Test 23                                                                                                                                                      | - Emot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ion Reco                                                                                                                                                                                                                    | gnition 4                                                                                                                               | - RTOF                                                                                                                                                                                                                                                                                                                                                                                                                    | R [GSR+]                                                                                                                                                                                                      | $\mathbf{EEG}$ ] - $arphi$                                                                                                                                                                                                     | $_j(v_j(n))$                                                                                                                                                                                                                                                                                                         | = ReLU,                                                                                                           | opt='ada                                                                                                                                                                                                                                                 | m', $N_h$                                                                                                                                                                                                                 | $=44 \times 2$ ,                                                                                    | $N_o = 5$                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{Flight}$                                                                                                                                             |                                                                                                     | Happy                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                             | Sad                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               | Angry                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                      | $\mathbf{S}$                                                                                                      | urprised                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                           |                                                                                                     | Scared                                                                                                                                                                                                          |                                                                                                                                                                              | Match                                                                                                                                                                                                                                           |
| Dataset                                                                                                                                                       | MARD                                                                                                | RMSE                                                                                                                                                         | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MARD                                                                                                                                                                                                                        | RMSE                                                                                                                                    | MAE                                                                                                                                                                                                                                                                                                                                                                                                                       | MARD                                                                                                                                                                                                          | RMSE                                                                                                                                                                                                                           | MAE                                                                                                                                                                                                                                                                                                                  | MARD                                                                                                              | RMSE                                                                                                                                                                                                                                                     | MAE                                                                                                                                                                                                                       | MARD                                                                                                | RMSE                                                                                                                                                                                                            | MAE                                                                                                                                                                          | Accuracy (%)                                                                                                                                                                                                                                    |
| DS:RC1                                                                                                                                                        | 95.54%                                                                                              | 0.22                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                           | 1.25                                                                                                                                    | 0.11                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                                             | 0.61                                                                                                                                                                                                                           | 0.06                                                                                                                                                                                                                                                                                                                 | 37.79%                                                                                                            | 0.11                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                      | *                                                                                                   | 0.26                                                                                                                                                                                                            | 0.02                                                                                                                                                                         | <b>43.28</b> ( <b>29</b> /67)                                                                                                                                                                                                                   |
| DS:RC2                                                                                                                                                        | *                                                                                                   | 0.33                                                                                                                                                         | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 72.65%                                                                                                                                                                                                                      | 0.99                                                                                                                                    | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                      | 61.52%                                                                                                                                                                                                        | 0.35                                                                                                                                                                                                                           | 0.03                                                                                                                                                                                                                                                                                                                 | 38.64%                                                                                                            | 0.11                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                      | *                                                                                                   | 0.08                                                                                                                                                                                                            | 0.01                                                                                                                                                                         | <b>70.51</b> (55/78)                                                                                                                                                                                                                            |
| DS:RC3                                                                                                                                                        | *                                                                                                   | 0.78                                                                                                                                                         | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                           | 1.80                                                                                                                                    | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                                             | 0.75                                                                                                                                                                                                                           | 0.07                                                                                                                                                                                                                                                                                                                 | 39.27%                                                                                                            | 0.11                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                      | *                                                                                                   | 0.38                                                                                                                                                                                                            | 0.03                                                                                                                                                                         | <b>50.68</b> ( <b>37</b> /73)                                                                                                                                                                                                                   |
| DS:GC1                                                                                                                                                        | *                                                                                                   | 0.19                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                           | 0.59                                                                                                                                    | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                                             | 0.75                                                                                                                                                                                                                           | 0.07                                                                                                                                                                                                                                                                                                                 | 49.65%                                                                                                            | 0.06                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                      | *                                                                                                   | 0.07                                                                                                                                                                                                            | 0.01                                                                                                                                                                         | <b>9.33</b> ( <b>7</b> /75)                                                                                                                                                                                                                     |
| DS:GC3                                                                                                                                                        | *                                                                                                   | 0.27                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                           | 0.92                                                                                                                                    | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                                             | 0.82                                                                                                                                                                                                                           | 0.08                                                                                                                                                                                                                                                                                                                 | *                                                                                                                 | 0.16                                                                                                                                                                                                                                                     | 0.02                                                                                                                                                                                                                      | *                                                                                                   | 0.25                                                                                                                                                                                                            | 0.02                                                                                                                                                                         | 52.56 (41/78)                                                                                                                                                                                                                                   |
| DS:LS1                                                                                                                                                        | *                                                                                                   | 0.42                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                           | 0.74                                                                                                                                    | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                                             | 0.66                                                                                                                                                                                                                           | 0.06                                                                                                                                                                                                                                                                                                                 | 56.57%                                                                                                            | 0.08                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                      | *                                                                                                   | 0.30                                                                                                                                                                                                            | 0.02                                                                                                                                                                         | <b>39.22</b> ( <b>40</b> /102)                                                                                                                                                                                                                  |
| DS:LS2                                                                                                                                                        | *                                                                                                   | 0.16                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 54.67%                                                                                                                                                                                                                      | 0.57                                                                                                                                    | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                      | 74.21%                                                                                                                                                                                                        | 0.54                                                                                                                                                                                                                           | 0.05                                                                                                                                                                                                                                                                                                                 | *                                                                                                                 | 0.10                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                      | *                                                                                                   | 0.07                                                                                                                                                                                                            | 0.01                                                                                                                                                                         | $54.67 \ (41/75)$                                                                                                                                                                                                                               |
| DS:VC1                                                                                                                                                        | *                                                                                                   | 0.19                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                           | 0.64                                                                                                                                    | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                                             | 0.49                                                                                                                                                                                                                           | 0.06                                                                                                                                                                                                                                                                                                                 | 49.41%                                                                                                            | 0.07                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                      | 86.96%                                                                                              | 1.02                                                                                                                                                                                                            | 0.13                                                                                                                                                                         | 14.58 (7/48)                                                                                                                                                                                                                                    |
| DS:VC2                                                                                                                                                        | *                                                                                                   | 0.19                                                                                                                                                         | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                                                                                                                           | 0.94                                                                                                                                    | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                                             | 0.49                                                                                                                                                                                                                           | 0.06                                                                                                                                                                                                                                                                                                                 | 30.19%                                                                                                            | 0.06                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                      | 81.65%                                                                                              | 0.54                                                                                                                                                                                                            | 0.07                                                                                                                                                                         | $28.95 \ (11/38)$                                                                                                                                                                                                                               |
| DS:CR1                                                                                                                                                        | *                                                                                                   | 0.19                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85.30%                                                                                                                                                                                                                      | 2.59                                                                                                                                    | 0.27                                                                                                                                                                                                                                                                                                                                                                                                                      | 59.73%                                                                                                                                                                                                        | 0.86                                                                                                                                                                                                                           | 0.08                                                                                                                                                                                                                                                                                                                 | 36.10%                                                                                                            | 0.11                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                      | 79.43%                                                                                              | 0.50                                                                                                                                                                                                            | 0.05                                                                                                                                                                         | 42.47 (31/73)                                                                                                                                                                                                                                   |
| DS:CR3                                                                                                                                                        | *                                                                                                   | 0.05                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 57.15%                                                                                                                                                                                                                      | 0.36                                                                                                                                    | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                      | *                                                                                                                                                                                                             | 0.12                                                                                                                                                                                                                           | 0.03                                                                                                                                                                                                                                                                                                                 | 26.85%                                                                                                            | 0.02                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                      | 57.71%                                                                                              | 0.29                                                                                                                                                                                                            | 0.07                                                                                                                                                                         | <b>66.67</b> ( <b>6</b> /9)                                                                                                                                                                                                                     |
| DS:CLX                                                                                                                                                        | 92.12%                                                                                              | 0.78                                                                                                                                                         | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 60.90%                                                                                                                                                                                                                      | 0.21                                                                                                                                    | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                      | 76.76%                                                                                                                                                                                                        | 0.45                                                                                                                                                                                                                           | 0.13                                                                                                                                                                                                                                                                                                                 | *                                                                                                                 | 0.05                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                      | 60.97%                                                                                              | 0.17                                                                                                                                                                                                            | 0.04                                                                                                                                                                         | <b>10.00</b> (1/10)                                                                                                                                                                                                                             |
| DS:CL3                                                                                                                                                        | 90.09%                                                                                              | 0.42                                                                                                                                                         | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.79%                                                                                                                                                                                                                      | 0.59                                                                                                                                    | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                      | 58.72%                                                                                                                                                                                                        | 1.12                                                                                                                                                                                                                           | 0.10                                                                                                                                                                                                                                                                                                                 | *                                                                                                                 | 0.15                                                                                                                                                                                                                                                     | 0.01                                                                                                                                                                                                                      | *                                                                                                   | 0.47                                                                                                                                                                                                            | 0.04                                                                                                                                                                         | $18.60 \ (16/86)$                                                                                                                                                                                                                               |
|                                                                                                                                                               |                                                                                                     |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                             |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |                                                                                                                   |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                              | 97                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                                                                                     | 21                                                                                                                                                           | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                             | 61                                                                                                                                      | 05                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                               | 24                                                                                                                                                                                                                             | 02                                                                                                                                                                                                                                                                                                                   |                                                                                                                   | 03                                                                                                                                                                                                                                                       | 00                                                                                                                                                                                                                        |                                                                                                     | 24                                                                                                                                                                                                              | 03                                                                                                                                                                           | 6.                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                                                                                     | -0.                                                                                                                                                          | -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                             | -0.                                                                                                                                     | -0.                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                               | -0.                                                                                                                                                                                                                            | -0.                                                                                                                                                                                                                                                                                                                  |                                                                                                                   | -0.                                                                                                                                                                                                                                                      | -0.                                                                                                                                                                                                                       |                                                                                                     | -0.                                                                                                                                                                                                             | -0.                                                                                                                                                                          | H                                                                                                                                                                                                                                               |
|                                                                                                                                                               |                                                                                                     | <b>2</b> 4                                                                                                                                                   | <b>4</b> ∃                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                             | <b>4</b> 4                                                                                                                              | F6(                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                               | 53∃                                                                                                                                                                                                                            | ₽20                                                                                                                                                                                                                                                                                                                  |                                                                                                                   | <b>10</b> ∃                                                                                                                                                                                                                                              | <b>1</b> ∃                                                                                                                                                                                                                |                                                                                                     | <b>4</b>                                                                                                                                                                                                        | <b>4</b> 4                                                                                                                                                                   | 58                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                                                                                     | 0.3                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                             | 0.0                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                               | 0.6                                                                                                                                                                                                                            | 0.0                                                                                                                                                                                                                                                                                                                  |                                                                                                                   | 0.0                                                                                                                                                                                                                                                      | 0.0                                                                                                                                                                                                                       |                                                                                                     | 0.3                                                                                                                                                                                                             | 0.0                                                                                                                                                                          | 33                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                                                                                     |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                             |                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                               |                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                      |                                                                                                                   |                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                           |                                                                                                     |                                                                                                                                                                                                                 |                                                                                                                                                                              |                                                                                                                                                                                                                                                 |
|                                                                                                                                                               |                                                                                                     | Test 24                                                                                                                                                      | - Emot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion Reco                                                                                                                                                                                                                   | gnition -                                                                                                                               | + RTOF                                                                                                                                                                                                                                                                                                                                                                                                                    | R [GSR+                                                                                                                                                                                                       | $\mathbf{EEG}$ ] - $\varphi$                                                                                                                                                                                                   | $\overline{v_j(v_j(n))}$                                                                                                                                                                                                                                                                                             | = sigmoid                                                                                                         | , opt='sg                                                                                                                                                                                                                                                | gd', $N_h$                                                                                                                                                                                                                | $= 44 \times 2,$                                                                                    | $N_o = 5$                                                                                                                                                                                                       |                                                                                                                                                                              |                                                                                                                                                                                                                                                 |
| Flight                                                                                                                                                        |                                                                                                     | Test 24<br>Happy                                                                                                                                             | - Emot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion Reco                                                                                                                                                                                                                   | gnition -<br>Sad                                                                                                                        | + RTOF                                                                                                                                                                                                                                                                                                                                                                                                                    | R [GSR+                                                                                                                                                                                                       | $\frac{\mathbf{EEG}] - \varphi}{\mathbf{Angry}}$                                                                                                                                                                               | $v_j(v_j(n))$                                                                                                                                                                                                                                                                                                        | = sigmoid<br>S                                                                                                    | l, opt='sg<br>urprised                                                                                                                                                                                                                                   | gd', $N_h$                                                                                                                                                                                                                | $=44 \times 2$ ,                                                                                    | $\frac{N_o = 5}{\mathbf{Scared}}$                                                                                                                                                                               |                                                                                                                                                                              | Match                                                                                                                                                                                                                                           |
| Flight<br>Dataset                                                                                                                                             | MARD                                                                                                | Test 24<br>Happy<br>RMSE                                                                                                                                     | - Emot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion Reco                                                                                                                                                                                                                   | gnition -<br>Sad<br>RMSE                                                                                                                | + <b>RTO</b> H $MAE$                                                                                                                                                                                                                                                                                                                                                                                                      | R [GSR+MARD]                                                                                                                                                                                                  | EEG] - φ<br>Angry<br>RMSE                                                                                                                                                                                                      | $\frac{v_j(v_j(n))}{MAE}$                                                                                                                                                                                                                                                                                            | $= sigmoid$ $\mathbf{S}$ $MARD$                                                                                   | l, opt='sg<br>urprised<br>RMSE                                                                                                                                                                                                                           | gd', $N_h = MAE$                                                                                                                                                                                                          | $= 44 \times 2,$ $MARD$                                                                             | $N_o = 5$ <b>Scared</b> $RMSE$                                                                                                                                                                                  | MAE                                                                                                                                                                          | Match<br>Accuracy (%)                                                                                                                                                                                                                           |
| Flight<br>Dataset<br>DS:RC1                                                                                                                                   | MARD<br>*                                                                                           | Test 24<br>Happy<br>RMSE<br>0.22                                                                                                                             | - Emot<br>MAE<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tion Reco<br>MARD<br>*                                                                                                                                                                                                      | gnition -<br>Sad<br>RMSE<br>0.42                                                                                                        | + <b>RTOF</b><br><i>MAE</i><br>0.04                                                                                                                                                                                                                                                                                                                                                                                       | R [GSR+<br>MARD<br>86.46%                                                                                                                                                                                     | $\frac{\textbf{EEG}] - \varphi}{\textbf{Angry}}$ $\frac{RMSE}{0.49}$                                                                                                                                                           | $\frac{MAE}{0.04}$                                                                                                                                                                                                                                                                                                   | $= sigmoid$ $\mathbf{S}$ $MARD$ $87.95\%$                                                                         | l, opt='sg<br>urprised<br>RMSE<br>0.17                                                                                                                                                                                                                   | gd', $N_h = MAE$                                                                                                                                                                                                          | $= 44 \times 2,$ $MARD$ *                                                                           | $\frac{N_o = 5}{\mathbf{Scared}}$ $\frac{RMSE}{0.39}$                                                                                                                                                           | <i>MAE</i> 0.05                                                                                                                                                              | Match<br>Accuracy (%)<br>53.73 (36/67)                                                                                                                                                                                                          |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2                                                                                                                         | MARD * *                                                                                            | Test 24<br>Happy<br><i>RMSE</i><br>0.22<br>0.30                                                                                                              | - Emot<br>MAE<br>0.02<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tion Reco<br>MARD<br>*<br>82.50%                                                                                                                                                                                            | gnition -<br>Sad<br><i>RMSE</i><br>0.42<br>0.81                                                                                         | + <b>RTO</b> H<br><i>MAE</i><br>0.04<br>0.07                                                                                                                                                                                                                                                                                                                                                                              | <b>R</b> [ <b>GSR</b> +<br><i>MARD</i><br>86.46%<br>79.64%                                                                                                                                                    | <b>EEG] -</b> φ<br><b>Angry</b><br><i>RMSE</i><br>0.49<br>0.31                                                                                                                                                                 | $\frac{D_{j}(v_{j}(n))}{MAE}$<br>0.04<br>0.03                                                                                                                                                                                                                                                                        | = sigmoid $S$ $MARD$ $87.95%$ $*$                                                                                 | <i>b</i> , opt='sg<br>urprised<br><i>RMSE</i><br>0.17<br>0.21                                                                                                                                                                                            | gd', $N_h = MAE$<br>0.02<br>0.02                                                                                                                                                                                          | $= 44 \times 2,$ $MARD$ $*$ *                                                                       | $N_o = 5$ <b>Scared</b> $RMSE$ 0.39 0.47                                                                                                                                                                        | MAE<br>0.05<br>0.05                                                                                                                                                          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)                                                                                                                                                                                         |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3                                                                                                               | MARD * * *                                                                                          | Test 24<br>Happy<br><i>RMSE</i><br>0.22<br>0.30<br>0.62                                                                                                      | <i>MAE</i><br>0.02<br>0.03<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tion Reco<br>MARD<br>*<br>82.50%<br>92.38%                                                                                                                                                                                  | <b>gnition</b> -<br><b>Sad</b><br><i>RMSE</i><br>0.42<br>0.81<br>1.37                                                                   | + <b>RTOP</b><br><i>MAE</i><br>0.04<br>0.07<br>0.11                                                                                                                                                                                                                                                                                                                                                                       | R [GSR+<br>MARD<br>86.46%<br>79.64%<br>73.33%                                                                                                                                                                 | <b>EEG] -</b> $\varphi$<br><b>Angry</b><br><i>RMSE</i><br>0.49<br>0.31<br>0.31                                                                                                                                                 | $\frac{MAE}{0.04}$ 0.03 0.03                                                                                                                                                                                                                                                                                         | = sigmoid $S$ $MARD$ $87.95%$ $*$ $37.28%$                                                                        | <i>t</i> , opt='sg<br>urprised<br><i>RMSE</i><br>0.17<br>0.21<br>0.19                                                                                                                                                                                    | $\begin{array}{c} \textbf{gd', } N_h = \\ \hline MAE \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \end{array}$                                                                                                                         | $= 44 \times 2,$ $MARD$ $*$ $*$ $*$                                                                 | $     \begin{array}{l} N_o = 5 \\ \hline \textbf{Scared} \\ RMSE \\ \hline 0.39 \\ 0.47 \\ 0.44 \end{array} $                                                                                                   | MAE<br>0.05<br>0.05<br>0.05                                                                                                                                                  | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)                                                                                                                                                                        |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1                                                                                                     | MARD * * * *                                                                                        | Test 24<br>Happy<br><i>RMSE</i><br>0.22<br>0.30<br>0.62<br>0.45                                                                                              | <i>MAE</i><br>0.02<br>0.03<br>0.06<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | x<br>MARD<br>*<br>82.50%<br>92.38%<br>*                                                                                                                                                                                     | <b>gnition</b> -<br><b>Sad</b><br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96                                                           | <ul> <li>► RTOF</li> <li>MAE</li> <li>0.04</li> <li>0.07</li> <li>0.11</li> <li>0.11</li> </ul>                                                                                                                                                                                                                                                                                                                           | R [GSR+<br><i>MARD</i><br>86.46%<br>79.64%<br>73.33%<br>*                                                                                                                                                     | $\begin{array}{c} \textbf{EEG]} - \varphi \\ \textbf{Angry} \\ RMSE \\ \hline 0.49 \\ 0.31 \\ 0.31 \\ 0.73 \end{array}$                                                                                                        | $\frac{MAE}{0.04}$ 0.03 0.03 0.08                                                                                                                                                                                                                                                                                    | = sigmoid $S$ $MARD$ $87.95%$ $*$ $37.28%$ $*$                                                                    | d, opt='sg           urprised           RMSE           0.17           0.21           0.19           0.30                                                                                                                                                 | $\begin{array}{c} \textbf{gd', } N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \end{array}$                                                                                                          | $= 44 \times 2,$ $MARD$ $*$ $*$ $*$                                                                 |                                                                                                                                                                                                                 | MAE<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)                                                                                                                                                       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3                                                                                           | MARD * * * * * *                                                                                    | Test 24<br>Happy<br><i>RMSE</i><br>0.22<br>0.30<br>0.62<br>0.45<br>0.44                                                                                      | <i>MAE</i><br>0.02<br>0.03<br>0.06<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ion Reco<br>MARD<br>*<br>82.50%<br>92.38%<br>*<br>*                                                                                                                                                                         | gnition -<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82                                                                 | + <b>RTOF</b><br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09                                                                                                                                                                                                                                                                                                                                                       | <b>R</b> [ <b>GSR</b> +<br><i>MARD</i><br>86.46%<br>79.64%<br>73.33%<br>*<br>*                                                                                                                                | <b>EEG] -</b> φ<br><b>Angry</b><br><i>RMSE</i><br>0.49<br>0.31<br>0.31<br>0.73<br>0.75                                                                                                                                         | $\frac{MAE}{0.04}$ 0.03 0.03 0.08 0.08                                                                                                                                                                                                                                                                               | = sigmoid $S$ $MARD$ $87.95%$ $*$ $37.28%$ $*$ $*$                                                                | <pre>/, opt='sg urprised RMSE 0.17 0.21 0.19 0.30 0.41</pre>                                                                                                                                                                                             | $\begin{array}{c} \textbf{gd', } N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \end{array}$                                                                                                          | = 44 × 2,<br><u>MARD</u><br>*<br>*<br>*<br>*                                                        | $     \begin{array}{l} N_o = 5 \\ \hline \textbf{Scared} \\ RMSE \\ \hline 0.39 \\ 0.47 \\ 0.44 \\ 0.46 \\ 0.48 \end{array} $                                                                                   | $\begin{array}{c} MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \end{array}$                                                                                    | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)                                                                                                                                     |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1                                                                                 | MARD * * * * * * *                                                                                  | Test 24<br>Happy<br><i>RMSE</i><br>0.22<br>0.30<br>0.62<br>0.45<br>0.44<br>0.40                                                                              | <i>MAE</i><br>0.02<br>0.03<br>0.06<br>0.05<br>0.05<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ion Reco<br>MARD<br>*<br>82.50%<br>92.38%<br>*<br>*<br>*                                                                                                                                                                    | gnition -<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.65                                                         | <ul> <li>► RTOF</li> <li>MAE</li> <li>0.04</li> <li>0.07</li> <li>0.11</li> <li>0.11</li> <li>0.09</li> <li>0.06</li> </ul>                                                                                                                                                                                                                                                                                               | <b>R</b> [ <b>GSR</b> +<br><u>MARD</u><br>86.46%<br>79.64%<br>73.33%<br>*<br>*<br>*                                                                                                                           | $\begin{array}{c} \textbf{EEG] - \varphi} \\ \textbf{Angry} \\ \hline RMSE \\ \hline 0.49 \\ 0.31 \\ 0.31 \\ 0.73 \\ 0.75 \\ 0.31 \\ \end{array}$                                                                              | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ \end{array}$                                                                                                                                                                                            | = sigmoid $S$ $MARD$ $87.95%$ $*$ $37.28%$ $*$ $*$ $*$                                                            | <i>k</i> , opt='sg<br>urprised<br><i>RMSE</i><br>0.17<br>0.21<br>0.19<br>0.30<br>0.41<br>0.33                                                                                                                                                            | $\begin{array}{c} \textbf{gd', } N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \end{array}$                                                                                                  | = 44 × 2,<br><u>MARD</u><br>*<br>*<br>*<br>*<br>*<br>*                                              |                                                                                                                                                                                                                 | $\begin{array}{c} MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ \end{array}$                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)                                                                                                                   |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2                                                                       | MARD * * * * * * * * *                                                                              | Test 24<br>Happy<br><i>RMSE</i><br>0.22<br>0.30<br>0.62<br>0.45<br>0.44<br>0.40<br>0.43                                                                      | <i>MAE</i><br>0.02<br>0.03<br>0.06<br>0.05<br>0.05<br>0.04<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ion Reco<br><i>MARD</i><br>* 82.50% 92.38% * * * 60.64%                                                                                                                                                                     | gnition -<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.65<br>0.38                                                 | RTOF           MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04                                                                                                                                                                                                                                                                                               | R [GSR+<br><i>MARD</i><br>86.46%<br>79.64%<br>73.33%<br>*<br>*<br>44.59%                                                                                                                                      | EEG] - φ<br>Angry<br><i>RMSE</i><br>0.49<br>0.31<br>0.31<br>0.73<br>0.75<br>0.31<br>0.22                                                                                                                                       | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ \end{array}$                                                                                                                                                                            | = sigmoid<br>S<br>MARD<br>87.95%<br>*<br>37.28%<br>*<br>*<br>*<br>*                                               | <pre> /, opt='sg urprised RMSE 0.17 0.21 0.19 0.30 0.41 0.33 0.35 </pre>                                                                                                                                                                                 | $\begin{array}{c} \textbf{gd', } N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \end{array}$                                                                                          | = 44 × 2,<br><u>MARD</u><br>*<br>*<br>*<br>*<br>*<br>*<br>*                                         | $N_o = 5$ <b>Scared</b> <i>RMSE</i> 0.39 0.47 0.44 0.46 0.48 0.47 0.42                                                                                                                                          | $\begin{array}{c} MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ \end{array}$                                                                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)                                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1                                                             | MARD * * * * * * * * * * * *                                                                        | Test         24           Happy         RMSE           0.22         0.30           0.62         0.45           0.44         0.40           0.43         0.29 | <i>MAE</i><br>0.02<br>0.03<br>0.06<br>0.05<br>0.05<br>0.04<br>0.05<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ion Reco<br><i>MARD</i><br>* 82.50% 92.38% * * * 60.64% 82.84%                                                                                                                                                              | gnition -<br>Sad<br>RMSE<br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.65<br>0.38<br>0.32                                                | MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.04                                                                                                                                                                                                                                                                                               | R [GSR+<br><i>MARD</i><br>86.46%<br>79.64%<br>73.33%<br>*<br>*<br>44.59%<br>*                                                                                                                                 | EEG] - φ<br>Angry<br><i>RMSE</i><br>0.49<br>0.31<br>0.31<br>0.73<br>0.75<br>0.31<br>0.22<br>0.39                                                                                                                               | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ \end{array}$                                                                                                                                                            | = sigmoid<br>S<br>MARD<br>87.95%<br>*<br>37.28%<br>*<br>*<br>*<br>*<br>*                                          | <pre> /, opt='sg urprised RMSE 0.17 0.21 0.19 0.30 0.41 0.33 0.35 0.21 </pre>                                                                                                                                                                            | $\begin{array}{c} \textbf{gd', } N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.03 \end{array}$                                                                                  | = 44 × 2,<br><u>MARD</u><br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*           | $N_{o} = 5$ <b>Scared</b> <i>RMSE</i> 0.39 0.47 0.44 0.46 0.48 0.47 0.42 0.84                                                                                                                                   | $\begin{array}{c} MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.10 \end{array}$                                                            | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2                                                   | MARD * * * * * * * * * * * * *                                                                      | Test 24<br>Happy<br>RMSE<br>0.22<br>0.30<br>0.62<br>0.45<br>0.44<br>0.40<br>0.43<br>0.29<br>0.29                                                             | <i>MAE</i><br>0.02<br>0.03<br>0.06<br>0.05<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ion Reco<br><u>MARD</u><br>*<br>82.50%<br>92.38%<br>*<br>*<br>*<br>60.64%<br>82.84%<br>*                                                                                                                                    | gnition -<br>Sad<br>RMSE<br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.65<br>0.38<br>0.32<br>0.42                                        | RTOF           MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.04                                                                                                                                                                                                                                                                                | R [GSR+<br><i>MARD</i><br>86.46%<br>79.64%<br>73.33%<br>*<br>*<br>*<br>44.59%<br>*<br>*                                                                                                                       | EEG] - φ<br>Angry<br><i>RMSE</i><br>0.49<br>0.31<br>0.31<br>0.73<br>0.75<br>0.31<br>0.22<br>0.39<br>0.40                                                                                                                       | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \end{array}$                                                                                                                                                       | = sigmoid<br>S<br>MARD<br>87.95%<br>*<br>37.28%<br>*<br>*<br>*<br>*<br>*<br>*                                     | <pre> /, opt='sg urprised RMSE 0.17 0.21 0.19 0.30 0.41 0.33 0.35 0.21 0.16 </pre>                                                                                                                                                                       | $\begin{array}{c} \textbf{gd', } N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \end{array}$                                                                          | = 44 × 2,<br><u>MARD</u><br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*           | $N_{o} = 5$ <b>Scared</b> <i>RMSE</i> 0.39 0.47 0.44 0.46 0.48 0.47 0.42 0.84 0.43                                                                                                                              | $\begin{array}{c} MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.10 \\ 0.06 \end{array}$                                                    | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)                                                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1                               | MARD * * * * * * * * * * * * * *                                                                    | Test 24<br>Happy<br>RMSE<br>0.22<br>0.30<br>0.62<br>0.45<br>0.45<br>0.44<br>0.40<br>0.43<br>0.29<br>0.29<br>0.29<br>0.31                                     | <i>MAE</i><br>0.02<br>0.03<br>0.06<br>0.05<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \textbf{ion Reco}\\ \hline MARD\\ *\\ 82.50\%\\ 92.38\%\\ *\\ *\\ *\\ 60.64\%\\ 82.84\%\\ *\\ 74.95\% \end{array}$                                                                                        | gnition -<br>Sad<br>RMSE<br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.65<br>0.38<br>0.32<br>0.42<br>2.55                                | RTOI           MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.04           0.05                                                                                                                                                                                                                                                                 | R [GSR+<br><i>MARD</i><br>86.46%<br>79.64%<br>73.33%<br>*<br>*<br>44.59%<br>*<br>65.22%                                                                                                                       | EEG] - φ<br>Angry<br><i>RMSE</i><br>0.49<br>0.31<br>0.31<br>0.73<br>0.75<br>0.31<br>0.22<br>0.39<br>0.40<br>0.86                                                                                                               | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ \end{array}$                                                                                                                                            | = sigmoid<br>S<br>MARD<br>87.95%<br>*<br>37.28%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>86.30%                      | <pre> /, opt='sg urprised RMSE 0.17 0.21 0.19 0.30 0.41 0.33 0.35 0.21 0.16 0.18 </pre>                                                                                                                                                                  | $\begin{array}{c} \textbf{gd', } N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \end{array}$                                          | = 44 × 2,<br><u>MARD</u><br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*           |                                                                                                                                                                                                                 | $\begin{array}{c} MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.10 \\ 0.06 \\ 0.02 \end{array}$                                                    | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)                                                |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1<br>DS:CR3                     | MARD * * * * * * * * * * * * * * * * *                                                              | Test 24<br>Happy<br>RMSE<br>0.22<br>0.30<br>0.62<br>0.45<br>0.44<br>0.40<br>0.43<br>0.29<br>0.29<br>0.29<br>0.31<br>0.13                                     | <i>MAE</i><br>0.02<br>0.03<br>0.06<br>0.05<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.03<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \textbf{ion Reco}\\ \hline MARD\\ *\\ 82.50\%\\ 92.38\%\\ *\\ *\\ *\\ 60.64\%\\ 82.84\%\\ *\\ 74.95\%\\ 52.54\% \end{array}$                                                                              | gnition -<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.65<br>0.38<br>0.32<br>0.42<br>2.55<br>0.55                 | RTOI           MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.04           0.05                                                                                                                                                                                                                                                                 | R [GSR+<br><i>MARD</i><br>86.46%<br>79.64%<br>73.33%<br>*<br>*<br>44.59%<br>*<br>65.22%<br>*                                                                                                                  | $\begin{array}{c} \textbf{EEG]} - \varphi \\ \hline \textbf{Angry} \\ \hline \textbf{RMSE} \\ \hline 0.49 \\ 0.31 \\ 0.31 \\ 0.73 \\ 0.75 \\ 0.31 \\ 0.22 \\ 0.39 \\ 0.40 \\ 0.86 \\ 0.16 \end{array}$                         | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ \end{array}$                                                                                                                                    | = sigmoid<br>S<br>MARD<br>87.95%<br>*<br>37.28%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>86.30%<br>*                 | <pre> /, opt='sg urprised RMSE 0.17 0.21 0.19 0.30 0.41 0.33 0.35 0.21 0.16 0.18 0.09 </pre>                                                                                                                                                             | $\begin{array}{c} \textbf{gd', } N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \end{array}$                                                  | = 44 × 2,<br><u>MARD</u><br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*           |                                                                                                                                                                                                                 | $\begin{array}{c} MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.10 \\ 0.06 \\ 0.02 \\ 0.06 \\ \end{array}$                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX                     | MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                | Test 24<br>Happy<br><i>RMSE</i><br>0.22<br>0.30<br>0.62<br>0.45<br>0.44<br>0.40<br>0.43<br>0.29<br>0.29<br>0.29<br>0.31<br>0.13<br>0.69                      | <i>MAE</i><br>0.02<br>0.03<br>0.06<br>0.05<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.03<br>0.04<br>0.03<br>0.04<br>0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} \textbf{MARD} \\ \hline \\ & \textbf{MARD} \\ \hline \\ & \textbf{82.50\%} \\ 92.38\% \\ & \textbf{*} \\ & \textbf{*} \\ 60.64\% \\ 82.84\% \\ & \textbf{*} \\ 74.95\% \\ 52.54\% \\ 21.23\% \end{array}$ | gnition -<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.65<br>0.38<br>0.32<br>0.42<br>2.55<br>0.55<br>0.07         | RTOI           MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.04           0.05           0.06           0.04           0.05           0.04           0.05           0.04                                                                                                                                                                       | $\begin{array}{c} \textbf{R} \ \textbf{[GSR+} \\ \hline MARD \\ \hline 86.46\% \\ 79.64\% \\ 73.33\% \\ * \\ * \\ 44.59\% \\ * \\ * \\ 65.22\% \\ * \\ 51.35\% \end{array}$                                   | $\begin{array}{c} \textbf{EEG]} - \varphi \\ \hline \textbf{Angry} \\ \hline \textbf{RMSE} \\ \hline 0.49 \\ 0.31 \\ 0.31 \\ 0.73 \\ 0.75 \\ 0.31 \\ 0.75 \\ 0.31 \\ 0.22 \\ 0.39 \\ 0.40 \\ 0.86 \\ 0.16 \\ 0.34 \end{array}$ | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.10 \\ \end{array}$                                                                                                                            | = sigmoid<br>S<br>MARD<br>87.95%<br>*<br>37.28%<br>*<br>*<br>*<br>*<br>*<br>86.30%<br>*<br>366.15%                |                                                                                                                                                                                                                                                          | $\begin{array}{c c} \textbf{gd', } N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.02 \end{array}$                                | = 44 × 2,<br><u>MARD</u><br>*<br>*<br>*<br>*<br>*<br>65.74%<br>66.99%<br>24.24%<br>44.83%<br>24.71% |                                                                                                                                                                                                                 | $\begin{array}{c} MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.10 \\ 0.06 \\ 0.02 \\ 0.06 \\ 0.02 \\ \end{array}$                                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3 | MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | Test 24<br>Happy<br>RMSE<br>0.22<br>0.30<br>0.62<br>0.45<br>0.44<br>0.40<br>0.43<br>0.29<br>0.29<br>0.31<br>0.13<br>0.69<br>0.27                             | $\begin{array}{c} \textbf{AE} \\ \hline \textbf{MAE} \\ \hline \textbf{0.02} \\ 0.03 \\ 0.06 \\ 0.05 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.04 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.19 \\ 0.02 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \textbf{ion Reco}\\ \hline \\ MARD\\ *\\ 82.50\%\\ 92.38\%\\ *\\ *\\ *\\ 60.64\%\\ 82.84\%\\ *\\ 74.95\%\\ 52.54\%\\ 21.23\%\\ 28.98\%\\ \end{array}$                                                     | gnition -<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.65<br>0.38<br>0.32<br>0.42<br>2.55<br>0.55<br>0.07<br>0.38 | RTOR           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.05           0.04           0.05           0.06           0.04           0.05           0.04           0.05           0.06           0.07           0.08           0.09           0.06           0.04           0.06           0.05           0.06           0.15           0.02           0.03 | $\begin{array}{c} \textbf{R} \ \textbf{[GSR+} \\ \hline \textbf{MARD} \\ \hline \textbf{86.46\%} \\ 79.64\% \\ 73.33\% \\ * \\ * \\ * \\ 44.59\% \\ * \\ * \\ 65.22\% \\ * \\ 51.35\% \\ 53.37\% \end{array}$ | $\begin{array}{c} \textbf{EEG]} - \varphi \\ \textbf{Angry} \\ \hline \textbf{RMSE} \\ \hline 0.49 \\ 0.31 \\ 0.31 \\ 0.73 \\ 0.75 \\ 0.31 \\ 0.22 \\ 0.39 \\ 0.40 \\ 0.86 \\ 0.16 \\ 0.34 \\ 1.01 \end{array}$                | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.10 \\ 0.10 \\ 0.10 \\ \hline \end{array}$                                                                                                             | = sigmoid<br>S<br>MARD<br>87.95%<br>*<br>37.28%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>86.30%<br>*<br>366.15%<br>* | $\begin{array}{c} l,  {\rm opt}{='sg}\\ {\rm urprised}\\ \overline{RMSE}\\ \hline 0.17\\ 0.21\\ 0.19\\ 0.30\\ 0.41\\ 0.33\\ 0.35\\ 0.21\\ 0.16\\ 0.18\\ 0.09\\ 0.09\\ 0.39\\ \end{array}$                                                                | $\begin{array}{c} \textbf{gd', } N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.04 \\ \end{array}$                               | $= 44 \times 2,$ $MARD$ * * * * * 65.74% 66.99% 24.24% 44.83% 24.71% 72.59%                         |                                                                                                                                                                                                                 | $\begin{array}{c} MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.10 \\ 0.06 \\ 0.02 \\ 0.06 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ \end{array}$ | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * 69.27% *                                                                 | Test 24<br>Happy<br><i>RMSE</i><br>0.22<br>0.30<br>0.62<br>0.45<br>0.44<br>0.40<br>0.43<br>0.29<br>0.29<br>0.31<br>0.13<br>0.69<br>0.27<br><sup>№</sup>      | E - Emot<br>MAE<br>0.02<br>0.03<br>0.06<br>0.05<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.02<br>0.03<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.02<br>0.03<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.05<br>0.04<br>0.05<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.05<br>0.05<br>0.04<br>0.05<br>0.05<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.05<br>0.04<br>0.05<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0. | ion Reco<br><i>MARD</i><br>* 82.50% 92.38% * * * 60.64% 82.84% * 74.95% 52.54% 21.23% 28.98%                                                                                                                                | gnition -<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.65<br>0.38<br>0.32<br>0.42<br>2.55<br>0.55<br>0.07<br>0.38 | H RTOR         MAE         0.04         0.07         0.11         0.11         0.09         0.06         0.04         0.06         0.04         0.05         0.04         0.05         0.04         0.05         0.06         0.07         0.08         0.09         0.03                                                                                                                                                 | $\begin{array}{c} \textbf{R} \ \textbf{[GSR+} \\ \hline MARD \\ \hline 86.46\% \\ 79.64\% \\ 73.33\% \\ * \\ * \\ * \\ 44.59\% \\ * \\ * \\ 65.22\% \\ * \\ 51.35\% \\ 53.37\% \end{array}$                   | EEG] - <i>φ</i><br>Angry<br><i>RMSE</i><br>0.49<br>0.31<br>0.31<br>0.73<br>0.75<br>0.31<br>0.22<br>0.39<br>0.40<br>0.86<br>0.16<br>0.34<br>1.01<br><b>\$C</b><br><b>```</b><br><b>```</b>                                      | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.10 \\ 0.10 \\ \hline $ | = sigmoid<br>S<br>MARD<br>87.95%<br>*<br>37.28%<br>*<br>*<br>*<br>*<br>*<br>*<br>86.30%<br>*<br>366.15%           | ℓ, opt='sg         urprised         RMSE         0.17         0.21         0.19         0.30         0.41         0.33         0.21         0.19         0.30         0.41         0.35         0.21         0.16         0.18         0.09         0.39 | $\begin{array}{c} \textbf{gd', } N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.04 \\ \hline 0000 \\ 0.04 \\ \hline \end{array}$ | $= 44 \times 2,$ <i>MARD</i> * * * * 65.74% 66.99% 24.24% 44.83% 24.71% 72.59%                      | $  \frac{N_o = 5}{\text{Scared}} \\ \hline \textbf{RMSE} \\ \hline 0.39 \\ 0.47 \\ 0.44 \\ 0.46 \\ 0.48 \\ 0.47 \\ 0.42 \\ 0.84 \\ 0.43 \\ 0.20 \\ 0.24 \\ 0.07 \\ 0.21 \\ \hline \textbf{STio} \\ \textbf{H} $ | <i>MAE</i><br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                                    | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |

TABLE 9.14. Emotion recognition results tests 23 and 24. ANN with  $6 \times 10^3$  train epochs and input data with feature extraction.

|                                                                                                                                           |                                            | Test 25                                                                                                                                                                | - Emoti                                                                                                                                                                                                                                                                                                                                                      | on Recog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | gnition +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RTOR                                                                                                                                                                                                                                                                                                                           | [GSR+E                                                                                                                                                          | $\mathbf{EG}$ ] - $\varphi_j$                                                                                                                                                                                           | $(v_j(n)) =$                                                                                                                                                                                                                                                                      | = sigmoid,                                                                                                                                                                                                                                                             | opt='ada                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | am', $N_h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $=44 \times 2,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $N_o = 5$                                                                                                                                                                                                     |                                                                                                                                                             |                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{Flight}$                                                                                                                         |                                            | Нарру                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                 | Angry                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                   | S                                                                                                                                                                                                                                                                      | urprised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Scared                                                                                                                                                                                                        |                                                                                                                                                             | Match                                                                                                                                                                                                                                           |
| Dataset                                                                                                                                   | MARD                                       | RMSE                                                                                                                                                                   | MAE                                                                                                                                                                                                                                                                                                                                                          | MARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAE                                                                                                                                                                                                                                                                                                                            | MARD                                                                                                                                                            | RMSE                                                                                                                                                                                                                    | MAE                                                                                                                                                                                                                                                                               | MARD                                                                                                                                                                                                                                                                   | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RMSE                                                                                                                                                                                                          | MAE                                                                                                                                                         | Accuracy (%)                                                                                                                                                                                                                                    |
| DS:RC1                                                                                                                                    | 98.41%                                     | 0.16                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.06                                                                                                                                                                                                                                                                                                                           | 93.84%                                                                                                                                                          | 0.53                                                                                                                                                                                                                    | 0.05                                                                                                                                                                                                                                                                              | 45.62%                                                                                                                                                                                                                                                                 | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.21                                                                                                                                                                                                          | 0.02                                                                                                                                                        | <b>53.73</b> ( <b>36</b> /67)                                                                                                                                                                                                                   |
| DS:RC2                                                                                                                                    | *                                          | 0.17                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                         | 79.98%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.08                                                                                                                                                                                                                                                                                                                           | 66.82%                                                                                                                                                          | 0.29                                                                                                                                                                                                                    | 0.03                                                                                                                                                                                                                                                                              | 49.97%                                                                                                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.24                                                                                                                                                                                                          | 0.03                                                                                                                                                        | <b>82.05</b> (64/78)                                                                                                                                                                                                                            |
| DS:RC3                                                                                                                                    | *                                          | 0.79                                                                                                                                                                   | 0.08                                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.13                                                                                                                                                                                                                                                                                                                           | 84.15%                                                                                                                                                          | 0.40                                                                                                                                                                                                                    | 0.04                                                                                                                                                                                                                                                                              | 28.38%                                                                                                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.28                                                                                                                                                                                                          | 0.03                                                                                                                                                        | <b>57.53</b> ( <b>42</b> /73)                                                                                                                                                                                                                   |
| DS:GC1                                                                                                                                    | *                                          | 0.17                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.08                                                                                                                                                                                                                                                                                                                           | *                                                                                                                                                               | 0.57                                                                                                                                                                                                                    | 0.07                                                                                                                                                                                                                                                                              | 40.48%                                                                                                                                                                                                                                                                 | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.21                                                                                                                                                                                                          | 0.02                                                                                                                                                        | <b>22.67</b> (17/75)                                                                                                                                                                                                                            |
| DS:GC3                                                                                                                                    | *                                          | 0.21                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.08                                                                                                                                                                                                                                                                                                                           | *                                                                                                                                                               | 0.68                                                                                                                                                                                                                    | 0.08                                                                                                                                                                                                                                                                              | *                                                                                                                                                                                                                                                                      | 0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.25                                                                                                                                                                                                          | 0.03                                                                                                                                                        | <b>100.00</b> ( <b>78</b> /78)                                                                                                                                                                                                                  |
| DS:LS1                                                                                                                                    | *                                          | 0.14                                                                                                                                                                   | 0.01                                                                                                                                                                                                                                                                                                                                                         | 83.83%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                           | *                                                                                                                                                               | 0.34                                                                                                                                                                                                                    | 0.03                                                                                                                                                                                                                                                                              | 37.43%                                                                                                                                                                                                                                                                 | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.18                                                                                                                                                                                                          | 0.02                                                                                                                                                        | <b>22.55</b> ( <b>23</b> /102)                                                                                                                                                                                                                  |
| DS:LS2                                                                                                                                    | *                                          | 0.18                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                         | 38.04%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.03                                                                                                                                                                                                                                                                                                                           | 38.28%                                                                                                                                                          | 0.24                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                                                                                              | *                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.17                                                                                                                                                                                                          | 0.02                                                                                                                                                        | <b>68.00</b> ( <b>51</b> /75)                                                                                                                                                                                                                   |
| DS:VC1                                                                                                                                    | *                                          | 0.12                                                                                                                                                                   | 0.01                                                                                                                                                                                                                                                                                                                                                         | 67.57%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                           | 256.68%                                                                                                                                                         | 0.33                                                                                                                                                                                                                    | 0.04                                                                                                                                                                                                                                                                              | 41.18%                                                                                                                                                                                                                                                                 | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 85.41%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.03                                                                                                                                                                                                          | 0.13                                                                                                                                                        | <b>16.67</b> (8/48)                                                                                                                                                                                                                             |
| DS:VC2                                                                                                                                    | *                                          | 0.12                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.06                                                                                                                                                                                                                                                                                                                           | *                                                                                                                                                               | 0.33                                                                                                                                                                                                                    | 0.05                                                                                                                                                                                                                                                                              | 41.52%                                                                                                                                                                                                                                                                 | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 70.05%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.58                                                                                                                                                                                                          | 0.08                                                                                                                                                        | 28.95 (11/38)                                                                                                                                                                                                                                   |
| DS:CR1                                                                                                                                    | *                                          | 0.13                                                                                                                                                                   | 0.01                                                                                                                                                                                                                                                                                                                                                         | 75.01%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.26                                                                                                                                                                                                                                                                                                                           | 65.95%                                                                                                                                                          | 0.92                                                                                                                                                                                                                    | 0.09                                                                                                                                                                                                                                                                              | 37.43%                                                                                                                                                                                                                                                                 | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 62.48%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.40                                                                                                                                                                                                          | 0.04                                                                                                                                                        | <b>93.15</b> ( <b>68</b> /73)                                                                                                                                                                                                                   |
| DS:CR3                                                                                                                                    | *                                          | 0.09                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                         | 43.56%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.12                                                                                                                                                                                                                                                                                                                           | *                                                                                                                                                               | 0.13                                                                                                                                                                                                                    | 0.03                                                                                                                                                                                                                                                                              | 50.69%                                                                                                                                                                                                                                                                 | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 63.11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.29                                                                                                                                                                                                          | 0.08                                                                                                                                                        | 77.78 (7/9)                                                                                                                                                                                                                                     |
| DS:CLX                                                                                                                                    | 88.78%                                     | 0.77                                                                                                                                                                   | 0.22                                                                                                                                                                                                                                                                                                                                                         | 42.48%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                           | 60.72%                                                                                                                                                          | 0.39                                                                                                                                                                                                                    | 0.11                                                                                                                                                                                                                                                                              | 88.54%                                                                                                                                                                                                                                                                 | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66.68%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.16                                                                                                                                                                                                          | 0.05                                                                                                                                                        | <b>0.00</b> ( <b>0</b> /10)                                                                                                                                                                                                                     |
| DS:CL3                                                                                                                                    | 71.68%                                     | 0.40                                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                                         | 35.00%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.05                                                                                                                                                                                                                                                                                                                           | 66.75%                                                                                                                                                          | 1.19                                                                                                                                                                                                                    | 0.12                                                                                                                                                                                                                                                                              | *                                                                                                                                                                                                                                                                      | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40.19%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.22                                                                                                                                                                                                          | 0.02                                                                                                                                                        | $15.12 \ (13/86)$                                                                                                                                                                                                                               |
|                                                                                                                                           |                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                 |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                               |                                                                                                                                                             | 00                                                                                                                                                                                                                                              |
|                                                                                                                                           |                                            | 53                                                                                                                                                                     | 35                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 35                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                 | 8                                                                                                                                                                                                                       | 33                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                        | 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 53                                                                                                                                                                                                            | 33                                                                                                                                                          | 2.(                                                                                                                                                                                                                                             |
|                                                                                                                                           |                                            | 0.0                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                 | 0.0                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                           | 0.0                                                                                                                                                         | <br>₩                                                                                                                                                                                                                                           |
|                                                                                                                                           |                                            | +<br>2                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4<br>++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ×<br>×                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                 | +6                                                                                                                                                                                                                      | -+9<br>9                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                        | +6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>5</b>                                                                                                                                                                                                      | <b>4</b><br>++                                                                                                                                              | 60                                                                                                                                                                                                                                              |
|                                                                                                                                           |                                            | 0.2                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                 | 0.4                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .3                                                                                                                                                                                                            | 0.0                                                                                                                                                         | 49.                                                                                                                                                                                                                                             |
|                                                                                                                                           |                                            | Test 2                                                                                                                                                                 | 6 - Emo                                                                                                                                                                                                                                                                                                                                                      | tion Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ognition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | + BTO                                                                                                                                                                                                                                                                                                                          | B [GSB-                                                                                                                                                         |                                                                                                                                                                                                                         | $\frac{1}{2}$                                                                                                                                                                                                                                                                     | ) - ReLU                                                                                                                                                                                                                                                               | ont-'sg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-14 \times 2$ N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>I</i> — 5                                                                                                                                                                                                  |                                                                                                                                                             | •                                                                                                                                                                                                                                               |
| Flight                                                                                                                                    |                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                 |                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                        | $UUU = 0 \in U$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 • /Vh —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | · 44 A Z I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $v_0 = 0$                                                                                                                                                                                                     |                                                                                                                                                             |                                                                                                                                                                                                                                                 |
| г пупь                                                                                                                                    |                                            | Happy                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 101 0                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                 | Angry                                                                                                                                                                                                                   | <i>pj(0j(10)</i> ,                                                                                                                                                                                                                                                                | $\frac{1}{S}$                                                                                                                                                                                                                                                          | urprised                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $1, \mathbf{N}_h =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 44 × 2, 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\frac{v_o = 0}{\text{Scared}}$                                                                                                                                                                               |                                                                                                                                                             | Match                                                                                                                                                                                                                                           |
| Dataset                                                                                                                                   | MARD                                       | Happy<br>RMSE                                                                                                                                                          | MAE                                                                                                                                                                                                                                                                                                                                                          | MARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sad<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAE                                                                                                                                                                                                                                                                                                                            | MARD                                                                                                                                                            | Angry<br>RMSE                                                                                                                                                                                                           | MAE                                                                                                                                                                                                                                                                               | $\frac{1}{MARD}$                                                                                                                                                                                                                                                       | urprised<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{N_o = 5}{\text{Scared}}$ $RMSE$                                                                                                                                                                        | MAE                                                                                                                                                         | Match<br>Accuracy (%)                                                                                                                                                                                                                           |
| Dataset                                                                                                                                   | MARD                                       | Happy<br>RMSE                                                                                                                                                          | MAE                                                                                                                                                                                                                                                                                                                                                          | MARD *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Sad<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAE 0.04                                                                                                                                                                                                                                                                                                                       | MARD                                                                                                                                                            | Angry<br>RMSE                                                                                                                                                                                                           | $\frac{MAE}{0.04}$                                                                                                                                                                                                                                                                | $\frac{MARD}{41.41\%}$                                                                                                                                                                                                                                                 | 0 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{MAE}{0.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MARD *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{N_o = 3}{\text{Scared}}$ $\frac{RMSE}{0.19}$                                                                                                                                                           | MAE                                                                                                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)                                                                                                                                                                                                          |
| Dataset DS:RC1 DS:RC2                                                                                                                     | MARD<br>*                                  | Happy<br><i>RMSE</i><br>0.16<br>0.17                                                                                                                                   | MAE<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                          | MARD<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sad<br>RMSE<br>0.42<br>0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAE 0.04 0.07                                                                                                                                                                                                                                                                                                                  | MARD<br>78.20%<br>70.03%                                                                                                                                        | Angry<br><i>RMSE</i><br>0.50<br>0.29                                                                                                                                                                                    | $\frac{MAE}{0.04}$                                                                                                                                                                                                                                                                | S<br>MARD<br>41.41%<br>39.32%                                                                                                                                                                                                                                          | 0.13<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{MAE}{0.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MARD * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{N_0 = 3}{\text{Scared}}$ $\frac{RMSE}{0.19}$ 0.26                                                                                                                                                      | MAE<br>0.02<br>0.03                                                                                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)                                                                                                                                                                                         |
| Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3                                                                                                     | <i>MARD</i><br>*<br>*                      | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78                                                                                                                           | MAE<br>0.02<br>0.02<br>0.07                                                                                                                                                                                                                                                                                                                                  | MARD<br>*<br>81.68%<br>91.37%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAE<br>0.04<br>0.07<br>0.11                                                                                                                                                                                                                                                                                                    | MARD<br>78.20%<br>70.03%<br>61.98%                                                                                                                              | Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28                                                                                                                                                                            | $\frac{MAE}{0.04}$ 0.03 0.03                                                                                                                                                                                                                                                      | S<br>MARD<br>41.41%<br>39.32%<br>6.68%                                                                                                                                                                                                                                 | 0.13<br>0.12<br>0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{MAE}{0.01}$ 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <i>MARD</i> * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                               | MAE<br>0.02<br>0.03<br>0.03                                                                                                                                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)                                                                                                                                                                        |
| Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1                                                                                           | MARD<br>*<br>*<br>*                        | Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24                                                                                                                          | MAE<br>0.02<br>0.02<br>0.07<br>0.03                                                                                                                                                                                                                                                                                                                          | MARD<br>*<br>81.68%<br>91.37%<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAE<br>0.04<br>0.07<br>0.11<br>0.11                                                                                                                                                                                                                                                                                            | MARD<br>78.20%<br>70.03%<br>61.98%<br>*                                                                                                                         | Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68                                                                                                                                                                           | $\frac{MAE}{0.04}$ 0.03 0.03 0.08                                                                                                                                                                                                                                                 | S<br>MARD<br>41.41%<br>39.32%<br>6.68%<br>56.95%                                                                                                                                                                                                                       | 0.13<br>0.12<br>0.12<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{MAE}{0.01}$ 0.01 0.01 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MARD * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $ \frac{N_0 = 3}{\text{Scared}} $<br>$ \frac{RMSE}{0.19} $<br>0.26<br>0.24<br>0.26                                                                                                                            | MAE<br>0.02<br>0.03<br>0.03<br>0.03                                                                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)                                                                                                                                                       |
| Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3                                                                                 | MARD * * * * * *                           | Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.23                                                                                                                  | MAE<br>0.02<br>0.02<br>0.07<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                  | <i>MARD</i><br>*<br>81.68%<br>91.37%<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAE           0.04           0.07           0.11           0.11           0.09                                                                                                                                                                                                                                                 | MARD<br>78.20%<br>70.03%<br>61.98%<br>*                                                                                                                         | Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69                                                                                                                                                            | $\frac{MAE}{0.04}$ 0.03 0.03 0.08 0.08                                                                                                                                                                                                                                            | $\begin{array}{c} \textbf{S} \\ \underline{MARD} \\ 41.41\% \\ 39.32\% \\ 6.68\% \\ 56.95\% \\ \ast \end{array}$                                                                                                                                                       | 0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $     \underline{MAE} \\     \underline{MAE} \\     0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.02     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <i>MARD * * * * * *</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \frac{N_o = 3}{\text{Scared}} $<br>$ \frac{RMSE}{0.19} $<br>0.26<br>0.24<br>0.26<br>0.27                                                                                                                    | <i>MAE</i><br>0.02<br>0.03<br>0.03<br>0.03<br>0.03                                                                                                          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)                                                                                                                                     |
| Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1                                                                       | MARD * * * * * * *                         | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17                                                                                                   | MAE<br>0.02<br>0.02<br>0.07<br>0.03<br>0.03<br>0.02                                                                                                                                                                                                                                                                                                          | <i>MARD</i><br>*<br>81.68%<br>91.37%<br>*<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAE           0.04           0.07           0.11           0.09           0.06                                                                                                                                                                                                                                                 | MARD<br>78.20%<br>70.03%<br>61.98%<br>*<br>*                                                                                                                    | Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30                                                                                                                                                    | $\frac{MAE}{0.04}$ 0.03 0.03 0.08 0.08 0.02                                                                                                                                                                                                                                       | $\begin{array}{c} \textbf{S} \\ \hline \textbf{MARD} \\ \hline 41.41\% \\ 39.32\% \\ 6.68\% \\ 56.95\% \\ * \\ 49.67\% \end{array}$                                                                                                                                    | opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $     \underline{MAE} = MAE = 0.01 \\     0.01 \\     0.01 \\     0.01 \\     0.02 \\     0.01 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <i>MARD * * * * * * * *</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $v_o = 3$<br>Scared<br>RMSE<br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23                                                                                                                                   | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02                                                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)                                                                                                                   |
| Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2                                                             | MARD * * * * * * * * * *                   | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22                                                                                           | MAE<br>0.02<br>0.02<br>0.07<br>0.03<br>0.03<br>0.03<br>0.02<br>0.03                                                                                                                                                                                                                                                                                          | <i>MARD</i><br>*<br>81.68%<br>91.37%<br>*<br>*<br>*<br>59.82%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04                                                                                                                                                                                                                   | MARD<br>78.20%<br>70.03%<br>61.98%<br>*<br>*<br>*<br>39.84%                                                                                                     | Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22                                                                                                                                            | MAE<br>0.04<br>0.03<br>0.03<br>0.08<br>0.08<br>0.08<br>0.02<br>0.02                                                                                                                                                                                                               | $\begin{array}{c} {\color{black}{\text{S}}}\\ {\color{black}{\text{MARD}}}\\ {\color{black}{41.41\%}}\\ {\color{black}{39.32\%}}\\ {\color{black}{6.68\%}}\\ {\color{black}{56.95\%}}\\ {\color{black}{*}}\\ {\color{black}{49.67\%}}\\ {\color{black}{*}}\end{array}$ | opp:///without.com         opp://without.com           ourprised         RMSE           0.13         0.12           0.12         0.12           0.06         0.15           0.07         0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} MAE \\ \hline \\ \hline \\ MAE \\ \hline \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MARD * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} \hline n_{o} = 3 \\ \hline \mathbf{Scared} \\ \hline \mathbf{R}MSE \\ \hline 0.19 \\ 0.26 \\ 0.24 \\ 0.26 \\ 0.27 \\ 0.23 \\ 0.21 \\ \end{array}$                                           | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02                                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)                                                                                                  |
| Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1                                                   | MARD * * * * * * * * * * *                 | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22<br>0.13                                                                                   | MAE           0.02           0.02           0.07           0.03           0.03           0.02           0.03           0.02                                                                                                                                                                                                                                  | MARD<br>*<br>81.68%<br>91.37%<br>*<br>*<br>*<br>*<br>59.82%<br>81.50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.04                                                                                                                                                                                                    | MARD<br>78.20%<br>70.03%<br>61.98%<br>*<br>*<br>39.84%<br>*                                                                                                     | Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.34                                                                                                                                    | $\frac{MAE}{0.04}$ 0.03 0.03 0.08 0.08 0.02 0.02 0.02 0.05                                                                                                                                                                                                                        | $\begin{array}{c} \textbf{S} \\ \hline \textbf{MARD} \\ \hline 41.41\% \\ 39.32\% \\ 6.68\% \\ 56.95\% \\ * \\ 49.67\% \\ * \\ 23.76\% \end{array}$                                                                                                                    | $\begin{array}{c} \text{opt-sgt}\\ \text{furprised}\\ \hline RMSE\\ \hline 0.13\\ 0.12\\ 0.12\\ 0.12\\ 0.06\\ 0.15\\ 0.07\\ 0.11\\ 0.04 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} \underline{MAE} \\ \hline \underline{MAE} \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MARD<br>* * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \hline \mathbf{N}_{o} = 3\\ \hline \mathbf{Scared}\\ \hline \mathbf{R}MSE\\ \hline 0.19\\ 0.26\\ 0.24\\ 0.26\\ 0.27\\ 0.23\\ 0.21\\ 1.01\\ \end{array}$                                     | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02                                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)                                                                                  |
| Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2                                         | MARD * * * * * * * * * * * *               | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22<br>0.13<br>0.14                                                                           | MAE           0.02           0.02           0.07           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03                                                                                                                         | MARD<br>*<br>81.68%<br>91.37%<br>*<br>*<br>*<br>*<br>59.82%<br>81.50%<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.04                                                                                                                                                                                                    | MARD<br>78.20%<br>70.03%<br>61.98%<br>*<br>*<br>39.84%<br>*<br>*                                                                                                | Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.34<br>0.36                                                                                                                            | $\begin{array}{r} \underline{MAE} \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \end{array}$                                                                                                                                             | $\begin{array}{c} \mathbf{S} \\ \underline{MARD} \\ 41.41\% \\ 39.32\% \\ 6.68\% \\ 56.95\% \\ * \\ 49.67\% \\ * \\ 23.76\% \\ 28.43\% \end{array}$                                                                                                                    | $\begin{array}{c} \text{opt-sg}\\ \text{furprised}\\ \hline RMSE\\ \hline 0.13\\ 0.12\\ 0.12\\ 0.12\\ 0.06\\ 0.15\\ 0.07\\ 0.11\\ 0.04\\ 0.07\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{array}{r} MAE \\ \hline \\ \hline \\ MAE \\ \hline \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>MARD * * * * * * * * * *</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} \hline \mathbf{N}_{o} = 3\\ \hline \mathbf{Scared}\\ \hline \mathbf{R}MSE\\ \hline 0.19\\ 0.26\\ 0.24\\ 0.26\\ 0.27\\ 0.23\\ 0.21\\ 1.01\\ 0.55\\ \end{array}$                              | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \end{array}$                                           | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)                                                                 |
| Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1                     | MARD * * * * * * * * * * * * * * *         | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12                                                                   | MAE           0.02           0.02           0.07           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03                                                                                           | MARD<br>*<br>81.68%<br>91.37%<br>*<br>*<br>*<br>*<br>59.82%<br>81.50%<br>*<br>75.32%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.05           0.06           0.04           0.05                                                                                                                                                       | MARD<br>78.20%<br>70.03%<br>61.98%<br>*<br>*<br>39.84%<br>*<br>*<br>66.50%                                                                                      | Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.34<br>0.36<br>0.92                                                                                                                    | MAE           0.04           0.03           0.08           0.02           0.02           0.05           0.06                                                                                                                                                                      | $\begin{array}{c} \mathbf{S} \\ \underline{MARD} \\ 41.41\% \\ 39.32\% \\ 6.68\% \\ 56.95\% \\ * \\ 49.67\% \\ * \\ 23.76\% \\ 28.43\% \\ 37.87\% \end{array}$                                                                                                         | $\begin{array}{c} \text{opt-sgs}\\ \text{furprised}\\ \hline RMSE\\ \hline 0.13\\ 0.12\\ 0.12\\ 0.12\\ 0.06\\ 0.15\\ 0.07\\ 0.11\\ 0.04\\ 0.07\\ 0.12\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{r} MAE \\ \hline \\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *           *           *           *           *           *           *           *           *           *           *           *           *           *                                  | $\begin{array}{l} \hline \textbf{N}_{o} = 3\\ \hline \textbf{Scared}\\ \hline \textbf{RMSE}\\ \hline 0.19\\ 0.26\\ 0.24\\ 0.26\\ 0.27\\ 0.23\\ 0.21\\ 1.01\\ 0.55\\ 0.40\\ \end{array}$                       | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \end{array}$                                   | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)                                                |
| Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1<br>DS:CR3           | MARD * * * * * * * * * * * * * * * * * * * | $\begin{array}{c} \textbf{Happy}\\ RMSE \\ \hline 0.16 \\ 0.17 \\ 0.78 \\ 0.24 \\ 0.23 \\ 0.17 \\ 0.22 \\ 0.13 \\ 0.14 \\ 0.12 \\ 0.05 \end{array}$                    | MAE           0.02           0.07           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02 | MARD<br>*<br>81.68%<br>91.37%<br>*<br>*<br>*<br>59.82%<br>81.50%<br>*<br>75.32%<br>52.50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.04           0.05           0.06           0.04                                                                                                                                                       | MARD           78.20%           70.03%           61.98%           *           39.84%           *           66.50%           *                                   | Angry           RMSE           0.50           0.29           0.28           0.68           0.69           0.30           0.22           0.34           0.36           0.92           0.17                               | $\begin{array}{r} \underline{MAE} \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \end{array}$                                                                                                                             | $\begin{array}{c} \mathbf{S} \\ \underline{MARD} \\ 41.41\% \\ 39.32\% \\ 6.68\% \\ 56.95\% \\ * \\ 49.67\% \\ * \\ 23.76\% \\ 28.43\% \\ 37.87\% \\ 12.21\% \end{array}$                                                                                              | $\begin{array}{c} \text{opt-sg}\\ \text{furprised}\\ \hline RMSE\\ \hline 0.13\\ 0.12\\ 0.12\\ 0.06\\ 0.15\\ 0.07\\ 0.11\\ 0.04\\ 0.07\\ 0.12\\ 0.01\\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{r} MAE \\ \hline \\ MAE \\ \hline \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *           *           *           *           *           *           *           *           *           *           *           *           *           *                                  |                                                                                                                                                                                                               | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.08 \end{array}$                           | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)                                 |
| Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX           | MARD * * * * * * * * * * * * * * * * * * * | $\begin{array}{c} \textbf{Happy}\\ RMSE \\ \hline 0.16 \\ 0.17 \\ 0.78 \\ 0.24 \\ 0.23 \\ 0.17 \\ 0.22 \\ 0.13 \\ 0.14 \\ 0.12 \\ 0.05 \\ 0.76 \end{array}$            | MAE           0.02           0.07           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.21                | MARD           *           81.68%           91.37%           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      * <th>Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06</th> <th>MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.04           0.05           0.06           0.04           0.04           0.05           0.06           0.04           0.05           0.06           0.06           0.06           0.06           0.02</th> <th>MARD           78.20%           70.03%           61.98%           *           39.84%           *           66.50%           *           56.04%</th> <th>Angry           RMSE           0.50           0.29           0.28           0.68           0.69           0.30           0.22           0.34           0.36           0.92           0.17           0.36</th> <th><math display="block">\begin{array}{r} \underline{MAE} \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \end{array}</math></th> <th><math display="block">\begin{array}{c} \textbf{S} \\ \hline \textbf{MARD} \\ \hline 41.41\% \\ 39.32\% \\ 6.68\% \\ 56.95\% \\ * \\ 49.67\% \\ * \\ 23.76\% \\ 28.43\% \\ 37.87\% \\ 12.21\% \\ 123.90\% \end{array}</math></th> <th><math display="block">\begin{array}{c} \text{opp} = \text{igs}\\ \text{furprised}\\ \overline{RMSE}\\ \hline 0.13\\ 0.12\\ 0.12\\ 0.06\\ 0.15\\ 0.07\\ 0.11\\ 0.06\\ 0.07\\ 0.11\\ 0.04\\ 0.07\\ 0.12\\ 0.01\\ 0.04 \end{array}</math></th> <th><math display="block">\begin{array}{r} \underline{MAE} \\ \hline \underline{MAE} \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ \end{array}</math></th> <th>MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *           *           *           *           *           *           *           *           *      *         *      *         *      *         *      *         *      *</th> <th><math display="block">\begin{array}{l} \hline \textbf{N}_{o} = 3\\ \hline \textbf{Scared}\\ \hline \textbf{RMSE}\\ \hline 0.19\\ 0.26\\ 0.24\\ 0.26\\ 0.27\\ 0.23\\ 0.21\\ 1.01\\ 0.55\\ 0.40\\ 0.30\\ 0.15\\ \end{array}</math></th> <th><math display="block">\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.08 \\ 0.04 \end{array}</math></th> <th>Match<br/>Accuracy (%)<br/>53.73 (36/67)<br/>82.05 (64/78)<br/>57.53 (42/73)<br/>22.67 (17/75)<br/>100.00 (78/78)<br/>22.55 (23/102)<br/>68.00 (51/75)<br/>16.67 (8/48)<br/>28.95 (11/38)<br/>93.15 (68/73)<br/>77.78 (7/9)<br/>0.00 (0/10)</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.04           0.05           0.06           0.04           0.04           0.05           0.06           0.04           0.05           0.06           0.06           0.06           0.06           0.02 | MARD           78.20%           70.03%           61.98%           *           39.84%           *           66.50%           *           56.04%                  | Angry           RMSE           0.50           0.29           0.28           0.68           0.69           0.30           0.22           0.34           0.36           0.92           0.17           0.36                | $\begin{array}{r} \underline{MAE} \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \end{array}$                                                                                                                     | $\begin{array}{c} \textbf{S} \\ \hline \textbf{MARD} \\ \hline 41.41\% \\ 39.32\% \\ 6.68\% \\ 56.95\% \\ * \\ 49.67\% \\ * \\ 23.76\% \\ 28.43\% \\ 37.87\% \\ 12.21\% \\ 123.90\% \end{array}$                                                                       | $\begin{array}{c} \text{opp} = \text{igs}\\ \text{furprised}\\ \overline{RMSE}\\ \hline 0.13\\ 0.12\\ 0.12\\ 0.06\\ 0.15\\ 0.07\\ 0.11\\ 0.06\\ 0.07\\ 0.11\\ 0.04\\ 0.07\\ 0.12\\ 0.01\\ 0.04 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{r} \underline{MAE} \\ \hline \underline{MAE} \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *           *           *           *           *           *           *           *           *      *         *      *         *      *         *      *         *      *                   | $\begin{array}{l} \hline \textbf{N}_{o} = 3\\ \hline \textbf{Scared}\\ \hline \textbf{RMSE}\\ \hline 0.19\\ 0.26\\ 0.24\\ 0.26\\ 0.27\\ 0.23\\ 0.21\\ 1.01\\ 0.55\\ 0.40\\ 0.30\\ 0.15\\ \end{array}$         | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.08 \\ 0.04 \end{array}$                   | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)                  |
| Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3 | MARD * * * * * * * * * * * * * * * * * * * | $\begin{array}{c} \textbf{Happy}\\ RMSE \\ \hline 0.16 \\ 0.17 \\ 0.78 \\ 0.24 \\ 0.23 \\ 0.17 \\ 0.22 \\ 0.13 \\ 0.14 \\ 0.12 \\ 0.05 \\ 0.76 \\ 0.36 \end{array}$    | MAE           0.02           0.02           0.07           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.21           0.03                                                                                           | MARD           *           81.68%           91.37%           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      * <th>Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06           0.39</th> <th>MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.05           0.04           0.05           0.06           0.04           0.05           0.04           0.05           0.06           0.15           0.02           0.03</th> <th>MARD           78.20%           70.03%           61.98%           *           39.84%           *           66.50%           56.04%           60.14%</th> <th><math display="block">\begin{array}{c} \textbf{Angry} \\ \textbf{RMSE} \\ \hline 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \\ 0.30 \\ 0.22 \\ 0.34 \\ 0.36 \\ 0.92 \\ 0.17 \\ 0.36 \\ 1.10 \end{array}</math></th> <th><math display="block">\begin{array}{r} \underline{MAE} \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \end{array}</math></th> <th><math display="block">\begin{array}{c} \textbf{S} \\ \hline \textbf{MARD} \\ \hline 41.41\% \\ 39.32\% \\ 6.68\% \\ 56.95\% \\ * \\ 49.67\% \\ * \\ 23.76\% \\ 28.43\% \\ 37.87\% \\ 12.21\% \\ 123.90\% \\ 202.72\% \end{array}</math></th> <th><math display="block">\begin{array}{c} 0.000 \\ \hline 0.0000 \\ \hline 0.000</math></th> <th><math display="block">\begin{array}{r} \underline{MAE} \\ \hline \underline{MAE} \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}</math></th> <th>MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *           *           *      *      *      *      *      *      *      *      *      *      *      *      *      *      *      *      *      *     &lt;</th> <th><math display="block">\begin{array}{c} \hline \mathbf{v}_{o} = 3\\ \hline \mathbf{Scared}\\ \hline \mathbf{RMSE}\\ \hline 0.19\\ 0.26\\ 0.24\\ 0.26\\ 0.27\\ 0.23\\ 0.21\\ 1.01\\ 0.55\\ 0.40\\ 0.30\\ 0.15\\ 0.18\\ \end{array}</math></th> <th><math display="block">\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.08 \\ 0.04 \\ 0.01 \end{array}</math></th> <th>Match<br/>Accuracy (%)<br/>53.73 (36/67)<br/>82.05 (64/78)<br/>57.53 (42/73)<br/>22.67 (17/75)<br/>100.00 (78/78)<br/>22.55 (23/102)<br/>68.00 (51/75)<br/>16.67 (8/48)<br/>28.95 (11/38)<br/>93.15 (68/73)<br/>77.78 (7/9)<br/>0.00 (0/10)<br/>15.12 (13/86)</th> | Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06           0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.05           0.04           0.05           0.06           0.04           0.05           0.04           0.05           0.06           0.15           0.02           0.03                               | MARD           78.20%           70.03%           61.98%           *           39.84%           *           66.50%           56.04%           60.14%             | $\begin{array}{c} \textbf{Angry} \\ \textbf{RMSE} \\ \hline 0.50 \\ 0.29 \\ 0.28 \\ 0.68 \\ 0.69 \\ 0.30 \\ 0.22 \\ 0.34 \\ 0.36 \\ 0.92 \\ 0.17 \\ 0.36 \\ 1.10 \end{array}$                                           | $\begin{array}{r} \underline{MAE} \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \end{array}$                                                                                                             | $\begin{array}{c} \textbf{S} \\ \hline \textbf{MARD} \\ \hline 41.41\% \\ 39.32\% \\ 6.68\% \\ 56.95\% \\ * \\ 49.67\% \\ * \\ 23.76\% \\ 28.43\% \\ 37.87\% \\ 12.21\% \\ 123.90\% \\ 202.72\% \end{array}$                                                           | $\begin{array}{c} 0.000 \\ \hline 0.0000 \\ \hline 0.000$ | $\begin{array}{r} \underline{MAE} \\ \hline \underline{MAE} \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *           *           *      *      *      *      *      *      *      *      *      *      *      *      *      *      *      *      *      *     <                                         | $\begin{array}{c} \hline \mathbf{v}_{o} = 3\\ \hline \mathbf{Scared}\\ \hline \mathbf{RMSE}\\ \hline 0.19\\ 0.26\\ 0.24\\ 0.26\\ 0.27\\ 0.23\\ 0.21\\ 1.01\\ 0.55\\ 0.40\\ 0.30\\ 0.15\\ 0.18\\ \end{array}$  | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.08 \\ 0.04 \\ 0.01 \end{array}$           | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3 | MARD * * * * * * * * * * * * * * * * * * * | $\begin{array}{c} \textbf{Happy}\\ RMSE \\ \hline 0.16 \\ 0.17 \\ 0.78 \\ 0.24 \\ 0.23 \\ 0.17 \\ 0.22 \\ 0.13 \\ 0.14 \\ 0.12 \\ 0.05 \\ 0.76 \\ 0.36 \\ \end{array}$ | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.02 \\ 0.07 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.01 \\ 0.02 \\ 0.21 \\ 0.03 \end{array}$                                                                                                                                                                                                            | MARD           *           81.68%           91.37%           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      * <th>Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06           0.39</th> <th>MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.05           0.06           0.04           0.05           0.06           0.04           0.05           0.06           0.04           0.05           0.06           0.06           0.02           0.03</th> <th>MARD           78.20%           70.03%           61.98%           *           39.84%           *           66.50%           56.04%           60.14%</th> <th>Angry           RMSE           0.50           0.29           0.28           0.68           0.69           0.30           0.22           0.34           0.36           0.92           0.17           0.36           1.10</th> <th><math display="block">\begin{array}{r} MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \end{array}</math></th> <th><math display="block">\begin{array}{c} \mathbf{S} \\ \underline{MARD} \\ 41.41\% \\ 39.32\% \\ 6.68\% \\ 56.95\% \\ * \\ 49.67\% \\ * \\ 23.76\% \\ 28.43\% \\ 37.87\% \\ 12.21\% \\ 12.3.90\% \\ 202.72\% \end{array}</math></th> <th>opt-sgs           ourprised           RMSE           0.13           0.12           0.12           0.06           0.15           0.07           0.11           0.04           0.07           0.12           0.01           0.04           0.01</th> <th><math display="block">\begin{array}{r} \underline{MAE} \\ \hline \underline{MAE} \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.01 \\ \hline \end{array}</math></th> <th>MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *           *           *           *           *           *           *           *           *           *           *           *           *           *</th> <th><math display="block">\hline \begin{array}{c} \hline \mathbf{Scared} \\ \hline \mathbf{RMSE} \\ \hline 0.19 \\ 0.26 \\ 0.24 \\ 0.26 \\ 0.27 \\ 0.23 \\ 0.21 \\ 1.01 \\ 0.55 \\ 0.40 \\ 0.30 \\ 0.15 \\ 0.18 \\ \hline \end{array}</math></th> <th><math display="block">\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.08 \\ 0.04 \\ 0.01 \\ \end{array}</math></th> <th>Match<br/>Accuracy (%)<br/>53.73 (36/67)<br/>82.05 (64/78)<br/>57.53 (42/73)<br/>22.67 (17/75)<br/>100.00 (78/78)<br/>22.55 (23/102)<br/>68.00 (51/75)<br/>16.67 (8/48)<br/>28.95 (11/38)<br/>93.15 (68/73)<br/>77.78 (7/9)<br/>0.00 (0/10)<br/>15.12 (13/86)</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06           0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.05           0.06           0.04           0.05           0.06           0.04           0.05           0.06           0.04           0.05           0.06           0.06           0.02           0.03 | MARD           78.20%           70.03%           61.98%           *           39.84%           *           66.50%           56.04%           60.14%             | Angry           RMSE           0.50           0.29           0.28           0.68           0.69           0.30           0.22           0.34           0.36           0.92           0.17           0.36           1.10 | $\begin{array}{r} MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \end{array}$                                                                                                                                 | $\begin{array}{c} \mathbf{S} \\ \underline{MARD} \\ 41.41\% \\ 39.32\% \\ 6.68\% \\ 56.95\% \\ * \\ 49.67\% \\ * \\ 23.76\% \\ 28.43\% \\ 37.87\% \\ 12.21\% \\ 12.3.90\% \\ 202.72\% \end{array}$                                                                     | opt-sgs           ourprised           RMSE           0.13           0.12           0.12           0.06           0.15           0.07           0.11           0.04           0.07           0.12           0.01           0.04           0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{r} \underline{MAE} \\ \hline \underline{MAE} \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.01 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *           *           *           *           *           *           *           *           *           *           *           *           *           *                                  | $\hline \begin{array}{c} \hline \mathbf{Scared} \\ \hline \mathbf{RMSE} \\ \hline 0.19 \\ 0.26 \\ 0.24 \\ 0.26 \\ 0.27 \\ 0.23 \\ 0.21 \\ 1.01 \\ 0.55 \\ 0.40 \\ 0.30 \\ 0.15 \\ 0.18 \\ \hline \end{array}$ | $\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.08 \\ 0.04 \\ 0.01 \\ \end{array}$               | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3 | MARD * * * * * * * * * * * * * * * * * * * | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36                                           | MAE           0.02           0.02           0.07           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.21           0.03                                                             | MARD           *           81.68%           91.37%           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06           0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.05           0.04           0.05           0.06           0.04           0.05           0.04           0.05           0.06           0.15           0.02           0.03                               | MARD           78.20%           70.03%           61.98%           *           39.84%           *           66.50%           *           56.04%           60.14% | Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10                                                                                            | <i>MAE</i><br>0.04<br>0.03<br>0.03<br>0.08<br>0.02<br>0.02<br>0.02<br>0.02<br>0.05<br>0.06<br>0.09<br>0.05<br>0.11<br>0.11                                                                                                                                                        | $\begin{array}{c} \mathbf{S} \\ \underline{MARD} \\ 41.41\% \\ 39.32\% \\ 6.68\% \\ 56.95\% \\ * \\ 49.67\% \\ * \\ 23.76\% \\ 28.43\% \\ 37.87\% \\ 12.21\% \\ 123.90\% \\ 202.72\% \end{array}$                                                                      | Opt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} MAE \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.01 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *           *      *         *      *         *      *         *      *         *      *         *      *         *      *         *      *         *      *         *      *         *      * | No 3           Scared           RMSE           0.19           0.26           0.24           0.26           0.21           1.01           0.55           0.40           0.30           0.15           0.18     | <i>MAE</i><br>0.02<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.02<br>0.13<br>0.07<br>0.04<br>0.08<br>0.04<br>0.04<br>0.01<br><b>℃</b>                      | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3 | MARD * * * * * * * * * * * * * * * * * * * | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36<br><b>C?</b><br>0                         | MAE           0.02           0.07           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.21           0.03           0.03                               | MARD<br>*<br>81.68%<br>91.37%<br>*<br>*<br>*<br>59.82%<br>81.50%<br>*<br>75.32%<br>52.50%<br>20.24%<br>28.70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42           2.58           0.55           0.06           0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAE           0.04           0.07           0.11           0.11           0.09           0.06           0.04           0.05           0.04           0.05           0.06           0.04           0.05           0.06           0.04           0.06           0.15           0.02           0.03           90.0                | MARD           78.20%           70.03%           61.98%           *           39.84%           *           66.50%           56.04%           60.14%             | Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10                                                                                            | MAE           0.04           0.03           0.03           0.03           0.03           0.04           0.03           0.03           0.04           0.03           0.03           0.04           0.05           0.06           0.09           0.05           0.11           0.11 | $\begin{array}{c} \mathbf{S} \\ \underline{MARD} \\ 41.41\% \\ 39.32\% \\ 6.68\% \\ 56.95\% \\ * \\ 49.67\% \\ * \\ 23.76\% \\ 28.43\% \\ 37.87\% \\ 12.21\% \\ 123.90\% \\ 202.72\% \end{array}$                                                                      | Opt         - ight           ourprised         RMSE           0.13         0.12           0.12         0.06           0.15         0.07           0.11         0.04           0.07         0.12           0.04         0.07           0.12         0.01           0.04         0.07           0.12         0.01           0.04         0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} MAE \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ \hline 0.00 \\ 0.01 \\ \hline 0.00 \\ 0.01 \\ \hline 0.00 \\ \hline 0.01 \\$ | MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *          *           *           *           *           *           *           *           *           *           *           *           *           *                                   | No 3           Scared           RMSE           0.19           0.26           0.24           0.26           0.21           1.01           0.55           0.40           0.30           0.15           0.18     | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.01 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3 | MARD * * * * * * * * * * * * * * * * * * * | Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36<br><b>₹</b> .0<br><b>+</b>                | MAE         0.02         0.07         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.01         0.02         0.21         0.03         ++                                                                           | MARD<br>*<br>81.68%<br>91.37%<br>*<br>*<br>*<br>59.82%<br>81.50%<br>*<br>75.32%<br>52.50%<br>20.24%<br>28.70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64<br>0.38<br>0.31<br>0.42<br>2.58<br>0.55<br>0.06<br>0.39<br><b>19.00</b><br>↓<br><b>19.00</b><br>↓<br><b>19.00</b><br>↓<br><b>19.00</b><br>↓<br><b>19.00</b><br>↓<br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.00</b><br><b>19.</b> | MAE         0.04         0.07         0.11         0.11         0.09         0.06         0.04         0.05         0.06         0.04         0.05         0.06         0.04         0.05         0.06         0.07         0.08         0.09         0.03                                                                     | MARD           78.20%           70.03%           61.98%           *           39.84%           *           66.50%           56.04%           60.14%             | Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.22<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10                                                                                            | MAE<br>0.04<br>0.03<br>0.03<br>0.03<br>0.08<br>0.08<br>0.02<br>0.02<br>0.05<br>0.06<br>0.09<br>0.05<br>0.11<br>0.11<br>E000                                                                                                                                                       | $\begin{array}{c} \mathbf{S} \\ \underline{MARD} \\ 41.41\% \\ 39.32\% \\ 6.68\% \\ 56.95\% \\ * \\ 49.67\% \\ * \\ 23.76\% \\ 28.43\% \\ 37.87\% \\ 12.21\% \\ 123.90\% \\ 202.72\% \end{array}$                                                                      | opp:=s           ourprised           RMSE           0.13           0.12           0.12           0.06           0.15           0.07           0.11           0.04           0.07           0.12           0.01           0.04           0.02           ₩           €0.00           ₩           €0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\begin{array}{c} MAE \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ \hline 0.00 \\ 0.01 \\ \hline 0.01 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MARD           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *           *      *          *           *           *           *           *           *           *           *           *           *           *           *           *                                   | No 3         Scared         RMSE         0.19         0.26         0.24         0.26         0.21         1.01         0.55         0.40         0.30         0.15         0.18                               | <i>MAE</i><br>0.02<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.02<br>0.13<br>0.07<br>0.04<br>0.08<br>0.04<br>0.01<br><b>€0:00</b>                          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Dataset                                                                                                                                   | MARD                                       | Happy<br>RMSE                                                                                                                                                          | MAE                                                                                                                                                                                                                                                                                                                                                          | MARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Sad<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAE                                                                                                                                                                                                                                                                                                                            | MARD                                                                                                                                                            | Angry<br>RMSE                                                                                                                                                                                                           | MAE                                                                                                                                                                                                                                                                               | MARD                                                                                                                                                                                                                                                                   | Surprised<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\frac{N_0 = 5}{\text{Scared}}$ $RMSE$                                                                                                                                                                        | MAE                                                                                                                                                         | Match<br>Accuracy (                                                                                                                                                                                                                             |

TABLE 9.15. Emotion recognition results tests 25 and 26. ANN with  $6 \times 10^3$  train epochs and input data with feature extraction.

|                                                                                                                                                               |                                            | Test 27                                                                                                                                                                | ′ - Emo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion Reco                                                                                                                  | ognition -                                                                                                                                                                                                                                                                                                                                                                      | + RTOI                                                                                                                                                                                  | R [HR+F                                                                                                                                                                            | $\mathbf{EG}$ ] - $\varphi_j$                                                                                                                                                                                       | $(v_j(n)) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = ReLU, o                                                                                                                                       | pt='ada                                                                                                                                                            | m', $N_h$ =                                                                                                                                                                                        | $= 46 \times 2, 1$                                                                                                 | $N_o = 5$                                                                                                                                                                                                                                     |                                                                                                                                                              |                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{Flight}$                                                                                                                                             |                                            | Happy                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                            | $\mathbf{Sad}$                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                         |                                                                                                                                                                                    | Angry                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\mathbf{S}$                                                                                                                                    | urprised                                                                                                                                                           |                                                                                                                                                                                                    |                                                                                                                    | Scared                                                                                                                                                                                                                                        |                                                                                                                                                              | Match                                                                                                                                                                                                                                           |
| Dataset                                                                                                                                                       | MARD                                       | RMSE                                                                                                                                                                   | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MARD                                                                                                                       | RMSE                                                                                                                                                                                                                                                                                                                                                                            | MAE                                                                                                                                                                                     | MARD                                                                                                                                                                               | RMSE                                                                                                                                                                                                                | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MARD                                                                                                                                            | RMSE                                                                                                                                                               | MAE                                                                                                                                                                                                | MARD                                                                                                               | RMSE                                                                                                                                                                                                                                          | MAE                                                                                                                                                          | Accuracy (%)                                                                                                                                                                                                                                    |
| DS:RC1                                                                                                                                                        | *                                          | 0.24                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                          | 1.23                                                                                                                                                                                                                                                                                                                                                                            | 0.12                                                                                                                                                                                    | 87.90%                                                                                                                                                                             | 0.50                                                                                                                                                                                                                | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 40.78%                                                                                                                                          | 0.12                                                                                                                                                               | 0.01                                                                                                                                                                                               | *                                                                                                                  | 0.42                                                                                                                                                                                                                                          | 0.04                                                                                                                                                         | <b>41.79</b> ( <b>28</b> /67)                                                                                                                                                                                                                   |
| DS:RC2                                                                                                                                                        | *                                          | 0.22                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 76.24%                                                                                                                     | 0.94                                                                                                                                                                                                                                                                                                                                                                            | 0.08                                                                                                                                                                                    | *                                                                                                                                                                                  | 0.52                                                                                                                                                                                                                | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37.74%                                                                                                                                          | 0.12                                                                                                                                                               | 0.01                                                                                                                                                                                               | *                                                                                                                  | 0.15                                                                                                                                                                                                                                          | 0.01                                                                                                                                                         | $51.28 \ (40/78)$                                                                                                                                                                                                                               |
| DS:RC3                                                                                                                                                        | *                                          | 0.79                                                                                                                                                                   | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                          | 1.74                                                                                                                                                                                                                                                                                                                                                                            | 0.15                                                                                                                                                                                    | *                                                                                                                                                                                  | 0.54                                                                                                                                                                                                                | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 13.44%                                                                                                                                          | 0.10                                                                                                                                                               | 0.01                                                                                                                                                                                               | *                                                                                                                  | 0.45                                                                                                                                                                                                                                          | 0.04                                                                                                                                                         | $42.47 \; (31/73)$                                                                                                                                                                                                                              |
| DS:GC1                                                                                                                                                        | *                                          | 0.23                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                          | 0.63                                                                                                                                                                                                                                                                                                                                                                            | 0.06                                                                                                                                                                                    | *                                                                                                                                                                                  | 0.58                                                                                                                                                                                                                | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 66.90%                                                                                                                                          | 0.07                                                                                                                                                               | 0.01                                                                                                                                                                                               | *                                                                                                                  | 0.07                                                                                                                                                                                                                                          | 0.00                                                                                                                                                         | $17.33 \ (13/75)$                                                                                                                                                                                                                               |
| DS:GC3                                                                                                                                                        | *                                          | 0.29                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                          | 0.37                                                                                                                                                                                                                                                                                                                                                                            | 0.03                                                                                                                                                                                    | *                                                                                                                                                                                  | 0.57                                                                                                                                                                                                                | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                                                                                               | 0.15                                                                                                                                                               | 0.02                                                                                                                                                                                               | *                                                                                                                  | 0.31                                                                                                                                                                                                                                          | 0.02                                                                                                                                                         | $39.74 \ (31/78)$                                                                                                                                                                                                                               |
| DS:LS1                                                                                                                                                        | *                                          | 0.24                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                          | 1.46                                                                                                                                                                                                                                                                                                                                                                            | 0.11                                                                                                                                                                                    | *                                                                                                                                                                                  | 0.54                                                                                                                                                                                                                | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 67.00%                                                                                                                                          | 0.10                                                                                                                                                               | 0.01                                                                                                                                                                                               | *                                                                                                                  | 0.15                                                                                                                                                                                                                                          | 0.01                                                                                                                                                         | <b>24.51</b> ( <b>25</b> /102)                                                                                                                                                                                                                  |
| DS:LS2                                                                                                                                                        | *                                          | 0.28                                                                                                                                                                   | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 69.12%                                                                                                                     | 0.61                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                    | 83.28%                                                                                                                                                                             | 0.50                                                                                                                                                                                                                | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                                                                                               | 0.12                                                                                                                                                               | 0.01                                                                                                                                                                                               | *                                                                                                                  | 0.42                                                                                                                                                                                                                                          | 0.04                                                                                                                                                         | <b>48.00</b> ( <b>36</b> /75)                                                                                                                                                                                                                   |
| DS:VC1                                                                                                                                                        | *                                          | 0.25                                                                                                                                                                   | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 78.97%                                                                                                                     | 0.36                                                                                                                                                                                                                                                                                                                                                                            | 0.04                                                                                                                                                                                    | *                                                                                                                                                                                  | 0.67                                                                                                                                                                                                                | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 36.61%                                                                                                                                          | 0.05                                                                                                                                                               | 0.01                                                                                                                                                                                               | 78.34%                                                                                                             | 0.96                                                                                                                                                                                                                                          | 0.12                                                                                                                                                         | <b>16.67</b> (8/48)                                                                                                                                                                                                                             |
| DS:VC2                                                                                                                                                        | *                                          | 0.50                                                                                                                                                                   | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | *                                                                                                                          | 0.30                                                                                                                                                                                                                                                                                                                                                                            | 0.04                                                                                                                                                                                    | *                                                                                                                                                                                  | 0.62                                                                                                                                                                                                                | 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 39.09%                                                                                                                                          | 0.06                                                                                                                                                               | 0.01                                                                                                                                                                                               | 79.43%                                                                                                             | 0.58                                                                                                                                                                                                                                          | 0.08                                                                                                                                                         | $15.79 \ (6/38)$                                                                                                                                                                                                                                |
| DS:CR1                                                                                                                                                        | *                                          | 0.20                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 76.89%                                                                                                                     | 2.53                                                                                                                                                                                                                                                                                                                                                                            | 0.26                                                                                                                                                                                    | 73.04%                                                                                                                                                                             | 0.89                                                                                                                                                                                                                | 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32.84%                                                                                                                                          | 0.10                                                                                                                                                               | 0.01                                                                                                                                                                                               | 92.75%                                                                                                             | 0.56                                                                                                                                                                                                                                          | 0.06                                                                                                                                                         | $47.95 \ (35/73)$                                                                                                                                                                                                                               |
| DS:CR3                                                                                                                                                        | *                                          | 0.08                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 36.77%                                                                                                                     | 0.37                                                                                                                                                                                                                                                                                                                                                                            | 0.09                                                                                                                                                                                    | 91.51%                                                                                                                                                                             | 0.15                                                                                                                                                                                                                | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37.64%                                                                                                                                          | 0.03                                                                                                                                                               | 0.01                                                                                                                                                                                               | 72.44%                                                                                                             | 0.28                                                                                                                                                                                                                                          | 0.08                                                                                                                                                         | 55.56 (5/9)                                                                                                                                                                                                                                     |
| DS:CLX                                                                                                                                                        | *                                          | 0.78                                                                                                                                                                   | 0.22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 64.09%                                                                                                                     | 0.22                                                                                                                                                                                                                                                                                                                                                                            | 0.06                                                                                                                                                                                    | 76.70%                                                                                                                                                                             | 0.48                                                                                                                                                                                                                | 0.14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                                                                                               | 0.05                                                                                                                                                               | 0.01                                                                                                                                                                                               | 95.76%                                                                                                             | 0.24                                                                                                                                                                                                                                          | 0.07                                                                                                                                                         | <b>10.00</b> (1/10)                                                                                                                                                                                                                             |
| DS:CL3                                                                                                                                                        | *                                          | 0.41                                                                                                                                                                   | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 43.03%                                                                                                                     | 0.63                                                                                                                                                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                    | 56.57%                                                                                                                                                                             | 1.07                                                                                                                                                                                                                | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | *                                                                                                                                               | 0.15                                                                                                                                                               | 0.01                                                                                                                                                                                               | *                                                                                                                  | 0.44                                                                                                                                                                                                                                          | 0.03                                                                                                                                                         | $30.23\ (26/86)$                                                                                                                                                                                                                                |
|                                                                                                                                                               |                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                    |                                                                                                                                                                                                                                               |                                                                                                                                                              | 96                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                            | 21                                                                                                                                                                     | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                            | 99                                                                                                                                                                                                                                                                                                                                                                              | 00                                                                                                                                                                                      |                                                                                                                                                                                    | 20                                                                                                                                                                                                                  | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                 | 03                                                                                                                                                                 | 00                                                                                                                                                                                                 |                                                                                                                    | 22                                                                                                                                                                                                                                            | 03                                                                                                                                                           | 4.                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                            | 0                                                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                               | 0.0                                                                                                                                                                                     |                                                                                                                                                                                    | 0                                                                                                                                                                                                                   | -0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                 | 0.0                                                                                                                                                                | 0.0                                                                                                                                                                                                |                                                                                                                    | 0                                                                                                                                                                                                                                             | 0.0                                                                                                                                                          | <b>H</b>                                                                                                                                                                                                                                        |
|                                                                                                                                                               |                                            | ъ<br>Н                                                                                                                                                                 | 54<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            | ×<br>×                                                                                                                                                                                                                                                                                                                                                                          | +6                                                                                                                                                                                      |                                                                                                                                                                                    | +6                                                                                                                                                                                                                  | 7 <b>+</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                 | +6                                                                                                                                                                 | +                                                                                                                                                                                                  |                                                                                                                    | +6                                                                                                                                                                                                                                            | ы<br>Н                                                                                                                                                       | 95                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                            | 0.3                                                                                                                                                                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                            | 0.8                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                     |                                                                                                                                                                                    | 0.5                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                 | 0.0                                                                                                                                                                | 0.0                                                                                                                                                                                                |                                                                                                                    | 0.3                                                                                                                                                                                                                                           | 0.0                                                                                                                                                          | 33.                                                                                                                                                                                                                                             |
|                                                                                                                                                               |                                            |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                         |                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                 |                                                                                                                                                                    |                                                                                                                                                                                                    |                                                                                                                    |                                                                                                                                                                                                                                               |                                                                                                                                                              |                                                                                                                                                                                                                                                 |
|                                                                                                                                                               |                                            | Test 28                                                                                                                                                                | 8 - Emo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion Reco                                                                                                                  | gnition                                                                                                                                                                                                                                                                                                                                                                         | + RTO                                                                                                                                                                                   | R [HR+H                                                                                                                                                                            | $\mathbf{EEG}$ ] - $\varphi_{1}$                                                                                                                                                                                    | $(v_i(n)) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = sigmoid.                                                                                                                                      | opt='sg                                                                                                                                                            | d', $N_h =$                                                                                                                                                                                        | $= 46 \times 2, 1$                                                                                                 | $V_o = 5$                                                                                                                                                                                                                                     |                                                                                                                                                              |                                                                                                                                                                                                                                                 |
| Flight                                                                                                                                                        |                                            | Test 28<br>Happy                                                                                                                                                       | 8 - Emo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tion Reco                                                                                                                  | ognition<br>Sad                                                                                                                                                                                                                                                                                                                                                                 | + RTO                                                                                                                                                                                   | R [HR+F                                                                                                                                                                            | $\mathbf{EEG}$ ] - $\varphi_j$<br>Angry                                                                                                                                                                             | $(v_j(n)) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $= sigmoid, \mathbf{S}$                                                                                                                         | , opt='sg<br>urprised                                                                                                                                              | d', $N_h =$                                                                                                                                                                                        | $=46 \times 2, 1$                                                                                                  | $\frac{V_o = 5}{Scared}$                                                                                                                                                                                                                      |                                                                                                                                                              | Match                                                                                                                                                                                                                                           |
| Flight<br>Dataset                                                                                                                                             | MARD                                       | Test 28<br>Happy<br>RMSE                                                                                                                                               | 8 - Emo<br>MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tion Reco                                                                                                                  | ognition<br>Sad<br>RMSE                                                                                                                                                                                                                                                                                                                                                         | + <b>RTO</b>                                                                                                                                                                            | R [HR+I                                                                                                                                                                            | $\frac{\mathbf{EG}] - \varphi_{j}}{\mathbf{Angry}}$ $RMSE$                                                                                                                                                          | $(v_j(n)) = MAE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | = sigmoid,<br>S<br>MARD                                                                                                                         | , opt='sg<br>urprised<br>RMSE                                                                                                                                      | <b>d'</b> , $N_h = MAE$                                                                                                                                                                            | $= 46 \times 2, 1$<br>MARD                                                                                         | $N_o = 5$<br>Scared<br>RMSE                                                                                                                                                                                                                   | MAE                                                                                                                                                          | Match<br>Accuracy (%)                                                                                                                                                                                                                           |
| Flight<br>Dataset<br>DS:RC1                                                                                                                                   | MARD *                                     | Test 28<br>Happy<br>RMSE                                                                                                                                               | <b>3 - Emo</b><br><u>MAE</u><br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion Reco<br>MARD<br>*                                                                                                     | ognition<br>Sad<br>RMSE<br>0.42                                                                                                                                                                                                                                                                                                                                                 | + <b>RTO</b>                                                                                                                                                                            | R [HR+H<br>MARD<br>85.85%                                                                                                                                                          | $\frac{\mathbf{EEG}] - \varphi_{j}}{\mathbf{Angry}}$ $\frac{RMSE}{0.49}$                                                                                                                                            | $\frac{MAE}{0.04}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = sigmoid,<br>$\mathbf{S}$<br>MARD<br>85.06%                                                                                                    | opt='sg<br>urprised<br>RMSE<br>0.16                                                                                                                                | $\mathbf{d', } N_h = \frac{MAE}{0.02}$                                                                                                                                                             | $= 46 \times 2, l$ $MARD$ $*$                                                                                      | $\frac{V_o = 5}{Scared}$ $\frac{RMSE}{0.38}$                                                                                                                                                                                                  | <i>MAE</i> 0.05                                                                                                                                              | Match<br>Accuracy (%)<br>53.73 (36/67)                                                                                                                                                                                                          |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2                                                                                                                         | MARD * *                                   | Test 28<br>Happy<br><i>RMSE</i><br>0.22<br>0.29                                                                                                                        | 8 - Emo<br>MAE<br>0.02<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tion Reco<br>MARD<br>*<br>82.33%                                                                                           | <b>Sad</b><br><i>RMSE</i><br>0.42<br>0.81                                                                                                                                                                                                                                                                                                                                       | + <b>RTO</b><br><i>MAE</i><br>0.04<br>0.07                                                                                                                                              | R [HR+F<br>MARD<br>85.85%<br>78.82%                                                                                                                                                | <b>EEG</b> ] - $\varphi_{j}$<br><b>Angry</b><br><i>RMSE</i><br>0.49<br>0.31                                                                                                                                         | $MAE = 0.04 \\ 0.03$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = sigmoid,<br><b>S</b><br>MARD<br>85.06%<br>*                                                                                                   | opt='sg<br>urprised<br>RMSE<br>0.16<br>0.20                                                                                                                        | <b>d'</b> , $N_h = MAE$<br>0.02<br>0.02                                                                                                                                                            | $= 46 \times 2, 1$ $MARD$ $*$ $*$                                                                                  | $N_o = 5$ <b>Scared</b> $RMSE$ $0.38$ $0.46$                                                                                                                                                                                                  | MAE<br>0.05<br>0.05                                                                                                                                          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)                                                                                                                                                                                         |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3                                                                                                               | <i>MARD</i> * * * *                        | Test 28<br>Happy<br><i>RMSE</i><br>0.22<br>0.29<br>0.62                                                                                                                | 8 - Emo<br>MAE<br>0.02<br>0.03<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion Reco<br>MARD<br>*<br>82.33%<br>92.22%                                                                                 | Sad           RMSE           0.42           0.81           1.37                                                                                                                                                                                                                                                                                                                 | + <b>RTO</b><br><i>MAE</i><br>0.04<br>0.07<br>0.11                                                                                                                                      | <b>R</b> [ <b>HR</b> + <b>I</b><br>MARD<br>85.85%<br>78.82%<br>72.42%                                                                                                              | $\begin{array}{c} \mathbf{EEG} ] - \varphi_{\jmath} \\ \mathbf{Angry} \\ RMSE \\ \hline 0.49 \\ 0.31 \\ 0.31 \end{array}$                                                                                           | MAE<br>0.04<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = sigmoid,<br>S<br>MARD<br>85.06%<br>*<br>38.35%                                                                                                | <b>opt='sg</b><br><b>urprised</b><br><i>RMSE</i><br>0.16<br>0.20<br>0.18                                                                                           | <b>d'</b> , $N_h = \frac{MAE}{0.02}$                                                                                                                                                               | = 46 × 2, 1<br>MARD<br>*<br>*                                                                                      | $     \underbrace{ \begin{array}{l} N_o = 5 \\ \textbf{Scared} \\ RMSE \end{array} } \\     0.38 \\     0.46 \\     0.43 \\     \end{array} $                                                                                                 | $\frac{MAE}{0.05} \\ 0.05 \\ 0.05 \\ 0.05$                                                                                                                   | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)                                                                                                                                                                        |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1                                                                                                     | MARD * * * * *                             | Test 28<br>Happy<br><i>RMSE</i><br>0.22<br>0.29<br>0.62<br>0.44                                                                                                        | 8 - Emo<br>MAE<br>0.02<br>0.03<br>0.06<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tion Reco<br>MARD<br>*<br>82.33%<br>92.22%<br>*                                                                            | Sad           RMSE           0.42           0.81           1.37           0.96                                                                                                                                                                                                                                                                                                  | + <b>RTO</b><br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11                                                                                                                              | R [HR+H<br>MARD<br>85.85%<br>78.82%<br>72.42%<br>*                                                                                                                                 | <b>EEG</b> ] - $\varphi_3$<br><b>Angry</b><br><i>RMSE</i><br>0.49<br>0.31<br>0.31<br>0.72                                                                                                                           | $\frac{MAE}{0.04}$ 0.03 0.03 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = sigmoid,<br>S<br>MARD<br>85.06%<br>*<br>38.35%<br>*                                                                                           | opt='sg<br>urprised<br><i>RMSE</i><br>0.16<br>0.20<br>0.18<br>0.29                                                                                                 | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline \\ MAE \\ \hline \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \end{array}$                                                                                      | = 46 × 2, 1<br>MARD<br>*<br>*<br>*                                                                                 | $V_o = 5$<br>Scared<br><i>RMSE</i><br>0.38<br>0.46<br>0.43<br>0.46                                                                                                                                                                            | MAE<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)                                                                                                                                                       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3                                                                                           | MARD * * * * * *                           | Test 28<br>Happy<br><i>RMSE</i><br>0.22<br>0.29<br>0.62<br>0.44<br>0.44                                                                                                | <b>B - Emo</b><br><i>MAE</i><br>0.02<br>0.03<br>0.06<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion Reco<br>MARD<br>*<br>82.33%<br>92.22%<br>*<br>*                                                                       | ognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82                                                                                                                                                                                                                                                                | + RTO:<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09                                                                                                                            | R [HR+H<br>MARD<br>85.85%<br>78.82%<br>72.42%<br>*                                                                                                                                 | $\begin{array}{c} \mathbf{EEG} ] - \varphi_{j} \\ \mathbf{Angry} \\ RMSE \\ \hline 0.49 \\ 0.31 \\ 0.31 \\ 0.72 \\ 0.74 \end{array}$                                                                                | $\frac{MAE}{0.04}$ 0.04 0.03 0.03 0.08 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = sigmoid,<br>S<br>MARD<br>85.06%<br>*<br>38.35%<br>*<br>*                                                                                      | opt='sg<br>urprised<br><i>RMSE</i><br>0.16<br>0.20<br>0.18<br>0.29<br>0.41                                                                                         | $     d', N_h = \frac{MAE}{0.02} \\     0.02 \\     0.02 \\     0.02 \\     0.03 \\     0.05   $                                                                                                   | = 46 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*                                                                       | $N_o = 5$<br>Scared<br><i>RMSE</i><br>0.38<br>0.46<br>0.43<br>0.46<br>0.47                                                                                                                                                                    | MAE<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                  | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)                                                                                                                                     |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1                                                                                 | MARD * * * * * * * *                       | Test 28<br>Happy<br><i>RMSE</i><br>0.22<br>0.29<br>0.62<br>0.44<br>0.44<br>0.44                                                                                        | <b>B - Emo</b><br><i>MAE</i><br>0.02<br>0.03<br>0.06<br>0.05<br>0.05<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion Reco<br>MARD<br>*<br>82.33%<br>92.22%<br>*<br>*<br>*                                                                  | ognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.65                                                                                                                                                                                                                                                 | + RTO<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06                                                                                                                     | R [HR+H<br>MARD<br>85.85%<br>78.82%<br>72.42%<br>*<br>*<br>*                                                                                                                       | $\begin{array}{c} \textbf{EEG} ] - \varphi_3 \\ \textbf{Angry} \\ RMSE \\ \hline 0.49 \\ 0.31 \\ 0.31 \\ 0.72 \\ 0.74 \\ 0.30 \end{array}$                                                                          | $\frac{MAE}{0.04}$ 0.03 0.03 0.08 0.08 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = sigmoid,<br>S<br>MARD<br>85.06%<br>*<br>38.35%<br>*<br>*<br>*                                                                                 | opt='sg<br>urprised<br><i>RMSE</i><br>0.16<br>0.20<br>0.18<br>0.29<br>0.41<br>0.32                                                                                 | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \end{array}$                                                                            | = 46 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*                                                                       | $N_o = 5$ <b>Scared</b> <i>RMSE</i> 0.38 0.46 0.43 0.46 0.47 0.46                                                                                                                                                                             | $\begin{array}{c} MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ \end{array}$                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)                                                                                                                   |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2                                                                       | MARD * * * * * * * * *                     | Test 28<br>Happy<br><i>RMSE</i><br>0.22<br>0.29<br>0.62<br>0.44<br>0.44<br>0.44<br>0.40<br>0.42                                                                        | <b>B - Emo</b><br><i>MAE</i><br>0.02<br>0.03<br>0.06<br>0.05<br>0.05<br>0.04<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion Reco<br>MARD<br>*<br>82.33%<br>92.22%<br>*<br>*<br>*<br>60.48%                                                        | ognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.65           0.38                                                                                                                                                                                                                                  | + RTO<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04                                                                                                             | R [HR+H<br>MARD<br>85.85%<br>78.82%<br>72.42%<br>*<br>*<br>*<br>44.22%                                                                                                             | $\begin{array}{c} \textbf{EEG} & - & \varphi_3 \\ \hline \textbf{Angry} \\ \hline \textbf{RMSE} \\ \hline 0.49 \\ 0.31 \\ 0.31 \\ 0.72 \\ 0.74 \\ 0.30 \\ 0.22 \end{array}$                                         | $\begin{array}{c} (v_j(n)) = \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = sigmoid,<br>S<br>MARD<br>85.06%<br>*<br>38.35%<br>*<br>*<br>*<br>*                                                                            | opt='sg<br>urprised<br><i>RMSE</i><br>0.16<br>0.20<br>0.18<br>0.29<br>0.41<br>0.32<br>0.35                                                                         | $\begin{array}{c} \mathbf{d'}, \ N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \end{array}$                                                                   | = 46 × 2, 1<br>MARD<br>* * * * * * * * *                                                                           | $N_o = 5$ <b>Scared</b> <i>RMSE</i> 0.38 0.46 0.43 0.46 0.47 0.46 0.41                                                                                                                                                                        | $\begin{array}{c} MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ \end{array}$                                                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)                                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1                                                             | MARD * * * * * * * * * *                   | Test 28<br>Happy<br><i>RMSE</i><br>0.22<br>0.29<br>0.62<br>0.44<br>0.44<br>0.44<br>0.40<br>0.42<br>0.28                                                                | B - Emo           MAE           0.02           0.03           0.06           0.05           0.05           0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tion Reco<br>MARD<br>*<br>82.33%<br>92.22%<br>*<br>*<br>*<br>60.48%<br>82.52%                                              | ognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.65           0.38                                                                                                                                                                                                                                  | + RTO<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04                                                                                                     | R [HR+H<br>MARD<br>85.85%<br>78.82%<br>72.42%<br>*<br>*<br>44.22%<br>*                                                                                                             | $\begin{array}{c} \textbf{EG} & - & \varphi_3 \\ \textbf{Angry} \\ RMSE \\ \hline 0.49 \\ 0.31 \\ 0.31 \\ 0.72 \\ 0.74 \\ 0.30 \\ 0.22 \\ 0.38 \end{array}$                                                         | $\frac{MAE}{0.04}$ $\frac{0.04}{0.03}$ $\frac{0.03}{0.03}$ $\frac{0.08}{0.02}$ $\frac{0.02}{0.02}$ $\frac{0.05}{0.05}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = sigmoid,<br>S<br>MARD<br>85.06%<br>*<br>38.35%<br>*<br>*<br>*<br>*<br>*                                                                       | opt='sg<br>urprised<br><i>RMSE</i><br>0.16<br>0.20<br>0.18<br>0.29<br>0.41<br>0.32<br>0.35<br>0.21                                                                 | $\begin{array}{c c} \mathbf{d'}, \ N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.03 \end{array}$                                                         | = 46 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                               | $N_o = 5$ <b>Scared</b> <i>RMSE</i> 0.38 0.46 0.43 0.46 0.47 0.46 0.41 0.84                                                                                                                                                                   | $\begin{array}{c} MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.10 \end{array}$                                            | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2                                                   | MARD * * * * * * * * * * * *               | Test 28<br>Happy<br><i>RMSE</i><br>0.22<br>0.29<br>0.62<br>0.44<br>0.44<br>0.44<br>0.40<br>0.42<br>0.28<br>0.28                                                        | B         - Emo           MAE         0.02           0.03         0.06           0.05         0.05           0.04         0.05           0.04         0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tion Reco<br>MARD<br>*<br>82.33%<br>92.22%<br>*<br>*<br>*<br>60.48%<br>82.52%<br>*                                         | Degnition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.65           0.38           0.32           0.42                                                                                                                                                                                                   | + RTO<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.06                                                                                             | R [HR+H<br>MARD<br>85.85%<br>78.82%<br>72.42%<br>*<br>*<br>*<br>44.22%<br>*<br>*                                                                                                   | $\begin{array}{c} \textbf{EEG} & - & \varphi_3 \\ \textbf{Angry} \\ RMSE \\ \hline 0.49 \\ 0.31 \\ 0.31 \\ 0.72 \\ 0.74 \\ 0.30 \\ 0.22 \\ 0.38 \\ 0.39 \end{array}$                                                | $\begin{array}{c} (v_j(n)) = \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = sigmoid,<br>S<br>MARD<br>85.06%<br>*<br>38.35%<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                             | opt='sg<br>urprised<br><i>RMSE</i><br>0.16<br>0.20<br>0.18<br>0.29<br>0.41<br>0.32<br>0.35<br>0.21<br>0.16                                                         | $\begin{array}{c c} \mathbf{d'}, \ N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \end{array}$                                                 | = 46 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                               | $N_o = 5$ <b>Scared</b> <i>RMSE</i> 0.38 0.46 0.43 0.46 0.47 0.46 0.47 0.46 0.41 0.84 0.44                                                                                                                                                    | $\begin{array}{c} MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.10 \\ 0.06 \end{array}$                                    | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)                                                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1                               | MARD * * * * * * * * * * * * * * * *       | Test 28<br>Happy<br>RMSE<br>0.22<br>0.29<br>0.62<br>0.44<br>0.44<br>0.44<br>0.40<br>0.42<br>0.28<br>0.28<br>0.28<br>0.30                                               | B         - Emo           MAE         0.02           0.03         0.06           0.05         0.05           0.04         0.05           0.04         0.05           0.04         0.05           0.04         0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tion Reco<br>MARD<br>*<br>82.33%<br>92.22%<br>*<br>*<br>*<br>60.48%<br>82.52%<br>*<br>74.98%                               | Degnition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.65           0.38           0.32           0.42           2.55                                                                                                                                                                                    | $+ \mathbf{RTO}$ $MAE$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.04 0.06 0.26                                                                                                           | R [HR+H<br>MARD<br>85.85%<br>78.82%<br>72.42%<br>*<br>*<br>44.22%<br>*<br>*<br>65.28%                                                                                              | $\begin{array}{c} \textbf{EG]} - \varphi_3 \\ \textbf{Angry} \\ RMSE \\ \hline 0.49 \\ 0.31 \\ 0.31 \\ 0.72 \\ 0.74 \\ 0.30 \\ 0.22 \\ 0.38 \\ 0.39 \\ 0.86 \end{array}$                                            | $\begin{array}{c} (v_j(n)) = \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = sigmoid,<br><b>S</b><br><i>MARD</i><br>85.06%<br>*<br>38.35%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                 | opt='sg<br>urprised<br><i>RMSE</i><br>0.16<br>0.20<br>0.18<br>0.29<br>0.41<br>0.32<br>0.35<br>0.21<br>0.16<br>0.17                                                 | $\begin{array}{c c} \mathbf{d'}, \ N_h = \\ \hline \\ \hline MAE \\ \hline \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \\ \end{array}$                         | = 46 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                               | $     N_o = 5     Scared     RMSE     0.38     0.46     0.43     0.46     0.47     0.46     0.41     0.84     0.44     0.21     $                                                                                                             | $\begin{array}{c} MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.10 \\ 0.06 \\ 0.02 \end{array}$                                    | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)                                                |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1<br>DS:CR3                     | MARD * * * * * * * * * * * * * * * * * * * | Test 28<br>Happy<br>RMSE<br>0.22<br>0.29<br>0.62<br>0.44<br>0.44<br>0.44<br>0.40<br>0.42<br>0.28<br>0.28<br>0.28<br>0.30<br>0.13                                       | B         - Emo           MAE         0.02           0.03         0.06           0.05         0.05           0.04         0.05           0.04         0.05           0.03         0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tion Reco<br>MARD<br>*<br>82.33%<br>92.22%<br>*<br>*<br>60.48%<br>82.52%<br>*<br>74.98%<br>52.54%                          | Degnition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.65           0.38           0.32           0.42           2.55           0.55                                                                                                                                                                     | $+ \mathbf{RTO}$ $MAE$ $0.04$ $0.07$ $0.11$ $0.11$ $0.09$ $0.06$ $0.04$ $0.04$ $0.04$ $0.06$ $0.26$ $0.15$                                                                              | R [HR+H<br>MARD<br>85.85%<br>78.82%<br>72.42%<br>*<br>*<br>44.22%<br>*<br>65.28%<br>*                                                                                              | $\begin{array}{c} \textbf{EEG} & - & \varphi_3 \\ \hline \textbf{Angry} \\ \hline \textbf{RMSE} \\ \hline 0.49 \\ 0.31 \\ 0.31 \\ 0.72 \\ 0.74 \\ 0.30 \\ 0.22 \\ 0.38 \\ 0.39 \\ 0.86 \\ 0.16 \end{array}$         | $\begin{array}{c} (v_j(n)) = \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = sigmoid,<br><b>S</b><br><i>MARD</i><br>85.06%<br>*<br>38.35%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>83.16%<br>*                                | opt='sg<br>urprised<br>RMSE<br>0.16<br>0.20<br>0.18<br>0.29<br>0.41<br>0.32<br>0.35<br>0.21<br>0.16<br>0.17<br>0.08                                                | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \end{array}$                            | = 46 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                               | $     N_o = 5     Scared     RMSE     0.38     0.46     0.43     0.46     0.47     0.46     0.41     0.84     0.44     0.21     0.24     $                                                                                                    | $\begin{array}{c} MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.10 \\ 0.06 \\ 0.02 \\ 0.06 \end{array}$                    | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX           | MARD * * * * * * * * * * * * * * * * * * * | Test 28<br>Happy<br>RMSE<br>0.22<br>0.29<br>0.62<br>0.44<br>0.44<br>0.44<br>0.40<br>0.42<br>0.28<br>0.28<br>0.28<br>0.28<br>0.30<br>0.13<br>0.69                       | B         - Emo           MAE         0.02           0.03         0.06           0.05         0.05           0.04         0.05           0.04         0.05           0.03         0.04           0.05         0.03           0.04         0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tion Reco<br>MARD<br>*<br>82.33%<br>92.22%<br>*<br>*<br>*<br>60.48%<br>82.52%<br>*<br>74.98%<br>52.54%<br>21.01%           | Ognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.65           0.38           0.32           0.42           2.55           0.55           0.06                                                                                                                                                       | $+ \mathbf{RTO}$ $MAE$ $0.04$ $0.07$ $0.11$ $0.11$ $0.09$ $0.06$ $0.04$ $0.04$ $0.04$ $0.06$ $0.26$ $0.15$ $0.02$                                                                       | R [HR+H<br>MARD<br>85.85%<br>78.82%<br>72.42%<br>*<br>*<br>44.22%<br>*<br>65.28%<br>*<br>51.68%                                                                                    | $\begin{array}{c} \textbf{EEG} & - & \varphi_3 \\ \hline \textbf{Angry} \\ \hline \textbf{RMSE} \\ \hline 0.49 \\ 0.31 \\ 0.31 \\ 0.72 \\ 0.74 \\ 0.30 \\ 0.22 \\ 0.38 \\ 0.39 \\ 0.86 \\ 0.16 \\ 0.34 \end{array}$ | $\begin{array}{c} (v_j(n)) = \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.10 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | = sigmoid,<br><b>S</b><br><i>MARD</i><br>85.06%<br>*<br>38.35%<br>*<br>*<br>*<br>*<br>*<br>83.16%<br>*                                          | opt='sg<br>urprised<br>RMSE<br>0.16<br>0.20<br>0.18<br>0.29<br>0.41<br>0.32<br>0.35<br>0.21<br>0.16<br>0.17<br>0.08<br>0.09                                        | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.03 \\ 0.02 \end{array}$            | = 46 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                               | $     N_o = 5     Scared     RMSE     0.38     0.46     0.43     0.46     0.47     0.46     0.41     0.84     0.44     0.21     0.24     0.07     $                                                                                           | $\begin{array}{c} MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.10 \\ 0.06 \\ 0.02 \\ 0.06 \\ 0.02 \\ 0.06 \\ 0.02 \\ \end{array}$ | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3 | MARD * * * * * * * * * * * * 69.77% *      | Test 28<br>Happy<br>RMSE<br>0.22<br>0.29<br>0.62<br>0.44<br>0.44<br>0.44<br>0.40<br>0.42<br>0.28<br>0.28<br>0.28<br>0.30<br>0.13<br>0.69<br>0.27                       | B - Emo           MAE           0.02           0.03           0.06           0.05           0.05           0.04           0.05           0.04           0.05           0.04           0.05           0.04           0.05           0.04           0.05           0.03           0.04           0.19           0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tion Reco<br>MARD<br>*<br>82.33%<br>92.22%<br>*<br>*<br>*<br>60.48%<br>82.52%<br>*<br>74.98%<br>52.54%<br>21.01%<br>28.92% | Degnition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.65           0.38           0.32           0.42           2.55           0.55           0.06           0.39                                                                                                                                       | $+ \mathbf{RTO}$ $MAE$ $0.04$ $0.07$ $0.11$ $0.11$ $0.09$ $0.06$ $0.04$ $0.04$ $0.06$ $0.26$ $0.15$ $0.02$ $0.03$                                                                       | R [HR+H<br>MARD<br>85.85%<br>78.82%<br>72.42%<br>*<br>*<br>44.22%<br>*<br>*<br>65.28%<br>\$<br>51.68%<br>53.74%                                                                    | $\begin{array}{c} \mathbf{EG} ] - \varphi_{3} \\ \mathbf{Angry} \\ RMSE \\ \hline 0.49 \\ 0.31 \\ 0.31 \\ 0.72 \\ 0.74 \\ 0.30 \\ 0.22 \\ 0.38 \\ 0.39 \\ 0.86 \\ 0.16 \\ 0.34 \\ 1.02 \end{array}$                 | $\begin{array}{c} (v_j(n)) = \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.10 \\ 0.10 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = sigmoid,<br><b>S</b><br><i>MARD</i><br>85.06%<br>*<br>38.35%<br>*<br>*<br>*<br>*<br>*<br>83.16%<br>*<br>*                                     | opt='sg<br>urprised<br>RMSE<br>0.16<br>0.20<br>0.18<br>0.29<br>0.41<br>0.32<br>0.35<br>0.21<br>0.16<br>0.17<br>0.08<br>0.09<br>0.38                                | $\begin{array}{c c} \mathbf{d'}, \ N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.04 \end{array}$         | = 46 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                               |                                                                                                                                                                                                                                               | $\begin{array}{c} MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.10 \\ 0.06 \\ 0.02 \\ 0.06 \\ 0.02 \\ 0.02 \\ 0.02 \end{array}$    | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * * 69.77% *    | Test 28<br>Happy<br>RMSE<br>0.22<br>0.29<br>0.62<br>0.44<br>0.44<br>0.44<br>0.44<br>0.40<br>0.42<br>0.28<br>0.28<br>0.28<br>0.30<br>0.13<br>0.69<br>0.27               | B         - Emo           MAE         0.02           0.03         0.06           0.05         0.05           0.04         0.05           0.03         0.04           0.05         0.03           0.04         0.05           0.03         0.04           0.19         0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tion Reco<br>MARD<br>*<br>82.33%<br>92.22%<br>*<br>*<br>*<br>60.48%<br>82.52%<br>*<br>74.98%<br>52.54%<br>21.01%<br>28.92% | Degnition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.65           0.38           0.32           0.42           2.55           0.55           0.06           0.39                                                                                                                                       | $+ \mathbf{RTO}$ $MAE$ $0.04$ $0.07$ $0.11$ $0.11$ $0.09$ $0.06$ $0.04$ $0.04$ $0.06$ $0.26$ $0.15$ $0.02$ $0.03$                                                                       | R [HR+H<br>MARD<br>85.85%<br>78.82%<br>72.42%<br>*<br>*<br>44.22%<br>*<br>44.22%<br>*<br>51.68%<br>53.74%                                                                          | $\begin{array}{c} \mathbf{EG} ] - \varphi_{3} \\ \mathbf{Angry} \\ RMSE \\ \hline 0.49 \\ 0.31 \\ 0.31 \\ 0.72 \\ 0.74 \\ 0.30 \\ 0.22 \\ 0.38 \\ 0.39 \\ 0.86 \\ 0.16 \\ 0.34 \\ 1.02 \end{array}$                 | $\begin{array}{c} (v_j(n)) = \\ \hline MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.10 \\ 0.10 \\ 0.10 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = sigmoid,<br>S<br>MARD<br>85.06%<br>*<br>38.35%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br>urprised<br>RMSE<br>0.16<br>0.20<br>0.18<br>0.29<br>0.41<br>0.32<br>0.35<br>0.21<br>0.16<br>0.17<br>0.08<br>0.09<br>0.38                                | $\begin{array}{c c} \mathbf{d'}, \ N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.04 \\ \hline \end{array}$       | = 46 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>65.91%<br>66.50%<br>24.83%<br>45.02%<br>25.58%<br>70.50% | $     \begin{array}{l} N_o = 5 \\ \hline \textbf{Scared} \\ \hline \textbf{RMSE} \\ \hline 0.38 \\ 0.46 \\ 0.43 \\ 0.46 \\ 0.47 \\ 0.46 \\ 0.47 \\ 0.46 \\ 0.41 \\ 0.84 \\ 0.41 \\ 0.84 \\ 0.41 \\ 0.21 \\ 0.24 \\ 0.07 \\ 0.20 \end{array} $ | $\begin{array}{c} MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.05 \\ 0.10 \\ 0.06 \\ 0.02 \\ 0.06 \\ 0.02 \\ 0.02 \\ 0.02 \\ \end{array}$ | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CL3                     | MARD * * * * * * * * * * * 69.77% *        | Test 28<br>Happy<br>RMSE<br>0.22<br>0.29<br>0.62<br>0.44<br>0.44<br>0.44<br>0.40<br>0.42<br>0.28<br>0.28<br>0.28<br>0.28<br>0.30<br>0.13<br>0.69<br>0.27               | B         - Emo           MAE         0.02           0.03         0.06           0.05         0.05           0.04         0.05           0.04         0.05           0.03         0.04           0.05         0.03           0.04         0.19           0.02         0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tion Reco<br>MARD<br>*<br>82.33%<br>92.22%<br>*<br>*<br>*<br>60.48%<br>82.52%<br>*<br>74.98%<br>52.54%<br>21.01%<br>28.92% | Ognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.65           0.38           0.32           0.42           0.55           0.06           0.39                                                                                                                                                       | + RTO<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.04<br>0.04<br>0.06<br>0.15<br>0.02<br>0.03<br>90                                               | R [HR+H<br>MARD<br>85.85%<br>78.82%<br>72.42%<br>*<br>*<br>44.22%<br>*<br>65.28%<br>*<br>51.68%<br>53.74%                                                                          | <b>EEG]</b> - φ <sub>3</sub><br><b>Angry</b><br><i>RMSE</i><br>0.49<br>0.31<br>0.31<br>0.72<br>0.74<br>0.30<br>0.22<br>0.38<br>0.39<br>0.86<br>0.16<br>0.34<br>1.02<br><b>Ε</b>                                     | $\begin{array}{c} (v_j(n)) = \\ \hline MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.10 \\ 0.10 \\ \hline \textbf{C} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = sigmoid,<br><b>S</b><br><i>MARD</i><br>85.06%<br>*<br>38.35%<br>*<br>*<br>*<br>*<br>*<br>83.16%<br>*<br>*                                     | opt='sg<br>urprised<br>RMSE<br>0.16<br>0.20<br>0.18<br>0.29<br>0.41<br>0.32<br>0.35<br>0.21<br>0.16<br>0.17<br>0.08<br>0.09<br>0.38                                | $\begin{array}{c} \mathbf{d'}, \ N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.04 \\ \hline \end{array}$         | $= 46 \times 2, 1$ $MARD$ $*$ $*$ $*$ $*$ $65.91\%$ $66.50\%$ $24.83\%$ $45.02\%$ $25.58\%$ $70.50\%$              | $N_o = 5$<br>Scared<br><i>RMSE</i><br>0.38<br>0.46<br>0.43<br>0.46<br>0.43<br>0.46<br>0.47<br>0.46<br>0.41<br>0.44<br>0.41<br>0.84<br>0.41<br>0.24<br>0.07<br>0.20                                                                            | MAE<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.06<br>0.02<br>0.06<br>0.02<br>0.02<br>0.02<br>0.02                          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:CR1<br>DS:CR3<br>DS:CL3           | MARD * * * * * * * * * * 69.77% *          | Test 28<br>Happy<br>RMSE<br>0.22<br>0.29<br>0.62<br>0.44<br>0.44<br>0.44<br>0.40<br>0.42<br>0.28<br>0.28<br>0.28<br>0.28<br>0.30<br>0.13<br>0.69<br>0.27               | B         - Emo           MAE         0.02           0.03         0.06           0.05         0.05           0.04         0.05           0.04         0.05           0.04         0.05           0.04         0.05           0.04         0.05           0.04         0.05           0.02         700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tion Reco<br>MARD<br>*<br>82.33%<br>92.22%<br>*<br>*<br>60.48%<br>82.52%<br>*<br>74.98%<br>52.54%<br>21.01%<br>28.92%      | Ognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.65           0.38           0.32           0.42           0.55           0.06           0.39                                                                                                                                                       | + RTO<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br>90.00                                                    | R [HR+H<br>MARD<br>85.85%<br>78.82%<br>72.42%<br>*<br>*<br>44.22%<br>*<br>65.28%<br>*<br>51.68%<br>53.74%                                                                          | <b>EEG]</b> - φ <sub>3</sub><br><b>Angry</b><br><i>RMSE</i><br>0.49<br>0.31<br>0.31<br>0.72<br>0.74<br>0.30<br>0.22<br>0.38<br>0.39<br>0.86<br>0.16<br>0.34<br>1.02<br><b>Γ</b>                                     | $\begin{array}{c} (v_j(n)) = \\ \hline MAE \\ 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.10 \\ 0.10 \\ \hline 0.10 \\ \hline \hline 0.00 \\ 0.05 \\ 0.00 \\ 0.05 \\ 0.00 \\ \hline 0.00 \\ 0.00 \\ \hline 0.00 \\ 0.00 \\ \hline $ | = sigmoid,<br><b>S</b><br><i>MARD</i><br>85.06%<br>*<br>38.35%<br>*<br>*<br>*<br>*<br>83.16%<br>*<br>*                                          | opt='sg<br>urprised<br>RMSE<br>0.16<br>0.20<br>0.18<br>0.29<br>0.41<br>0.32<br>0.35<br>0.21<br>0.16<br>0.17<br>0.08<br>0.09<br>0.38                                | $\begin{array}{c} \mathbf{d'}, \ N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.04 \\ \hline \end{array}$ | = 46 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>65.91%<br>66.50%<br>24.83%<br>45.02%<br>25.58%<br>70.50%           | $N_o = 5$<br>Scared<br><i>RMSE</i><br>0.38<br>0.46<br>0.43<br>0.46<br>0.43<br>0.46<br>0.47<br>0.46<br>0.41<br>0.84<br>0.41<br>0.84<br>0.41<br>0.24<br>0.07<br>0.20                                                                            | <i>MAE</i><br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                    | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * 69.77% *            | Test 28<br>Happy<br><i>RMSE</i><br>0.22<br>0.29<br>0.62<br>0.44<br>0.44<br>0.44<br>0.40<br>0.42<br>0.28<br>0.28<br>0.28<br>0.30<br>0.13<br>0.69<br>0.27<br>\$1:0<br>↓↓ | B - Emo<br>MAE<br>0.02<br>0.03<br>0.06<br>0.05<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.02<br>0.03<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.05<br>0.04<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0 | tion Reco<br>MARD<br>*<br>82.33%<br>92.22%<br>*<br>*<br>60.48%<br>82.52%<br>*<br>74.98%<br>52.54%<br>21.01%<br>28.92%      | ognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.65           0.38           0.32           0.42           0.55           0.65           0.38           0.32           0.42           2.55           0.55           0.06           0.39           19:00           H                                 | + RTO<br>MAE<br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br>90.00<br>+ #                                            | $\begin{array}{c} \textbf{R} \ \textbf{[HR+H]} \\ \hline MARD \\ \hline 85.85\% \\ 78.82\% \\ 72.42\% \\ * \\ * \\ 44.22\% \\ * \\ * \\ 65.28\% \\ 51.68\% \\ 53.74\% \end{array}$ | EEG] - φ <sub>3</sub><br>Angry<br><i>RMSE</i><br>0.49<br>0.31<br>0.31<br>0.72<br>0.74<br>0.30<br>0.22<br>0.38<br>0.39<br>0.86<br>0.16<br>0.34<br>1.02                                                               | (v <sub>j</sub> (n)) =<br>MAE<br>0.04<br>0.03<br>0.03<br>0.03<br>0.03<br>0.08<br>0.02<br>0.02<br>0.02<br>0.05<br>0.06<br>0.09<br>0.05<br>0.10<br>0.10<br>0.10<br><b>₹0:00</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = sigmoid,<br><b>S</b><br><i>MARD</i><br>85.06%<br>*<br>38.35%<br>*<br>*<br>*<br>*<br>83.16%<br>*<br>*                                          | opt='sg<br>urprised<br><i>RMSE</i><br>0.16<br>0.20<br>0.18<br>0.29<br>0.41<br>0.32<br>0.35<br>0.21<br>0.16<br>0.17<br>0.08<br>0.09<br>0.38<br>0.09<br>0.38         | $\begin{array}{c} \mathbf{d'}, \ N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.04 \\ \hline \end{array}$ | = 46 × 2, 1<br><u>MARD</u><br>*<br>*<br>*<br>*<br>65.91%<br>66.50%<br>24.83%<br>45.02%<br>25.58%<br>70.50%         | $N_o = 5$<br>Scared<br><i>RMSE</i><br>0.38<br>0.46<br>0.43<br>0.46<br>0.43<br>0.46<br>0.47<br>0.46<br>0.47<br>0.46<br>0.41<br>0.84<br>0.41<br>0.84<br>0.41<br>0.24<br>0.07<br>0.20<br>81:007<br>0.20                                          | <i>MAE</i><br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                    | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * 69.77%                | Test 28<br>Happy<br><i>RMSE</i><br>0.22<br>0.29<br>0.62<br>0.44<br>0.44<br>0.40<br>0.42<br>0.28<br>0.28<br>0.28<br>0.30<br>0.13<br>0.69<br>0.27<br>Stroop<br>          | B - Emo<br>MAE<br>0.02<br>0.03<br>0.06<br>0.05<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.04<br>0.05<br>0.03<br>0.04<br>0.19<br>0.02<br>19<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | tion Reco<br>MARD<br>*<br>82.33%<br>92.22%<br>*<br>*<br>60.48%<br>82.52%<br>*<br>74.98%<br>52.54%<br>21.01%<br>28.92%      | Ognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.65           0.38           0.32           0.42           0.55           0.65           0.38           0.32           0.42           2.55           0.65           0.38           0.32           0.42           2.55           0.66           0.39 | + RTO<br>MAE<br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br>90.0<br>+ 80.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 | $\begin{array}{c} \textbf{R} \ \textbf{[HR+H]} \\ \hline MARD \\ \hline 85.85\% \\ 78.82\% \\ 72.42\% \\ * \\ * \\ 44.22\% \\ * \\ * \\ 65.28\% \\ 51.68\% \\ 53.74\% \end{array}$ | EEG] - φ <sub>3</sub><br>Angry<br><i>RMSE</i><br>0.49<br>0.31<br>0.31<br>0.72<br>0.74<br>0.30<br>0.22<br>0.38<br>0.39<br>0.86<br>0.16<br>0.34<br>1.02                                                               | (v <sub>j</sub> (n)) =         MAE         0.04         0.03         0.03         0.08         0.02         0.02         0.05         0.10         0.10         0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = sigmoid,<br><b>S</b><br><i>MARD</i><br>85.06%<br>*<br>38.35%<br>*<br>*<br>*<br>83.16%<br>*<br>*                                               | opt='sg<br>urprised<br><i>RMSE</i><br>0.16<br>0.20<br>0.18<br>0.29<br>0.41<br>0.32<br>0.35<br>0.21<br>0.16<br>0.17<br>0.08<br>0.09<br>0.38<br>0.09<br>0.38<br>0.09 | $\begin{array}{c} \mathbf{d'}, \ N_h = \\ \hline MAE \\ \hline 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.03 \\ 0.04 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.02 \\ 0.04 \\ \hline \end{array}$ | $= 46 \times 2, 1$ $MARD$ * * * * * * * * * * * * * * * * * * *                                                    | $N_o = 5$ <b>Scared</b> <i>RMSE</i> 0.38 0.46 0.43 0.46 0.43 0.46 0.47 0.46 0.41 0.84 0.41 0.21 0.24 0.07 0.20 80 100 Herefore 60                                                                                                             | <i>MAE</i><br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.0                                                                                    | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |

TABLE 9.16. Emotion recognition results tests 27 and 28. ANN with  $6 \times 10^3$  train epochs and input data with feature extraction.

|                                                                                                                                                               |                                            | Test 29                                                                                                                                                                                                                                                                                                                            | - Emot                                                                                                                                                                                                                                                                                                                                                                      | ion Reco                                                                                                                                                                                                         | gnition $+$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - RTOR                                                                                                                                                   | R [HR+E                                                                                                                         | $\mathbf{EG}$ ] - $\varphi_j$ (                                                                                                          | $v_j(n)) =$                                                                                                                                                                                                                                                                           | sigmoid,                                                                                                   | opt='ada                                                                                                                                                     | m', $N_h$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $= 46 \times 2,$                                                                                                                                     | $N_o = 5$                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{Flight}$                                                                                                                                             |                                            | Нарру                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                  | Sad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                          |                                                                                                                                 | Angry                                                                                                                                    |                                                                                                                                                                                                                                                                                       | S                                                                                                          | urprised                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                      | Scared                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  | Match                                                                                                                                                                                                                                                |
| Dataset                                                                                                                                                       | MARD                                       | RMSE                                                                                                                                                                                                                                                                                                                               | MAE                                                                                                                                                                                                                                                                                                                                                                         | MARD                                                                                                                                                                                                             | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAE                                                                                                                                                      | MARD                                                                                                                            | RMSE                                                                                                                                     | MAE                                                                                                                                                                                                                                                                                   | MARD                                                                                                       | RMSE                                                                                                                                                         | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MARD                                                                                                                                                 | RMSE                                                                                                                                                                                                       | MAE                                                                                                                                                                                                                                                                                              | Accuracy (%)                                                                                                                                                                                                                                         |
| DS:RC1                                                                                                                                                        | 97.63%                                     | 0.16                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                                                                                | 0.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.06                                                                                                                                                     | 74.59%                                                                                                                          | 0.50                                                                                                                                     | 0.05                                                                                                                                                                                                                                                                                  | 45.69%                                                                                                     | 0.14                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                    | 0.21                                                                                                                                                                                                       | 0.02                                                                                                                                                                                                                                                                                             | <b>53.73</b> ( <b>36</b> /67)                                                                                                                                                                                                                        |
| DS:RC2                                                                                                                                                        | *                                          | 0.19                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                                                                                | 1.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.09                                                                                                                                                     | 82.16%                                                                                                                          | 0.34                                                                                                                                     | 0.03                                                                                                                                                                                                                                                                                  | 45.10%                                                                                                     | 0.13                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                    | 0.28                                                                                                                                                                                                       | 0.03                                                                                                                                                                                                                                                                                             | 82.05(64/78)                                                                                                                                                                                                                                         |
| DS:RC3                                                                                                                                                        | *                                          | 0.80                                                                                                                                                                                                                                                                                                                               | 0.08                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                                                                                | 1.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.13                                                                                                                                                     | 79.64%                                                                                                                          | 0.41                                                                                                                                     | 0.04                                                                                                                                                                                                                                                                                  | 30.39%                                                                                                     | 0.16                                                                                                                                                         | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                    | 0.28                                                                                                                                                                                                       | 0.03                                                                                                                                                                                                                                                                                             | <b>57.53</b> ( <b>42</b> /73)                                                                                                                                                                                                                        |
| DS:GC1                                                                                                                                                        | *                                          | 0.17                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                                                                                | 0.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07                                                                                                                                                     | *                                                                                                                               | 0.54                                                                                                                                     | 0.06                                                                                                                                                                                                                                                                                  | 39.86%                                                                                                     | 0.06                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                    | 0.20                                                                                                                                                                                                       | 0.02                                                                                                                                                                                                                                                                                             | <b>22.67</b> (17/75)                                                                                                                                                                                                                                 |
| DS:GC3                                                                                                                                                        | *                                          | 0.21                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                                                                                | 0.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07                                                                                                                                                     | *                                                                                                                               | 0.66                                                                                                                                     | 0.07                                                                                                                                                                                                                                                                                  | 628.24%                                                                                                    | 0.13                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                    | 0.25                                                                                                                                                                                                       | 0.03                                                                                                                                                                                                                                                                                             | <b>100.00</b> ( <b>78</b> /78)                                                                                                                                                                                                                       |
| DS:LS1                                                                                                                                                        | *                                          | 0.13                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                        | 60.50%                                                                                                                                                                                                           | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.03                                                                                                                                                     | *                                                                                                                               | 0.37                                                                                                                                     | 0.03                                                                                                                                                                                                                                                                                  | 36.71%                                                                                                     | 0.08                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                    | 0.18                                                                                                                                                                                                       | 0.02                                                                                                                                                                                                                                                                                             | <b>22.55</b> ( <b>23</b> /102)                                                                                                                                                                                                                       |
| DS:LS2                                                                                                                                                        | *                                          | 0.21                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                        | 43.36%                                                                                                                                                                                                           | 0.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.03                                                                                                                                                     | 38.57%                                                                                                                          | 0.25                                                                                                                                     | 0.02                                                                                                                                                                                                                                                                                  | *                                                                                                          | 0.09                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                    | 0.20                                                                                                                                                                                                       | 0.02                                                                                                                                                                                                                                                                                             | <b>68.00</b> ( <b>51</b> /75)                                                                                                                                                                                                                        |
| DS:VC1                                                                                                                                                        | *                                          | 0.12                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                        | 70.11%                                                                                                                                                                                                           | 0.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.04                                                                                                                                                     | *                                                                                                                               | 0.34                                                                                                                                     | 0.04                                                                                                                                                                                                                                                                                  | 36.74%                                                                                                     | 0.06                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 84.05%                                                                                                                                               | 1.02                                                                                                                                                                                                       | 0.13                                                                                                                                                                                                                                                                                             | <b>16.67</b> (8/48)                                                                                                                                                                                                                                  |
| DS:VC2                                                                                                                                                        | *                                          | 0.12                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                        | *                                                                                                                                                                                                                | 0.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.06                                                                                                                                                     | *                                                                                                                               | 0.35                                                                                                                                     | 0.05                                                                                                                                                                                                                                                                                  | 41.74%                                                                                                     | 0.08                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 71.57%                                                                                                                                               | 0.57                                                                                                                                                                                                       | 0.08                                                                                                                                                                                                                                                                                             | <b>28.95</b> (11/38)                                                                                                                                                                                                                                 |
| DS:CR1                                                                                                                                                        | *                                          | 0.13                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                        | 74.47%                                                                                                                                                                                                           | 2.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.26                                                                                                                                                     | 64.81%                                                                                                                          | 0.91                                                                                                                                     | 0.09                                                                                                                                                                                                                                                                                  | 36.97%                                                                                                     | 0.12                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 61.72%                                                                                                                                               | 0.40                                                                                                                                                                                                       | 0.04                                                                                                                                                                                                                                                                                             | <b>93.15</b> ( <b>68</b> /73)                                                                                                                                                                                                                        |
| DS:CR3                                                                                                                                                        |                                            | 0.09                                                                                                                                                                                                                                                                                                                               | 0.02                                                                                                                                                                                                                                                                                                                                                                        | 38.12%                                                                                                                                                                                                           | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.10                                                                                                                                                     | *                                                                                                                               | 0.14                                                                                                                                     | 0.04                                                                                                                                                                                                                                                                                  | 45.03%                                                                                                     | 0.03                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 62.83%                                                                                                                                               | 0.28                                                                                                                                                                                                       | 0.08                                                                                                                                                                                                                                                                                             | 77.78 (7/9)                                                                                                                                                                                                                                          |
| DS:CLX                                                                                                                                                        | 88.77%                                     | 0.77                                                                                                                                                                                                                                                                                                                               | 0.22                                                                                                                                                                                                                                                                                                                                                                        | 48.73%                                                                                                                                                                                                           | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.04                                                                                                                                                     | 60.12%                                                                                                                          | 0.39                                                                                                                                     | 0.11                                                                                                                                                                                                                                                                                  | 93.84%                                                                                                     | 0.05                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 65.16%                                                                                                                                               | 0.16                                                                                                                                                                                                       | 0.05                                                                                                                                                                                                                                                                                             | <b>0.00</b> ( <b>0</b> /10)                                                                                                                                                                                                                          |
| DS:CL3                                                                                                                                                        | 80.86%                                     | 0.37                                                                                                                                                                                                                                                                                                                               | 0.03                                                                                                                                                                                                                                                                                                                                                                        | 50.39%                                                                                                                                                                                                           | 0.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.06                                                                                                                                                     | 57.89%                                                                                                                          | 1.09                                                                                                                                     | 0.10                                                                                                                                                                                                                                                                                  | *                                                                                                          | 0.14                                                                                                                                                         | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 41.89%                                                                                                                                               | 0.20                                                                                                                                                                                                       | 0.02                                                                                                                                                                                                                                                                                             | $15.12 \ (13/86)$                                                                                                                                                                                                                                    |
|                                                                                                                                                               |                                            |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                 |                                                                                                                                          |                                                                                                                                                                                                                                                                                       |                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  | 00                                                                                                                                                                                                                                                   |
|                                                                                                                                                               |                                            | 04                                                                                                                                                                                                                                                                                                                                 | 05                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                  | 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 05                                                                                                                                                       |                                                                                                                                 | 25                                                                                                                                       | 02                                                                                                                                                                                                                                                                                    |                                                                                                            | 03                                                                                                                                                           | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                      | 22                                                                                                                                                                                                         | 03                                                                                                                                                                                                                                                                                               | 5                                                                                                                                                                                                                                                    |
|                                                                                                                                                               |                                            | -0.                                                                                                                                                                                                                                                                                                                                | <u>.</u> 0.                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                  | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -0.                                                                                                                                                      |                                                                                                                                 | .0.                                                                                                                                      | -0.                                                                                                                                                                                                                                                                                   |                                                                                                            | -0.                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                      | -0.                                                                                                                                                                                                        | 0.                                                                                                                                                                                                                                                                                               | н<br>Н                                                                                                                                                                                                                                               |
|                                                                                                                                                               |                                            | 7∓                                                                                                                                                                                                                                                                                                                                 | <b>4</b>                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                  | ນ<br>T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Se ⊥                                                                                                                                                     |                                                                                                                                 | ∞<br>T                                                                                                                                   | <b>₽9</b> (                                                                                                                                                                                                                                                                           |                                                                                                            | +0                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                      |                                                                                                                                                                                                            | <b>4</b>                                                                                                                                                                                                                                                                                         | 00                                                                                                                                                                                                                                                   |
|                                                                                                                                                               |                                            | 0.2                                                                                                                                                                                                                                                                                                                                | 0.0                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                  | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                      |                                                                                                                                 | 0.4                                                                                                                                      | 0.0                                                                                                                                                                                                                                                                                   |                                                                                                            | 0.1                                                                                                                                                          | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                      | 0.3                                                                                                                                                                                                        | 0.0                                                                                                                                                                                                                                                                                              | 49.                                                                                                                                                                                                                                                  |
|                                                                                                                                                               |                                            |                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                 |                                                                                                                                          |                                                                                                                                                                                                                                                                                       |                                                                                                            |                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                      |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                      |
|                                                                                                                                                               |                                            | Test 3                                                                                                                                                                                                                                                                                                                             | 80 - Em                                                                                                                                                                                                                                                                                                                                                                     | otion Red                                                                                                                                                                                                        | cognition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + RTC                                                                                                                                                    | DR [HR+                                                                                                                         | $\mathbf{EEG}$ ] - $\varphi$                                                                                                             | $v_j(v_j(n))$                                                                                                                                                                                                                                                                         | = ReLU,                                                                                                    | opt='sgd                                                                                                                                                     | ', $N_h =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $46 \times 2, N$                                                                                                                                     | o = 5                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                      |
| Flight                                                                                                                                                        |                                            | Test 3<br>Happy                                                                                                                                                                                                                                                                                                                    | 80 - Em                                                                                                                                                                                                                                                                                                                                                                     | otion Red                                                                                                                                                                                                        | cognition<br>Sad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + RTC                                                                                                                                                    | DR [HR+                                                                                                                         | EEG] - 4<br>Angry                                                                                                                        | $\phi_j(v_j(n))$                                                                                                                                                                                                                                                                      | = ReLU,<br>S                                                                                               | opt='sgd<br>urprised                                                                                                                                         | $N_h =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $46 \times 2, N$                                                                                                                                     | $b_o = 5$<br>Scared                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                  | Match                                                                                                                                                                                                                                                |
| Flight<br>Dataset                                                                                                                                             | MARD                                       | Test 3<br>Happy<br>RMSE                                                                                                                                                                                                                                                                                                            | 80 - Em<br>MAE                                                                                                                                                                                                                                                                                                                                                              | otion Red                                                                                                                                                                                                        | cognition<br>Sad<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $+ \mathbf{RTC}$                                                                                                                                         | <b>DR</b> [ <b>HR</b> + $MARD$                                                                                                  | EEG] - 4<br>Angry<br>RMSE                                                                                                                | $D_j(v_j(n))$ $MAE$                                                                                                                                                                                                                                                                   | $= ReLU,$ $\mathbf{S}$ $MARD$                                                                              | opt='sgd<br>urprised<br>RMSE                                                                                                                                 | $N_h = MAE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $46 \times 2, N$<br>MARD                                                                                                                             | $s_o = 5$<br>Scared<br>RMSE                                                                                                                                                                                | MAE                                                                                                                                                                                                                                                                                              | Match<br>Accuracy (%)                                                                                                                                                                                                                                |
| Flight<br>Dataset<br>DS:RC1                                                                                                                                   | MARD *                                     | Test 3<br>Happy<br>RMSE                                                                                                                                                                                                                                                                                                            | <b>30 - Em</b><br>MAE<br>0.02                                                                                                                                                                                                                                                                                                                                               | otion Red<br>MARD<br>*                                                                                                                                                                                           | cognition<br>Sad<br>RMSE<br>0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + <b>RTC</b><br><i>MAE</i><br>0.04                                                                                                                       | DR [HR+<br><i>MARD</i><br>78.23%                                                                                                | <b>EEG] -</b> 4<br><b>Angry</b><br><i>RMSE</i><br>0.50                                                                                   | $\frac{D_j(v_j(n))}{MAE}$                                                                                                                                                                                                                                                             | = ReLU, $S$ $MARD$ $41.37%$                                                                                | opt='sgd<br>urprised<br>RMSE<br>0.13                                                                                                                         | $N_h = \frac{MAE}{0.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $46 \times 2, N$ $MARD$ *                                                                                                                            | $5_{o} = 5$ <b>Scared</b> $RMSE$ $0.19$                                                                                                                                                                    | MAE 0.02                                                                                                                                                                                                                                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)                                                                                                                                                                                                               |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2                                                                                                                         | MARD * *                                   | Test 3           Happy           RMSE           0.16           0.17                                                                                                                                                                                                                                                                | <b>BO - Em</b><br>MAE<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                       | otion Red<br><i>MARD</i><br>*<br>81.63%                                                                                                                                                                          | cognition<br>Sad<br>RMSE<br>0.42<br>0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + RTC<br>MAE<br>0.04<br>0.07                                                                                                                             | DR [HR+<br>MARD<br>78.23%<br>69.96%                                                                                             | • <b>EEG] -</b> <i>q</i><br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29                                                                  | $\frac{D_j(v_j(n))}{MAE}$ $0.04$ $0.03$                                                                                                                                                                                                                                               | = ReLU,<br><b>S</b><br><i>MARD</i><br>41.37%<br>39.24%                                                     | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12                                                                                                                 | $N_h = MAE$<br>0.01<br>0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $46 \times 2, N$ $MARD$ $*$ $*$                                                                                                                      | $5_{o} = 5$ <b>Scared</b> $RMSE$ $0.19$ $0.26$                                                                                                                                                             | MAE<br>0.02<br>0.03                                                                                                                                                                                                                                                                              | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)                                                                                                                                                                                              |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3                                                                                                               | MARD * * * *                               | Test 3<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78                                                                                                                                                                                                                                                                             | <b>BO - Em</b><br><u>MAE</u><br>0.02<br>0.02<br>0.07                                                                                                                                                                                                                                                                                                                        | otion Rec<br><u>MARD</u><br>*<br>81.63%<br>91.43%                                                                                                                                                                | <b>cognition</b><br><b>Sad</b><br><i>RMSE</i><br>0.42<br>0.81<br>1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11                                                                                                              | DR [HR+<br>MARD<br>78.23%<br>69.96%<br>61.86%                                                                                   | <b>EEG] -</b> <i>4</i><br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.28                                                            | $     \underline{MAE} \\     0.04 \\     0.03 \\     0.03     0.03     $                                                                                                                                                                                                              | $= ReLU, \\ S \\ MARD \\ 41.37\% \\ 39.24\% \\ 6.92\%$                                                     | opt='sgd<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12                                                                                                  | $N_h = \frac{MAE}{0.01}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $   \begin{array}{r}     46 \times 2, \ N \\     \hline     MARD \\     * \\     * \\     *   \end{array} $                                          | $b_{o} = 5$<br>Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24                                                                                                                                               | MAE<br>0.02<br>0.03<br>0.03                                                                                                                                                                                                                                                                      | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)                                                                                                                                                                             |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1                                                                                                     | MARD * * * * *                             | Test 3<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24                                                                                                                                                                                                                                                                     | <b>30 - Em</b><br><i>MAE</i><br>0.02<br>0.02<br>0.02<br>0.07<br>0.03                                                                                                                                                                                                                                                                                                        | otion Rec           MARD           *           81.63%           91.43%           *                                                                                                                               | <b>cognition</b><br><b>Sad</b><br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11                                                                                                      | DR [HR+<br><i>MARD</i><br>78.23%<br>69.96%<br>61.86%<br>*                                                                       | <b>EEG] -</b> <i>q</i><br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68                                                    | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \end{array}$                                                                                                                                                                                | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.24% 6.92% 56.80%                                                    | opt='sgd<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.12<br>0.06                                                                                  | $N_{h} = \frac{MAE}{0.01}$ 0.01 0.01 0.01 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 46 × 2, N<br>MARD<br>*<br>*<br>*                                                                                                                     | $b_{o} = 5$<br>Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26                                                                                                                                       | MAE<br>0.02<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                              | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)                                                                                                                                                            |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3                                                                                           | MARD * * * * * *                           | Test 3<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23                                                                                                                                                                                                                                                             | MAE           0.02           0.02           0.07           0.03                                                                                                                                                                                                                                                                                                             | 00000 Rec<br>MARD<br>*<br>81.63%<br>91.43%<br>*<br>*                                                                                                                                                             | cognition<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09                                                                                              | DR [HR+<br><i>MARD</i><br>78.23%<br>69.96%<br>61.86%<br>*<br>*                                                                  | <b>EEG]</b> - <i>q</i><br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69                                            | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \end{array}$                                                                                                                                                                        | $= ReLU, \\ S \\ MARD \\ 41.37\% \\ 39.24\% \\ 6.92\% \\ 56.80\% \\ *$                                     | opt='sgd<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15                                                                          | $N_{h} = \frac{MAE}{0.01}$ 0.01 0.01 0.01 0.01 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46 × 2, N<br>MARD<br>*<br>*<br>*<br>*                                                                                                                | $b_{o} = 5$<br>Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27                                                                                                                               | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                      | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)                                                                                                                                          |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1                                                                                 | MARD * * * * * * *                         | Test 3<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17                                                                                                                                                                                                                                                     | MAE           0.02           0.02           0.07           0.03           0.02                                                                                                                                                                                                                                                                                              | otion Rec           MARD           *           81.63%           91.43%           *           *                                                                                                                   | <b>cognition</b><br><b>Sad</b><br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06                                                                                      | DR [HR+<br><u>MARD</u><br>78.23%<br>69.96%<br>61.86%<br>*<br>*<br>*                                                             | EEG] - 4<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30                                                         | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ \end{array}$                                                                                                                                                             | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.24% 6.92% 56.80% * 49.69%                                           | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07                                                                                 | $N_{h} = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 46 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*                                                                                                      |                                                                                                                                                                                                            | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02                                                                                                                                                                                                                                      | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)                                                                                                                        |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2                                                                       | MARD * * * * * * * * *                     | Test 3<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22                                                                                                                                                                                                                                             | MAE           0.02           0.02           0.07           0.03           0.02           0.03           0.02                                                                                                                                                                                                                                                                | otion Rec           MARD           *           81.63%           91.43%           *           *           59.85%                                                                                                  | <b>cognition</b><br><b>Sad</b><br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64<br>0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04                                                                              | DR [HR+<br><u>MARD</u><br>78.23%<br>69.96%<br>61.86%<br>*<br>*<br>39.78%                                                        | EEG] - 4<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21                                                        | $\begin{array}{c c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ \end{array}$                                                                                                                                   | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.24% 6.92% 56.80% * 49.69% *                                         | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11                                                                         | $N_{h} = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.01$ $0.02$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 46 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                                 |                                                                                                                                                                                                            | MAE 0.02 0.03 0.03 0.03 0.03 0.03 0.02 0.02                                                                                                                                                                                                                                                      | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)                                                                                                       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1                                                             | MARD * * * * * * * * * *                   | Test 3           Happy           RMSE           0.16           0.17           0.78           0.24           0.23           0.17           0.23           0.17           0.23           0.17           0.23                                                                                                                         | MAE           0.02           0.02           0.07           0.03           0.03           0.02                                                                                                                                                                                                                                                                               | MARD           *           81.63%           91.43%           *           *           \$59.85%           81.66%                                                                                                   | cognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $+ \mathbf{RTC}$ $\frac{MAE}{0.04}$ 0.07 0.11 0.11 0.09 0.06 0.04 0.04                                                                                   | DR [HR+<br><u>MARD</u><br>78.23%<br>69.96%<br>61.86%<br>*<br>*<br>39.78%<br>*                                                   | EEG] - 4<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21<br>0.34                                         | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ \end{array}$                                                                                                                             | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.24% 6.92% 56.80% * 49.69% * 23.64%                                  | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04                                                         | $N_h = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.01$ $0.01$ $0.01$ $0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 46 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                             | o = 5<br>Scared<br>RMSE<br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23<br>0.21<br>1.01                                                                                                                    | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02                                                                                                                                                                                                                              | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)                                                                                       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2                                                   | MARD * * * * * * * * * * * * *             | Test 3<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22<br>0.13<br>0.14                                                                                                                                                                                                                             | MAE           0.02           0.02           0.07           0.03           0.02           0.03           0.02           0.03           0.02                                                                                                                                                                                                                                  | MARD           *           81.63%           91.43%           *           *           \$59.85%           81.66%                                                                                                   | cognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.32           0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $+ \mathbf{RTC}$ $MAE$ $0.04$ $0.07$ $0.11$ $0.11$ $0.09$ $0.06$ $0.04$ $0.04$ $0.06$                                                                    | DR [HR+<br><i>MARD</i><br>78.23%<br>69.96%<br>61.86%<br>*<br>*<br>39.78%<br>*<br>*                                              | EEG] - 4<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21<br>0.34<br>0.36                                        | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \end{array}$                                                                                                                        | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.24% 6.92% 56.80% * 49.69% * 23.64% 28.42%                           | opt='sgd<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07                                          | $P_{h} N_{h} = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.01$ $0.00$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                               | o = 5<br>Scared<br>RMSE<br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23<br>0.21<br>1.01<br>0.55                                                                                                            | MAE           0.02           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.02           0.13           0.07 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)                                                                      |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1                               | MARD * * * * * * * * * * * * * * * *       | Test 3           Happy           RMSE           0.16           0.17           0.24           0.23           0.17           0.22           0.13           0.14           0.12                                                                                                                                                       | MAE           0.02           0.02           0.07           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03                                                                                           | atom         atom           MARD         *           \$81.63%         91.43%           \$91.43%         *           \$81.66%         *           \$75.32%         *                                              | cognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.32           0.42           2.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $+ \mathbf{RTC}$ $MAE$ $0.04$ $0.07$ $0.11$ $0.11$ $0.09$ $0.06$ $0.04$ $0.04$ $0.04$ $0.06$ $0.26$                                                      | DR [HR+<br><i>MARD</i><br>78.23%<br>69.96%<br>61.86%<br>*<br>*<br>39.78%<br>*<br>*<br>66.46%                                    | EEG] - 9<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21<br>0.34<br>0.36<br>0.92                         | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ \end{array}$                                                                                                             | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.24% 6.92% 56.80% * 49.69% * 23.64% 28.42% 37.85%                    | opt='sgd<br>urprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12                                  | $P, N_h = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.01$ $0.00$ $0.01$ $0.01$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 46 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>78.86%<br>66.83%<br>63.04%                                                              | $b_o = 5$<br><b>Scared</b><br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23<br>0.21<br>1.01<br>0.55<br>0.40                                                                                  | MAE           0.02           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.04                               | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)                                                     |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1<br>DS:CR3                     | MARD * * * * * * * * * * * * * * * * * * * | Test 3           Happy           RMSE           0.16           0.17           0.78           0.24           0.23           0.17           0.23           0.17           0.23           0.17           0.22           0.13           0.14           0.12           0.05                                                             | MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02 | $\begin{array}{c} \textbf{otion Rec}\\ \hline MARD \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $                                                                                                | <b>cognition</b><br><b>Sad</b><br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64<br>0.38<br>0.32<br>0.42<br>2.58<br>0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $+ \mathbf{RTC}$ $MAE$ $0.04$ $0.07$ $0.11$ $0.11$ $0.09$ $0.06$ $0.04$ $0.04$ $0.04$ $0.06$ $0.26$ $0.15$                                               | DR [HR+<br><i>MARD</i><br>78.23%<br>69.96%<br>61.86%<br>*<br>*<br>39.78%<br>*<br>66.46%<br>*                                    | EEG] - 9<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21<br>0.34<br>0.36<br>0.92<br>0.17                 | $\begin{array}{c c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ \end{array}$                                                                                                   | = ReLU, $S$ $MARD$ $41.37%$ $39.24%$ $6.92%$ $56.80%$ $*$ $49.69%$ $*$ $23.64%$ $28.42%$ $37.85%$ $12.08%$ | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01                                 | $P, N_h = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.00$ $0.01$ $0.01$ $0.00$ $0.01$ $0.00$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 46 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                     | $c_{o} = 5$ <b>Scared</b> <i>RMSE</i> 0.19 0.26 0.24 0.26 0.27 0.23 0.21 1.01 0.55 0.40 0.30                                                                                                               | MAE           0.02           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.04           0.08                                                             | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)                                      |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX | MARD * * * * * * * * * * * * * * * * * * * | Test 3           Happy           RMSE           0.16           0.17           0.78           0.24           0.23           0.17           0.23           0.17           0.23           0.17           0.23           0.17           0.25           0.13           0.14           0.12           0.05           0.76                | MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.02           0.02           0.01           0.02           0.21                | MARD           *           81.63%           91.43%           *           *           59.85%           81.66%           *           75.32%           52.57%           20.34%                                      | <b>cognition</b><br><b>Sad</b><br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64<br>0.38<br>0.32<br>0.42<br>2.58<br>0.55<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $+ \mathbf{RTC}$ $MAE$ $0.04$ $0.07$ $0.11$ $0.11$ $0.09$ $0.06$ $0.04$ $0.04$ $0.04$ $0.06$ $0.26$ $0.15$ $0.02$                                        | DR [HR+<br><u>MARD</u><br>78.23%<br>69.96%<br>61.86%<br>*<br>*<br>39.78%<br>*<br>66.46%<br>*<br>56.07%                          | EEG] - 4<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36                | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ \end{array}$                                                                                                     | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.24% 6.92% 56.80% * 49.69% * 23.64% 28.42% 37.85% 12.08% *           | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04                                 | $P, N_h = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\begin{array}{c} 46\times2,\ N\\ \hline \\ MARD\\ *\\ *\\ *\\ *\\ *\\ *\\ *\\ 78.86\%\\ 66.83\%\\ 63.04\%\\ 67.65\%\\ 60.58\%\\ \end{array}$        |                                                                                                                                                                                                            | MAE           0.02           0.03           0.03           0.03           0.03           0.03           0.03           0.02           0.13           0.07           0.04           0.08           0.04                                                                                           | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)                       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | Test         3           Happy         RMSE           0.16         0.17           0.78         0.24           0.23         0.17           0.23         0.17           0.12         0.13           0.14         0.12           0.05         0.76           0.36         0.36                                                        | MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.21           0.03                               | otion Rec           MARD           *           81.63%           91.43%           *           *           59.85%           81.66%           *           75.32%           52.57%           20.34%           28.69% | $\begin{array}{c} \textbf{cognition} \\ \textbf{Sad} \\ RMSE \\ \hline 0.42 \\ 0.81 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.32 \\ 0.42 \\ 2.58 \\ 0.55 \\ 0.06 \\ 0.39 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $+ \mathbf{RTC}$ $MAE$ $0.04$ $0.07$ $0.11$ $0.11$ $0.09$ $0.06$ $0.04$ $0.04$ $0.06$ $0.26$ $0.15$ $0.02$ $0.03$                                        | DR [HR+<br><u>MARD</u><br>78.23%<br>69.96%<br>61.86%<br>*<br>*<br>39.78%<br>*<br>39.78%<br>*<br>66.46%<br>*<br>56.07%<br>60.20% | EEG] - 4<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10        | $\begin{array}{c c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \end{array}$                                                                                   | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.24% 6.92% 56.80% * 49.69% * 23.64% 28.42% 37.85% 12.08% * *         | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04 | $P, N_h = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.01$ $0.00$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 46 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                     |                                                                                                                                                                                                            | $\begin{array}{c c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.08 \\ 0.04 \\ 0.01 \\ \end{array}$                                                                                                                                   | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86)      |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | Test 3<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36                                                                                                                                                                                             | MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.21           0.03                               | otion Rec           MARD           *           81.63%           91.43%           *           *           59.85%           81.66%           *           75.32%           52.57%           20.34%           28.69% | $\begin{array}{c} \textbf{cognition} \\ \textbf{Sad} \\ RMSE \\ \hline 0.42 \\ 0.81 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.32 \\ 0.42 \\ 2.58 \\ 0.55 \\ 0.06 \\ 0.39 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $+ \mathbf{RTC}$ $MAE$ $0.04$ $0.07$ $0.11$ $0.11$ $0.09$ $0.06$ $0.04$ $0.04$ $0.06$ $0.26$ $0.15$ $0.02$ $0.03$                                        | DR [HR+<br><u>MARD</u><br>78.23%<br>69.96%<br>61.86%<br>*<br>*<br>39.78%<br>*<br>66.46%<br>*<br>56.07%<br>60.20%                | EEG] - 4<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10        | $\begin{array}{c c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \hline \end{array}$                                                                                    | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.24% 6.92% 56.80% * 49.69% * 23.64% 28.42% 37.85% 12.08% * *         | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.02                         | $P, N_h = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.001$ $0.001$ $0.001$ $0.001$ $0.01$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                     | $\begin{array}{l} s = 5 \\ \hline \textbf{Scared} \\ RMSE \\ \hline 0.19 \\ 0.26 \\ 0.24 \\ 0.26 \\ 0.27 \\ 0.23 \\ 0.21 \\ 1.01 \\ 0.55 \\ 0.40 \\ 0.30 \\ 0.15 \\ 0.18 \\ \hline \end{array}$            | $\begin{array}{c c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.07 \\ 0.04 \\ 0.08 \\ 0.04 \\ 0.01 \\ \end{array}$                                                                                                                                           | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86)      |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | Test 3           Happy           RMSE           0.16           0.17           0.78           0.24           0.23           0.17           0.23           0.17           0.23           0.17           0.23           0.17           0.22           0.13           0.14           0.12           0.05           0.76           0.36 | MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.21           0.03                                                                                           | otion Rec           MARD           *           81.63%           91.43%           *           *           59.85%           81.66%           *           75.32%           52.57%           20.34%           28.69% | cognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.32           0.42           2.58           0.55           0.06           0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br><b>90</b>                 | DR [HR+<br><u>MARD</u><br>78.23%<br>69.96%<br>61.86%<br>*<br>*<br>39.78%<br>*<br>66.46%<br>*<br>56.07%<br>60.20%                | EEG] - ∉<br>Angry<br>RMSE<br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10        | $\begin{array}{c c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \hline \\$     | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.24% 6.92% 56.80% * 49.69% * 23.64% 28.42% 37.85% 12.08% * *         | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.02<br>0.12                 | $P, N_h = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\begin{array}{c} 46\times2,\ N\\ \hline MARD\\ *\\ *\\ *\\ *\\ *\\ *\\ *\\ 78.86\%\\ 66.83\%\\ 63.04\%\\ 67.65\%\\ 60.58\%\\ 28.87\%\\ \end{array}$ | ₀ = 5         Scared         RMSE         0.19         0.26         0.24         0.26         0.27         0.23         0.21         1.01         0.55         0.40         0.30         0.15         0.18 | MAE           0.02           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.03           0.02           0.13           0.07           0.04           0.08           0.04           0.01 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86)      |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:CR3<br>DS:CR3<br>DS:CLX<br>DS:CL3 | MARD * * * * * * * * * * * * * * * * * * * | Test 3<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36                                                                                                                                                                                             | MAE           0.02           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.01           0.02           0.03                                                             | otion Rec           MARD           *           81.63%           91.43%           *           *           59.85%           81.66%           *           75.32%           52.57%           20.34%           28.69% | Cognition<br>Sad<br>RMSE<br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64<br>0.38<br>0.32<br>0.42<br>2.58<br>0.55<br>0.06<br>0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br>9000                      | DR [HR+<br><u>MARD</u><br>78.23%<br>69.96%<br>61.86%<br>*<br>*<br>39.78%<br>*<br>66.46%<br>*<br>56.07%<br>60.20%                | EEG] - 4<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10 | $\begin{array}{c c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \hline \hline \\ \hline$ | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.24% 6.92% 56.80% * 49.69% * 23.64% 28.42% 37.85% 12.08% * *         | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.12                         | $P, N_h = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.01$ $0.00$ $0.01$ $0.01$ $0.00$ $0.01$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.00$ $0.00$ $0.01$ $0.00$ $0.00$ $0.01$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.00$ $0.0$ | $\begin{array}{c} 46\times2,\ N\\ \hline MARD\\ *\\ *\\ *\\ *\\ *\\ *\\ 78.86\%\\ 66.83\%\\ 63.04\%\\ 67.65\%\\ 60.58\%\\ 28.87\%\\ \end{array}$     | o = 5         Scared         RMSE         0.19         0.26         0.24         0.26         0.27         0.23         0.21         1.01         0.55         0.40         0.30         0.15         0.18 | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.13<br>0.07<br>0.04<br>0.08<br>0.04<br>0.01<br><b>E00</b><br>00<br>01                                                                                                                                                            | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86)      |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:CR3<br>DS:CR3<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * * | Test 3<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.23<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36<br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b><br><b>7</b>                                                                                             | MAE         0.02         0.02         0.02         0.03         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.01         0.02         0.03         0.04         0.05         0.07         0.08         90.01         0.03                                   | otion Rec           MARD           *           81.63%           91.43%           *           *           59.85%           81.66%           *           75.32%           52.57%           20.34%           28.69% | Cognition<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64<br>0.38<br>0.32<br>0.42<br>2.58<br>0.55<br>0.06<br>0.39<br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b><br><b>19.0</b> | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.04<br>0.06<br>0.26<br>0.15<br>0.02<br>0.03<br>90.00<br>++<br>80 | DR [HR+<br><u>MARD</u><br>78.23%<br>69.96%<br>61.86%<br>*<br>*<br>39.78%<br>*<br>66.46%<br>*<br>56.07%<br>60.20%                | EEG] - 4<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.21<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10 | Deg (vg (n))         MAE         0.04         0.03         0.03         0.08         0.02         0.02         0.05         0.06         0.09         0.05         0.11         0.11                                                                                                  | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.24% 6.92% 56.80% * 49.69% * 23.64% 28.42% 37.85% 12.08% * *         | opt='sgd<br>urprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.12                         | $P, N_h = \frac{MAE}{0.01}$ $0.01$ $0.01$ $0.01$ $0.02$ $0.01$ $0.00$ $0.01$ $0.00$ $0.01$ $0.01$ $0.00$ $0.01$ $0.01$ $0.01$ $0.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\begin{array}{c} 46\times2,\ N\\ \hline MARD\\ *\\ *\\ *\\ *\\ *\\ *\\ 78.86\%\\ 66.83\%\\ 63.04\%\\ 67.65\%\\ 60.58\%\\ 28.87\%\\ \end{array}$     | ₀ = 5         Scared         RMSE         0.19         0.26         0.24         0.26         0.21         1.01         0.55         0.40         0.30         0.15         0.18                           | <i>MAE</i><br>0.02<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.02<br>0.02                                                                                                                                                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86)<br>0 |

TABLE 9.17. Emotion recognition results tests 29 and 30. ANN with  $6 \times 10^3$  train epochs and input data with feature extraction.

|                                                                                                                                                               |                                                 | Test 31                                                                                                                                                                                                                                 | - Emo                                                                                                                                                                                                             | tion Reco                                                                                                   | gnition -                                                                                                                                                                                                                | $+ \mathbf{RTO}$                                                                                                                        | R [HR+C                                                                                 | $\mathbf{GSR}$ ] - $\varphi_j$                                                                                                                                                                                    | $(v_j(n)) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = ReLU, o                                                                                                                  | pt='adai                                                                                                                                                             | m', $N_h$ =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $= 10 \times 2, 1$                                                                                            | $N_o = 5$                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{Flight}$                                                                                                                                             |                                                 | Happy                                                                                                                                                                                                                                   |                                                                                                                                                                                                                   |                                                                                                             | Sad                                                                                                                                                                                                                      |                                                                                                                                         |                                                                                         | Angry                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\mathbf{S}$                                                                                                               | urprised                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               | Scared                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                     | Match                                                                                                                                                                                                                                           |
| Dataset                                                                                                                                                       | MARD                                            | RMSE                                                                                                                                                                                                                                    | MAE                                                                                                                                                                                                               | MARD                                                                                                        | RMSE                                                                                                                                                                                                                     | MAE                                                                                                                                     | MARD                                                                                    | RMSE                                                                                                                                                                                                              | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MARD                                                                                                                       | RMSE                                                                                                                                                                 | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MARD                                                                                                          | RMSE                                                                                                                                                                                                                                            | MAE                                                                                                                                                                                                                                                 | Accuracy (%)                                                                                                                                                                                                                                    |
| DS:RC1                                                                                                                                                        | *                                               | 0.17                                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                              | *                                                                                                           | 0.97                                                                                                                                                                                                                     | 0.09                                                                                                                                    | 71.83%                                                                                  | 0.44                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 43.44%                                                                                                                     | 0.12                                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                             | 0.28                                                                                                                                                                                                                                            | 0.03                                                                                                                                                                                                                                                | <b>56.72</b> ( <b>38</b> /67)                                                                                                                                                                                                                   |
| DS:RC2                                                                                                                                                        | *                                               | 0.20                                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                              | 84.17%                                                                                                      | 1.07                                                                                                                                                                                                                     | 0.10                                                                                                                                    | 65.80%                                                                                  | 0.39                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 42.08%                                                                                                                     | 0.13                                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                             | 0.22                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                | <b>84.62</b> (66/78)                                                                                                                                                                                                                            |
| DS:RC3                                                                                                                                                        | *                                               | 0.78                                                                                                                                                                                                                                    | 0.07                                                                                                                                                                                                              | *                                                                                                           | 1.57                                                                                                                                                                                                                     | 0.14                                                                                                                                    | *                                                                                       | 0.66                                                                                                                                                                                                              | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.33%                                                                                                                      | 0.11                                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                             | 0.31                                                                                                                                                                                                                                            | 0.03                                                                                                                                                                                                                                                | <b>57.53</b> ( <b>42</b> /73)                                                                                                                                                                                                                   |
| DS:GC1                                                                                                                                                        | *                                               | 0.21                                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                              | *                                                                                                           | 0.99                                                                                                                                                                                                                     | 0.10                                                                                                                                    | *                                                                                       | 0.67                                                                                                                                                                                                              | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 60.19%                                                                                                                     | 0.07                                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                             | 0.20                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                | 22.67 (17/75)                                                                                                                                                                                                                                   |
| DS:GC3                                                                                                                                                        | *                                               | 0.21                                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                              | *                                                                                                           | 0.71                                                                                                                                                                                                                     | 0.07                                                                                                                                    | *                                                                                       | 0.64                                                                                                                                                                                                              | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *                                                                                                                          | 0.14                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                             | 0.26                                                                                                                                                                                                                                            | 0.03                                                                                                                                                                                                                                                | $98.72 \ (77/78)$                                                                                                                                                                                                                               |
| DS:LS1                                                                                                                                                        | *                                               | 0.11                                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                              | 75.08%                                                                                                      | 0.56                                                                                                                                                                                                                     | 0.03                                                                                                                                    | 93.22%                                                                                  | 0.48                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.46%                                                                                                                     | 0.07                                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                             | 0.18                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                | <b>22.55</b> ( <b>23</b> /102)                                                                                                                                                                                                                  |
| DS:LS2                                                                                                                                                        | *                                               | 0.18                                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                              | 46.21%                                                                                                      | 0.44                                                                                                                                                                                                                     | 0.04                                                                                                                                    | 99.98%                                                                                  | 0.67                                                                                                                                                                                                              | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *                                                                                                                          | 0.09                                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | *                                                                                                             | 0.17                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                | <b>68.00</b> ( <b>51</b> /75)                                                                                                                                                                                                                   |
| DS:VC1                                                                                                                                                        | *                                               | 0.12                                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                              | 74.40%                                                                                                      | 0.36                                                                                                                                                                                                                     | 0.04                                                                                                                                    | *                                                                                       | 0.33                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.15%                                                                                                                     | 0.04                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 81.74%                                                                                                        | 1.01                                                                                                                                                                                                                                            | 0.13                                                                                                                                                                                                                                                | <b>16.67</b> (8/48)                                                                                                                                                                                                                             |
| DS:VC2                                                                                                                                                        | *                                               | 0.09                                                                                                                                                                                                                                    | 0.01                                                                                                                                                                                                              | *                                                                                                           | 0.36                                                                                                                                                                                                                     | 0.04                                                                                                                                    | *                                                                                       | 0.29                                                                                                                                                                                                              | 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 28.21%                                                                                                                     | 0.07                                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67.86%                                                                                                        | 0.58                                                                                                                                                                                                                                            | 0.08                                                                                                                                                                                                                                                | $28.95 \ (11/38)$                                                                                                                                                                                                                               |
| DS:CR1                                                                                                                                                        | *                                               | 0.20                                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                              | 73.21%                                                                                                      | 2.53                                                                                                                                                                                                                     | 0.25                                                                                                                                    | 66.33%                                                                                  | 0.98                                                                                                                                                                                                              | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35.28%                                                                                                                     | 0.12                                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 67.98%                                                                                                        | 0.44                                                                                                                                                                                                                                            | 0.05                                                                                                                                                                                                                                                | $89.04 \ (65/73)$                                                                                                                                                                                                                               |
| DS:CR3                                                                                                                                                        | *                                               | 0.07                                                                                                                                                                                                                                    | 0.02                                                                                                                                                                                                              | 53.17%                                                                                                      | 0.51                                                                                                                                                                                                                     | 0.14                                                                                                                                    | *                                                                                       | 0.13                                                                                                                                                                                                              | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.44%                                                                                                                     | 0.01                                                                                                                                                                 | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 66.41%                                                                                                        | 0.31                                                                                                                                                                                                                                            | 0.08                                                                                                                                                                                                                                                | <b>66.67</b> ( <b>6</b> /9)                                                                                                                                                                                                                     |
| DS:CLX                                                                                                                                                        | 89.29%                                          | 0.78                                                                                                                                                                                                                                    | 0.22                                                                                                                                                                                                              | 19.56%                                                                                                      | 0.07                                                                                                                                                                                                                     | 0.02                                                                                                                                    | 67.79%                                                                                  | 0.42                                                                                                                                                                                                              | 0.12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *                                                                                                                          | 0.04                                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 58.11%                                                                                                        | 0.15                                                                                                                                                                                                                                            | 0.04                                                                                                                                                                                                                                                | <b>0.00</b> ( <b>0</b> /10)                                                                                                                                                                                                                     |
| DS:CL3                                                                                                                                                        | 70.88%                                          | 0.35                                                                                                                                                                                                                                    | 0.03                                                                                                                                                                                                              | 48.22%                                                                                                      | 0.65                                                                                                                                                                                                                     | 0.05                                                                                                                                    | 58.59%                                                                                  | 1.09                                                                                                                                                                                                              | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | *                                                                                                                          | 0.12                                                                                                                                                                 | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 48.23%                                                                                                        | 0.23                                                                                                                                                                                                                                            | 0.02                                                                                                                                                                                                                                                | $15.12\;(13/86)$                                                                                                                                                                                                                                |
|                                                                                                                                                               |                                                 |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                   |                                                                                                             |                                                                                                                                                                                                                          |                                                                                                                                         |                                                                                         |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     | 04                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                                 | 22                                                                                                                                                                                                                                      | 05                                                                                                                                                                                                                |                                                                                                             | 61                                                                                                                                                                                                                       | 06                                                                                                                                      |                                                                                         | 25                                                                                                                                                                                                                | 02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                            | 03                                                                                                                                                                   | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               | 22                                                                                                                                                                                                                                              | 03                                                                                                                                                                                                                                                  | 1.0                                                                                                                                                                                                                                             |
|                                                                                                                                                               |                                                 | 0                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                 |                                                                                                             | 0                                                                                                                                                                                                                        | 0.                                                                                                                                      |                                                                                         | 0                                                                                                                                                                                                                 | 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                            | 0                                                                                                                                                                    | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                               | 0                                                                                                                                                                                                                                               | .0                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                 |
|                                                                                                                                                               |                                                 | 4<br>1                                                                                                                                                                                                                                  | <b>4</b><br>+                                                                                                                                                                                                     |                                                                                                             | 33                                                                                                                                                                                                                       | +6                                                                                                                                      |                                                                                         | ъ<br>Н                                                                                                                                                                                                            | <b>9</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                            | +6                                                                                                                                                                   | +<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                               | ÷                                                                                                                                                                                                                                               | <b>4</b>                                                                                                                                                                                                                                            | 25                                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                                 | 0.2                                                                                                                                                                                                                                     | 0.0                                                                                                                                                                                                               |                                                                                                             | 0.8                                                                                                                                                                                                                      | 0.0                                                                                                                                     |                                                                                         | 0.5                                                                                                                                                                                                               | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            | 0.0                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                               | 0.3                                                                                                                                                                                                                                             | 0.0                                                                                                                                                                                                                                                 | 48.                                                                                                                                                                                                                                             |
|                                                                                                                                                               |                                                 |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                   |                                                                                                             |                                                                                                                                                                                                                          |                                                                                                                                         |                                                                                         |                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                            |                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                               |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                 |
|                                                                                                                                                               |                                                 | Test 32                                                                                                                                                                                                                                 | 2 - Emo                                                                                                                                                                                                           | tion Reco                                                                                                   | ognition -                                                                                                                                                                                                               | + RTO                                                                                                                                   | R [HR+0                                                                                 | $\mathbf{GSR}$ ] - $\varphi_{1}$                                                                                                                                                                                  | $(v_i(n)) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = sigmoid.                                                                                                                 | opt='sg                                                                                                                                                              | d', $N_h =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $= 10 \times 2$ , 1                                                                                           | $V_o = 5$                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                 |
| Flight                                                                                                                                                        |                                                 | Test 32<br>Happy                                                                                                                                                                                                                        | 2 - Emo                                                                                                                                                                                                           | tion Reco                                                                                                   | ognition -<br>Sad                                                                                                                                                                                                        | $+ \mathbf{RTO}$                                                                                                                        | R [HR+0                                                                                 | $[\mathbf{GSR}] - \varphi_j$ <b>Angrv</b>                                                                                                                                                                         | $(v_j(n)) =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $= sigmoid, \mathbf{S}$                                                                                                    | opt='sg<br>urprised                                                                                                                                                  | <b>d'</b> , $N_h =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $= 10 \times 2, l$                                                                                            | $\frac{V_o = 5}{Scared}$                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                     | Match                                                                                                                                                                                                                                           |
| Flight<br>Dataset                                                                                                                                             | MARD                                            | Test 32<br>Happy<br>RMSE                                                                                                                                                                                                                | 2 - Emo<br>MAE                                                                                                                                                                                                    | tion Reco                                                                                                   | ognition -<br>Sad<br>RMSE                                                                                                                                                                                                | + <b>RTO</b>                                                                                                                            | $\frac{\mathbf{R} \left[\mathbf{HR} + \mathbf{C}\right]}{MARD}$                         | $\begin{array}{l} \mathbf{GSR}] - \varphi_{j} \\ \mathbf{Angry} \\ RMSE \end{array}$                                                                                                                              | $(v_j(n)) = MAE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = sigmoid,<br>S<br>MARD                                                                                                    | opt='sg<br>urprised<br>RMSE                                                                                                                                          | $\mathbf{d'}, N_h = MAE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $= 10 \times 2, 1$<br>MARD                                                                                    | $N_o = 5$ <b>Scared</b> $RMSE$                                                                                                                                                                                                                  | MAE                                                                                                                                                                                                                                                 | Match<br>Accuracy (%)                                                                                                                                                                                                                           |
| Flight<br>Dataset<br>DS:RC1                                                                                                                                   | MARD                                            | Test 32<br>Happy<br>RMSE<br>0.49                                                                                                                                                                                                        | 2 - Emo<br>MAE<br>0.06                                                                                                                                                                                            | tion Reco<br>MARD<br>*                                                                                      | Sad<br>RMSE<br>0.55                                                                                                                                                                                                      | + RTO $MAE$ 0.06                                                                                                                        | $\frac{\mathbf{R} \ [\mathbf{HR} + \mathbf{C}]}{MARD}$                                  | $[\mathbf{GSR}] - \varphi_j$ <b>Angry</b> $RMSE$ $0.51$                                                                                                                                                           | $\frac{MAE}{0.05}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = sigmoid,<br>S<br>MARD<br>*                                                                                               | opt='sg<br>urprised<br>RMSE<br>0.46                                                                                                                                  | <b>d'</b> , $N_h = MAE$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $= 10 \times 2, 1$ $MARD$ $*$                                                                                 | $N_o = 5$ <b>Scared</b> $RMSE$ $0.69$                                                                                                                                                                                                           | <i>MAE</i> 0.08                                                                                                                                                                                                                                     | Match<br>Accuracy (%)<br>53.73 (36/67)                                                                                                                                                                                                          |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2                                                                                                                         | MARD * *                                        | Test 32<br>Happy<br><i>RMSE</i><br>0.49<br>0.59                                                                                                                                                                                         | 2 - Emo<br>MAE<br>0.06<br>0.06                                                                                                                                                                                    | tion Reco<br><i>MARD</i><br>*<br>98.61%                                                                     | Sad<br>RMSE<br>0.55<br>0.76                                                                                                                                                                                              | + <b>RTO</b><br><i>MAE</i><br>0.06<br>0.07                                                                                              | R [HR+0<br><i>MARD</i><br>*                                                             | $\begin{bmatrix} \mathbf{SR} \end{bmatrix} - \varphi_{\mathfrak{I}} \\ \mathbf{Angry} \\ RMSE \\ \hline 0.51 \\ 0.49 \end{bmatrix}$                                                                               | $\frac{MAE}{0.05}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = sigmoid,<br>S<br>MARD<br>*<br>*                                                                                          | opt='sg<br>urprised<br>RMSE<br>0.46<br>0.52                                                                                                                          | <b>d'</b> , $N_h = MAE$<br>0.06<br>0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 10 × 2, 1<br>MARD<br>*                                                                                      | $     \frac{V_o = 5}{\text{Scared}}     RMSE     0.69     0.80   $                                                                                                                                                                              | MAE<br>0.08<br>0.09                                                                                                                                                                                                                                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)                                                                                                                                                                                         |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3                                                                                                               | MARD * * * *                                    | Test 32<br>Happy<br><i>RMSE</i><br>0.49<br>0.59<br>0.52                                                                                                                                                                                 | 2 - Emo<br>MAE<br>0.06<br>0.06<br>0.05                                                                                                                                                                            | tion Reco<br>MARD<br>*<br>98.61%<br>*                                                                       | <b>Sad</b><br><i>RMSE</i><br>0.55<br>0.76<br>1.28                                                                                                                                                                        | + <b>RTO</b><br><i>MAE</i><br>0.06<br>0.07<br>0.11                                                                                      | R [HR+0<br>MARD<br>*<br>*                                                               | <b>GSR]</b> - $\varphi_{j}$<br><b>Angry</b><br><i>RMSE</i><br>0.51<br>0.49<br>0.51                                                                                                                                | $\frac{WAE}{0.05}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = sigmoid,<br>S<br>MARD<br>*<br>*<br>11.46%                                                                                | <b>opt='sg</b><br><b>urprised</b><br><i>RMSE</i><br>0.46<br>0.52<br>0.50                                                                                             | $     d', N_h = MAE     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06     0.06 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 10 × 2, 2<br>MARD<br>*<br>*                                                                                 | $     \begin{array}{l} N_o = 5 \\ \hline \textbf{Scared} \\ RMSE \\ \hline 0.69 \\ 0.80 \\ 0.75 \end{array} $                                                                                                                                   | MAE<br>0.08<br>0.09<br>0.09                                                                                                                                                                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)                                                                                                                                                                        |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1                                                                                                     | MARD * * * *                                    | Test 32<br>Happy<br><i>RMSE</i><br>0.49<br>0.59<br>0.52<br>0.77                                                                                                                                                                         | 2 - Emo<br>MAE<br>0.06<br>0.06<br>0.05<br>0.09                                                                                                                                                                    | tion Reco<br>MARD<br>*<br>98.61%<br>*                                                                       | ognition           Sad           RMSE           0.55           0.76           1.28           1.14                                                                                                                        | + RTO<br><i>MAE</i><br>0.06<br>0.07<br>0.11<br>0.13                                                                                     | R [HR+0<br>MARD<br>*<br>*<br>*                                                          | $\begin{array}{c} \textbf{GSR]} - \varphi_{j} \\ \textbf{Angry} \\ RMSE \\ \hline 0.51 \\ 0.49 \\ 0.51 \\ 0.99 \end{array}$                                                                                       | $\frac{MAE}{0.05}$ 0.05 0.06 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | = sigmoid,<br>S<br>MARD<br>*<br>*<br>11.46%<br>*                                                                           | <b>opt='sg</b><br><b>urprised</b><br><i>RMSE</i><br>0.46<br>0.52<br>0.50<br>0.62                                                                                     | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.06 \\ 0.06 \\ 0.06 \\ 0.07 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 10 × 2, 1<br>MARD<br>*<br>*<br>*                                                                            | $N_o = 5$<br>Scared<br><i>RMSE</i><br>0.69<br>0.80<br>0.75<br>0.79                                                                                                                                                                              | MAE<br>0.08<br>0.09<br>0.09<br>0.09                                                                                                                                                                                                                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)                                                                                                                                                       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3                                                                                           | MARD * * * * * *                                | Test 32<br>Happy<br><i>RMSE</i><br>0.49<br>0.59<br>0.52<br>0.77<br>0.76                                                                                                                                                                 | 2 - Emo<br><i>MAE</i><br>0.06<br>0.06<br>0.05<br>0.09<br>0.09                                                                                                                                                     | tion Reco<br>MARD<br>*<br>98.61%<br>*<br>*                                                                  | Sad           RMSE           0.55           0.76           1.28           1.14           1.00                                                                                                                            | $+ \mathbf{RTO}$ $MAE$ 0.06 0.07 0.11 0.13 0.11                                                                                         | R [HR+0<br>MARD<br>*<br>*<br>*<br>*                                                     | $\begin{array}{c} \textbf{GSR] - \varphi_{3} \\ \textbf{Angry} \\ RMSE \\ \hline 0.51 \\ 0.49 \\ 0.51 \\ 0.99 \\ 1.01 \end{array}$                                                                                | $\frac{MAE}{0.05}$ 0.05 0.06 0.11 0.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = sigmoid,<br>S<br>MARD<br>*<br>*<br>11.46%<br>*<br>*                                                                      | opt='sg<br>urprised<br><i>RMSE</i><br>0.46<br>0.52<br>0.50<br>0.62<br>0.74                                                                                           | $     \mathbf{d', } N_h = \frac{MAE}{0.06}     $ 0.06     0.06     0.06     0.07     0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 10 × 2, 1<br>MARD<br>*<br>*<br>*<br>*                                                                       | $\frac{N_o = 5}{Scared}$ <i>RMSE</i> 0.69 0.80 0.75 0.79 0.80                                                                                                                                                                                   | MAE<br>0.08<br>0.09<br>0.09<br>0.09<br>0.09                                                                                                                                                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)                                                                                                                                     |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1                                                                                 | MARD * * * * * * * *                            | Test 32<br>Happy<br><i>RMSE</i><br>0.49<br>0.59<br>0.52<br>0.77<br>0.76<br>0.77                                                                                                                                                         | MAE           0.06           0.05           0.09           0.08                                                                                                                                                   | tion Reco<br>MARD<br>*<br>98.61%<br>*<br>*<br>*                                                             | Sad           RMSE           0.55           0.76           1.28           1.14           1.00           0.85                                                                                                             | $+ \mathbf{RTO}$ $MAE$ 0.06 0.07 0.11 0.13 0.11 0.08                                                                                    | R [HR+0<br><i>MARD</i><br>* * * * * * * * *                                             | $\begin{array}{c} \textbf{GSR]} - \varphi_{J} \\ \textbf{Angry} \\ RMSE \\ \hline 0.51 \\ 0.49 \\ 0.51 \\ 0.99 \\ 1.01 \\ 0.48 \end{array}$                                                                       | $\frac{MAE}{0.05}$ 0.05 0.06 0.11 0.11 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | = sigmoid,<br><b>S</b><br><i>MARD</i><br>*<br>*<br>11.46%<br>*<br>*<br>*<br>*                                              | opt='sg<br><i>RMSE</i><br>0.46<br>0.52<br>0.50<br>0.62<br>0.74<br>0.70                                                                                               | $     \mathbf{d', } N_h = \frac{MAE}{0.06}     $ 0.06     0.06     0.07     0.08     0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 10 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*                                                             | $\frac{V_o = 5}{Scared}$ $\frac{RMSE}{0.69}$ 0.69 0.80 0.75 0.79 0.80 0.83                                                                                                                                                                      | MAE<br>0.08<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.08                                                                                                                                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)                                                                                                                   |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2                                                                       | MARD * * * * * * * * * *                        | Test 32<br>Happy<br><i>RMSE</i><br>0.49<br>0.59<br>0.52<br>0.77<br>0.76<br>0.77<br>0.74                                                                                                                                                 | 2 - Emo<br><i>MAE</i><br>0.06<br>0.06<br>0.05<br>0.09<br>0.09<br>0.09<br>0.08<br>0.09                                                                                                                             | tion Reco<br>MARD<br>*<br>98.61%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>85.15%                          | Sad           RMSE           0.55           0.76           1.28           1.14           1.00           0.85           0.50                                                                                              | + RTO $MAE$ 0.06 0.07 0.11 0.13 0.11 0.08 0.05                                                                                          | R [HR+0<br><i>MARD</i><br>* * * * * * * * * * * * * * * * * *                           | $\begin{array}{c} \textbf{GSR]} - \varphi_{J} \\ \textbf{Angry} \\ RMSE \\ \hline 0.51 \\ 0.49 \\ 0.51 \\ 0.99 \\ 1.01 \\ 0.48 \\ 0.38 \end{array}$                                                               | $\frac{MAE}{0.05}$ 0.05 0.06 0.11 0.11 0.04 0.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | = sigmoid,<br><b>S</b><br><i>MARD</i><br>*<br>*<br>11.46%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br><i>RMSE</i><br>0.46<br>0.52<br>0.50<br>0.62<br>0.74<br>0.70<br>0.67                                                                                       | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.06 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = 10 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                   | $\frac{V_o = 5}{Scared}$ $\frac{RMSE}{0.69}$ 0.69 0.80 0.75 0.79 0.80 0.83 0.73                                                                                                                                                                 | MAE<br>0.08<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.08<br>0.08                                                                                                                                                                                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)                                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1                                                             | MARD * * * * * * * * * * * *                    | Test 32<br>Happy<br><i>RMSE</i><br>0.49<br>0.59<br>0.52<br>0.77<br>0.76<br>0.77<br>0.74<br>0.54                                                                                                                                         | 2 - Emo<br><i>MAE</i><br>0.06<br>0.06<br>0.05<br>0.09<br>0.09<br>0.08<br>0.09<br>0.08                                                                                                                             | tion Reco<br>MARD<br>*<br>98.61%<br>*<br>*<br>*<br>*<br>85.15%<br>*                                         | $\begin{array}{c} \textbf{pgnition} \\ \hline \textbf{Sad} \\ \hline RMSE \\ \hline 0.55 \\ 0.76 \\ 1.28 \\ 1.14 \\ 1.00 \\ 0.85 \\ 0.50 \\ 0.46 \end{array}$                                                            | $+ \mathbf{RTO}$ $MAE$ 0.06 0.07 0.11 0.13 0.11 0.08 0.05 0.06                                                                          | R [HR+0<br><i>MARD</i><br>* * * * * * * * * * * * * * * * * *                           | $\begin{array}{c} \textbf{GSR]} - \varphi_{J} \\ \textbf{Angry} \\ RMSE \\ \hline 0.51 \\ 0.49 \\ 0.51 \\ 0.99 \\ 1.01 \\ 0.48 \\ 0.38 \\ 0.59 \end{array}$                                                       | $\frac{MAE}{0.05}$ 0.05 0.06 0.11 0.11 0.04 0.04 0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = sigmoid,<br><b>S</b><br><i>MARD</i><br>*<br>*<br>11.46%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br>urprised<br>RMSE<br>0.46<br>0.52<br>0.50<br>0.62<br>0.74<br>0.70<br>0.67<br>0.46                                                                          | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.06 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 10 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                          | $\frac{V_o = 5}{Scared}$ $\frac{RMSE}{0.69}$ 0.69 0.80 0.75 0.79 0.80 0.83 0.73 0.65                                                                                                                                                            | MAE<br>0.08<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.08<br>0.08                                                                                                                                                                                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)                                                                                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2                                                   | MARD * * * * * * * * * * * * *                  | Test 32<br>Happy<br><i>RMSE</i><br>0.49<br>0.59<br>0.52<br>0.77<br>0.76<br>0.77<br>0.74<br>0.54<br>0.51                                                                                                                                 | 2 - Emo<br>MAE<br>0.06<br>0.06<br>0.05<br>0.09<br>0.09<br>0.08<br>0.09<br>0.08<br>0.08                                                                                                                            | tion Reco<br>MARD<br>*<br>98.61%<br>*<br>*<br>*<br>85.15%<br>*<br>*                                         | $\begin{array}{c} \textbf{pgnition} \\ \hline \textbf{Sad} \\ \hline RMSE \\ \hline 0.55 \\ 0.76 \\ 1.28 \\ 1.14 \\ 1.00 \\ 0.85 \\ 0.50 \\ 0.46 \\ 0.54 \end{array}$                                                    | $+ \mathbf{RTO}$ $MAE$ 0.06 0.07 0.11 0.13 0.11 0.08 0.05 0.06 0.08                                                                     | R [HR+0<br><i>MARD</i><br>* * * * * * * * * * * * * * * * * *                           | $\begin{array}{c} \textbf{GSR]} - \varphi_{J} \\ \textbf{Angry} \\ RMSE \\ \hline 0.51 \\ 0.49 \\ 0.51 \\ 0.99 \\ 1.01 \\ 0.48 \\ 0.38 \\ 0.59 \\ 0.58 \end{array}$                                               | $\frac{MAE}{0.05}$ 0.05 0.06 0.11 0.11 0.04 0.04 0.08 0.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = sigmoid,<br><b>S</b><br><i>MARD</i><br>*<br>*<br>11.46%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br>urprised<br><i>RMSE</i><br>0.46<br>0.52<br>0.50<br>0.62<br>0.74<br>0.70<br>0.67<br>0.46<br>0.38                                                           | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.06 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.06 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 10 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                          | $\frac{V_o = 5}{Scared}$ $\frac{RMSE}{0.69}$ 0.69 0.80 0.75 0.79 0.80 0.83 0.73 0.65 0.34                                                                                                                                                       | MAE<br>0.08<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.08<br>0.08<br>0.08<br>0.05                                                                                                                                                                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)                                                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1                               | MARD * * * * * * * * * * * * * *                | Test 32<br>Happy<br><i>RMSE</i><br>0.49<br>0.59<br>0.52<br>0.77<br>0.76<br>0.77<br>0.74<br>0.54<br>0.51<br>0.60                                                                                                                         | $\begin{array}{c} \textbf{AE} \\ \hline \textbf{MAE} \\ \hline \textbf{0.06} \\ 0.06 \\ 0.05 \\ 0.09 \\ 0.09 \\ 0.08 \\ 0.09 \\ 0.08 \\ 0.08 \\ 0.07 \end{array}$                                                 | tion Reco<br>MARD<br>*<br>98.61%<br>*<br>*<br>*<br>85.15%<br>*<br>*<br>73.29%                               | $\begin{array}{c} \textbf{pgnition} \\ \hline \textbf{Sad} \\ \hline RMSE \\ \hline 0.55 \\ 0.76 \\ 1.28 \\ 1.14 \\ 1.00 \\ 0.85 \\ 0.50 \\ 0.46 \\ 0.54 \\ 2.36 \end{array}$                                            | $+ \mathbf{RTO}$ $\underline{MAE}$ 0.06 0.07 0.11 0.13 0.11 0.08 0.05 0.06 0.08 0.24                                                    | R [HR+0<br><i>MARD</i><br>* * * * * * * * * * * * * * * * * *                           | $\begin{array}{c} \textbf{GSR]} - \varphi_{J} \\ \textbf{Angry} \\ RMSE \\ \hline 0.51 \\ 0.49 \\ 0.51 \\ 0.99 \\ 1.01 \\ 0.48 \\ 0.38 \\ 0.59 \\ 0.58 \\ 0.67 \end{array}$                                       | $\begin{array}{c} \hline (v_j(n)) = \\ \hline MAE \\ \hline 0.05 \\ 0.05 \\ 0.06 \\ 0.11 \\ 0.11 \\ 0.04 \\ 0.04 \\ 0.08 \\ 0.09 \\ 0.06 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = sigmoid,<br><b>S</b><br><i>MARD</i><br>*<br>*<br>11.46%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br>urprised<br><i>RMSE</i><br>0.46<br>0.52<br>0.50<br>0.62<br>0.74<br>0.70<br>0.67<br>0.46<br>0.38<br>0.48                                                   | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.06 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.06 \\ 0.06 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = 10 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                          |                                                                                                                                                                                                                                                 | $\begin{array}{c} MAE \\ \hline 0.08 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.05 \\ 0.02 \end{array}$                                                                                                                   | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)                                                |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1<br>DS:CR3                     | MARD * * * * * * * * * * * * * * * *            | Test 32<br>Happy<br><i>RMSE</i><br>0.49<br>0.59<br>0.52<br>0.77<br>0.76<br>0.77<br>0.74<br>0.54<br>0.51<br>0.60<br>0.24                                                                                                                 | $\begin{array}{c} \textbf{AE} \\ \hline \textbf{MAE} \\ \hline \textbf{0.06} \\ 0.06 \\ 0.05 \\ 0.09 \\ 0.09 \\ 0.08 \\ 0.09 \\ 0.08 \\ 0.08 \\ 0.07 \\ 0.08 \end{array}$                                         | tion Reco<br><i>MARD</i><br>*<br>98.61%<br>*<br>*<br>*<br>*<br>*<br>85.15%<br>*<br>*<br>73.29%<br>52.05%    | $\begin{array}{c} \textbf{pgnition} \\ \hline \textbf{Sad} \\ \hline RMSE \\ \hline 0.55 \\ 0.76 \\ 1.28 \\ 1.14 \\ 1.00 \\ 0.85 \\ 0.50 \\ 0.46 \\ 0.54 \\ 2.36 \\ 0.50 \end{array}$                                    | $+ \mathbf{RTO}$ $\underline{MAE}$ 0.06 0.07 0.11 0.13 0.11 0.08 0.05 0.06 0.08 0.24 0.14                                               | R [HR+0<br><i>MARD</i><br>* * * * * * * * * * * * * * * * * *                           | $\begin{array}{c} \mathbf{GSR} & -\varphi_{\mathcal{J}} \\ \mathbf{Angry} \\ RMSE \\ \hline 0.51 \\ 0.49 \\ 0.51 \\ 0.99 \\ 1.01 \\ 0.48 \\ 0.38 \\ 0.59 \\ 0.58 \\ 0.67 \\ 0.18 \end{array}$                     | $\begin{array}{c} \hline (v_j(n)) = \\ \hline MAE \\ \hline 0.05 \\ 0.05 \\ 0.06 \\ 0.11 \\ 0.11 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.08 \\ 0.09 \\ 0.06 \\ 0.05 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = sigmoid,<br><b>S</b><br><i>MARD</i><br>*<br>*<br>11.46%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br>urprised<br><i>RMSE</i><br>0.46<br>0.52<br>0.50<br>0.62<br>0.74<br>0.70<br>0.67<br>0.46<br>0.38<br>0.48<br>0.20                                           | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.06 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.06 \\ 0.06 \\ 0.07 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $= 10 \times 2, 1$ $MARD$ $*$ $*$ $*$ $*$ $*$ $64.98\%$ $96.56\%$ $39.30\%$ $49.44\%$                         |                                                                                                                                                                                                                                                 | MAE<br>0.08<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.08<br>0.08<br>0.08<br>0.08<br>0.05<br>0.02<br>0.05                                                                                                                                         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX | MARD * * * * * * * * * * * * * * * 59.30%       | Test 32<br>Happy<br>RMSE<br>0.49<br>0.59<br>0.52<br>0.77<br>0.76<br>0.77<br>0.74<br>0.54<br>0.51<br>0.60<br>0.24<br>0.59                                                                                                                | $\begin{array}{c} \textbf{AE} \\ \hline \textbf{MAE} \\ \hline \textbf{0.06} \\ 0.06 \\ 0.05 \\ 0.09 \\ 0.09 \\ 0.08 \\ 0.09 \\ 0.08 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.16 \end{array}$                 | tion Reco<br>MARD<br>*<br>98.61%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*           | $\begin{array}{c} \textbf{pgnition} \\ \hline \textbf{Sad} \\ \hline RMSE \\ \hline 0.55 \\ 0.76 \\ 1.28 \\ 1.14 \\ 1.00 \\ 0.85 \\ 0.50 \\ 0.46 \\ 0.54 \\ 2.36 \\ 0.50 \\ 0.13 \\ \end{array}$                         | $+ \mathbf{RTO}$ $\underline{MAE}$ 0.06 0.07 0.11 0.13 0.11 0.08 0.05 0.06 0.08 0.24 0.14 0.04                                          | R [HR+0<br><i>MARD</i><br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | $\begin{array}{c} \mathbf{GSR} ] - \varphi_{J} \\ \mathbf{Angry} \\ RMSE \\ \hline 0.51 \\ 0.49 \\ 0.51 \\ 0.99 \\ 1.01 \\ 0.48 \\ 0.38 \\ 0.59 \\ 0.58 \\ 0.67 \\ 0.18 \\ 0.25 \end{array}$                      | $\begin{array}{c} \hline (v_j(n)) = \\ \hline MAE \\ \hline 0.05 \\ 0.05 \\ 0.06 \\ 0.11 \\ 0.11 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.08 \\ 0.09 \\ 0.06 \\ 0.05 \\ 0.07 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | = sigmoid,<br><b>S</b><br><i>MARD</i><br>*<br>*<br>11.46%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br>urprised<br><i>RMSE</i><br>0.46<br>0.52<br>0.50<br>0.62<br>0.74<br>0.70<br>0.67<br>0.46<br>0.38<br>0.48<br>0.20<br>0.20                                   | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.06 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.06 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | = 10 × 2, 1<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>64.98%<br>96.56%<br>39.30%<br>49.44%<br>30.36% |                                                                                                                                                                                                                                                 | $\begin{array}{c} MAE \\ \hline 0.08 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.05 \\ 0.02 \\ 0.05 \\ 0.02 \\ \end{array}$                                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * 59.30% * | Test 32<br>Happy<br>RMSE<br>0.49<br>0.59<br>0.52<br>0.77<br>0.76<br>0.77<br>0.76<br>0.77<br>0.74<br>0.51<br>0.60<br>0.24<br>0.59<br>0.44                                                                                                | $\begin{array}{c} \textbf{AE} \\ \hline \textbf{MAE} \\ \hline \textbf{0.06} \\ 0.06 \\ 0.05 \\ 0.09 \\ 0.09 \\ 0.08 \\ 0.09 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.16 \\ 0.04 \end{array}$ | tion Reco $MARD$<br>* 98.61%<br>* * *<br>* *<br>* 85.15%<br>* 73.29%<br>52.05%<br>46.41%<br>39.56%          | $\begin{array}{c} \textbf{pgnition} \\ \hline \textbf{Sad} \\ \hline RMSE \\ \hline 0.55 \\ 0.76 \\ 1.28 \\ 1.14 \\ 1.00 \\ 0.85 \\ 0.50 \\ 0.46 \\ 0.54 \\ 2.36 \\ 0.50 \\ 0.13 \\ 0.41 \\ \end{array}$                 | $+ \mathbf{RTO}$ $MAE$ 0.06 0.07 0.11 0.13 0.11 0.08 0.05 0.06 0.08 0.24 0.14 0.04 0.04                                                 | R [HR+0<br><i>MARD</i><br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | $\begin{array}{c} \mathbf{GSR} ] - \varphi_3 \\ \mathbf{Angry} \\ RMSE \\ \hline 0.51 \\ 0.49 \\ 0.51 \\ 0.99 \\ 1.01 \\ 0.48 \\ 0.38 \\ 0.59 \\ 0.58 \\ 0.67 \\ 0.18 \\ 0.25 \\ 0.75 \end{array}$                | $\begin{array}{c} \hline \hline (v_j(n)) = \\ \hline MAE \\ \hline 0.05 \\ 0.05 \\ 0.06 \\ 0.11 \\ 0.11 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.08 \\ 0.09 \\ 0.06 \\ 0.05 \\ 0.07 \\ 0.07 \\ 0.07 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | = sigmoid,<br><b>S</b><br><i>MARD</i><br>*<br>*<br>11.46%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br><i>RMSE</i><br>0.46<br>0.52<br>0.50<br>0.62<br>0.74<br>0.70<br>0.67<br>0.46<br>0.38<br>0.48<br>0.20<br>0.20<br>0.73                                       | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.06 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.06 \\ 0.08 \\ \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $= 10 \times 2, 1$ $MARD$ * * * * * * * * * * * * * * * * * * *                                               |                                                                                                                                                                                                                                                 | MAE<br>0.08<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.08<br>0.08<br>0.08<br>0.08<br>0.05<br>0.02<br>0.05<br>0.02<br>0.05<br>0.02                                                                                                                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * * 59.30%           | Test 32<br>Happy<br>RMSE<br>0.49<br>0.59<br>0.52<br>0.77<br>0.76<br>0.77<br>0.76<br>0.77<br>0.74<br>0.54<br>0.51<br>0.60<br>0.24<br>0.59<br>0.44                                                                                        | 2 - Emo<br><i>MAE</i><br>0.06<br>0.06<br>0.05<br>0.09<br>0.09<br>0.08<br>0.09<br>0.08<br>0.09<br>0.08<br>0.07<br>0.08<br>0.16<br>0.04                                                                             | tion Reco $MARD$<br>* 98.61%<br>* * *<br>* 85.15%<br>* *<br>73.29%<br>52.05%<br>46.41%<br>39.56%            | $\begin{array}{c} \textbf{pgnition} \\ \hline \textbf{Sad} \\ \hline RMSE \\ \hline 0.55 \\ 0.76 \\ 1.28 \\ 1.14 \\ 1.00 \\ 0.85 \\ 0.50 \\ 0.46 \\ 0.50 \\ 0.46 \\ 0.54 \\ 2.36 \\ 0.50 \\ 0.13 \\ 0.41 \\ \end{array}$ | $+ \mathbf{RTO}$ $MAE$ 0.06 0.07 0.11 0.13 0.11 0.08 0.05 0.06 0.08 0.24 0.14 0.04 0.04 0.04                                            | R [HR+0<br><i>MARD</i><br>* * * * * * * * * * * * * * * * * *                           | $\begin{array}{c} \mathbf{GSR} ] - \varphi_3 \\ \mathbf{Angry} \\ RMSE \\ \hline 0.51 \\ 0.49 \\ 0.51 \\ 0.99 \\ 1.01 \\ 0.48 \\ 0.38 \\ 0.59 \\ 0.58 \\ 0.67 \\ 0.18 \\ 0.25 \\ 0.75 \\ \end{array}$             | $\frac{MAE}{0.05} \\ 0.05 \\ 0.05 \\ 0.06 \\ 0.11 \\ 0.11 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.08 \\ 0.09 \\ 0.06 \\ 0.05 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\ 0.07 \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = sigmoid,<br><b>S</b><br><i>MARD</i><br>*<br>*<br>11.46%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br><i>RMSE</i><br>0.46<br>0.52<br>0.50<br>0.62<br>0.74<br>0.70<br>0.67<br>0.46<br>0.38<br>0.48<br>0.20<br>0.20<br>0.73                                       | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.06 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.06 \\ 0.07 \\ 0.06 \\ 0.07 \\ 0.06 \\ 0.08 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $= 10 \times 2, 1$ $MARD$ $*$ $*$ $*$ $*$ $*$ $64.98\%$ $96.56\%$ $39.30\%$ $49.44\%$ $30.36\%$ $*$           | $V_o = 5$ Scared RMSE 0.69 0.80 0.75 0.79 0.80 0.83 0.73 0.65 0.34 0.22 0.17 0.07 0.50                                                                                                                                                          | $\begin{array}{c} MAE \\ \hline 0.08 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.09 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.05 \\ 0.02 \\ 0.05 \\ 0.02 \\ 0.05 \\ 0.02 \\ 0.05 \\ \end{array}$                                                                        | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CL3                     | MARD * * * * * * * * * * * 59.30%               | Test 32<br>Happy<br><i>RMSE</i><br>0.49<br>0.59<br>0.52<br>0.77<br>0.76<br>0.77<br>0.74<br>0.54<br>0.51<br>0.60<br>0.24<br>0.59<br>0.44<br>₹                                                                                            | 2 - Emo<br>MAE<br>0.06<br>0.06<br>0.05<br>0.09<br>0.09<br>0.08<br>0.09<br>0.08<br>0.09<br>0.08<br>0.07<br>0.08<br>0.16<br>0.04<br><b>C</b>                                                                        | tion Reco $MARD$<br>* 98.61%<br>* * *<br>* 85.15%<br>* *<br>73.29%<br>52.05%<br>46.41%<br>39.56%            | <b>Sad</b><br><i>RMSE</i><br>0.55<br>0.76<br>1.28<br>1.14<br>1.00<br>0.85<br>0.50<br>0.46<br>0.54<br>2.36<br>0.50<br>0.13<br>0.41                                                                                        | + RTO<br>MAE<br>0.06<br>0.07<br>0.11<br>0.13<br>0.11<br>0.08<br>0.05<br>0.06<br>0.08<br>0.24<br>0.14<br>0.04<br>0.04<br>0.04<br>0.04    | R [HR+0<br><i>MARD</i><br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | <b>GSR</b> ] - φ <sub>J</sub><br><b>Angry</b><br><i>RMSE</i><br>0.51<br>0.49<br>0.51<br>0.99<br>1.01<br>0.48<br>0.38<br>0.59<br>0.58<br>0.67<br>0.18<br>0.25<br>0.75<br><b>ε</b>                                  | $\begin{array}{c} \overline{(v_j(n))} = \\ \hline MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.06 \\ 0.11 \\ 0.11 \\ 0.01 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.08 \\ 0.09 \\ 0.06 \\ 0.05 \\ 0.07 \\ 0.07 \\ \hline 0.07 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | = sigmoid,<br><b>S</b><br><i>MARD</i><br>*<br>*<br>11.46%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br><i>RMSE</i><br>0.46<br>0.52<br>0.50<br>0.62<br>0.74<br>0.70<br>0.67<br>0.46<br>0.38<br>0.48<br>0.20<br>0.20<br>0.73<br>►                                  | $\begin{array}{c} \mathbf{d', } N_h = \\ \hline MAE \\ \hline 0.06 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.06 \\ 0.07 \\ 0.06 \\ 0.08 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $= 10 \times 2, 1$ $MARD$ $*$ $*$ $*$ $*$ $64.98\%$ $96.56\%$ $39.30\%$ $49.44\%$ $30.36\%$ $*$               | $V_o = 5$ <b>Scared</b> <i>RMSE</i> 0.69 0.80 0.75 0.79 0.80 0.83 0.73 0.65 0.34 0.22 0.17 0.07 0.50                                                                                                                                            | MAE           0.08           0.09           0.09           0.09           0.09           0.09           0.09           0.09           0.09           0.09           0.09           0.08           0.08           0.05           0.02           0.05 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * 59.30%                 | Test 32<br>Happy<br>RMSE<br>0.49<br>0.59<br>0.52<br>0.77<br>0.76<br>0.77<br>0.74<br>0.54<br>0.51<br>0.60<br>0.24<br>0.59<br>0.44<br><b>FI:0</b>                                                                                         | 2 - Emo<br>MAE<br>0.06<br>0.06<br>0.05<br>0.09<br>0.09<br>0.09<br>0.08<br>0.09<br>0.08<br>0.07<br>0.08<br>0.16<br>0.04<br><b>CO</b><br><b>O</b>                                                                   | tion Reco $MARD$<br>* 98.61%<br>* *<br>* *<br>* 85.15%<br>* *<br>73.29%<br>52.05%<br>46.41%<br>39.56%       | <b>Sad</b><br><i>RMSE</i><br>0.55<br>0.76<br>1.28<br>1.14<br>1.00<br>0.85<br>0.50<br>0.46<br>0.54<br>2.36<br>0.50<br>0.13<br>0.41                                                                                        | + RTO<br>MAE<br>0.06<br>0.07<br>0.11<br>0.13<br>0.11<br>0.08<br>0.05<br>0.06<br>0.08<br>0.24<br>0.14<br>0.04<br>0.04<br>0.04<br>0.04    | R [HR+0<br><i>MARD</i><br>* * * * * * * * * * * * * * * * * *                           | GSR] - φ <sub>J</sub> Angry         RMSE         0.51         0.49         0.51         0.99         1.01         0.48         0.38         0.59         0.58         0.67         0.18         0.25         0.75 | $\begin{array}{c} \overline{(v_j(n))} = \\ \hline MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.06 \\ 0.11 \\ 0.11 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.09 \\ 0.06 \\ 0.05 \\ 0.07 \\ 0.07 \\ \hline 0.07 \\ \hline \hline 0.07$                                                  | = sigmoid,<br><b>S</b><br><i>MARD</i><br>*<br>*<br>11.46%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br><i>RMSE</i><br>0.46<br>0.52<br>0.50<br>0.62<br>0.74<br>0.70<br>0.67<br>0.46<br>0.38<br>0.48<br>0.20<br>0.20<br>0.73                                       | $     d', N_h = \frac{MAE}{0.06} \\     0.06 \\     0.06 \\     0.07 \\     0.08 \\     0.07 \\     0.08 \\     0.07 \\     0.06 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.06 \\     0.08 \\     0.07 \\     0.08 \\     0.07 \\     0.08 \\     0.07 \\     0.08 \\     0.07 \\     0.08 \\     0.07 \\     0.08 \\     0.07 \\     0.08 \\     0.07 \\     0.08 \\     0.07 \\     0.00 \\     0.08 \\     0.07 \\     0.08 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\     0.00 \\  $ | $= 10 \times 2, 1$ $MARD$ $*$ $*$ $*$ $*$ $64.98\%$ $96.56\%$ $39.30\%$ $49.44\%$ $30.36\%$ $*$               | No         5           Scared         RMSE           0.69         0.80           0.75         0.79           0.80         0.75           0.79         0.80           0.65         0.34           0.22         0.17           0.070         0.50 | <i>MAE</i><br>0.08<br>0.09<br>0.09<br>0.09<br>0.09<br>0.08<br>0.08<br>0.08                                                                                                                                                                          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * 59.30%                 | Test 32<br>Happy<br><i>RMSE</i><br>0.49<br>0.59<br>0.52<br>0.77<br>0.76<br>0.77<br>0.74<br>0.54<br>0.51<br>0.60<br>0.24<br>0.59<br>0.44<br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b> | 2 - Emo<br><i>MAE</i><br>0.06<br>0.06<br>0.05<br>0.09<br>0.09<br>0.09<br>0.08<br>0.09<br>0.08<br>0.07<br>0.08<br>0.16<br>0.04<br><b>CO:</b><br>0.04                                                               | tion Reco<br>MARD<br>*<br>98.61%<br>*<br>*<br>*<br>85.15%<br>*<br>*<br>73.29%<br>52.05%<br>46.41%<br>39.56% | Sad           RMSE           0.55           0.76           1.28           1.14           1.00           0.85           0.50           0.46           0.54           2.36           0.50           0.13           0.41    | + RTO<br>MAE<br>0.06<br>0.07<br>0.11<br>0.13<br>0.11<br>0.08<br>0.05<br>0.06<br>0.08<br>0.24<br>0.14<br>0.04<br>0.04<br>0.04<br>        | R [HR+0<br><i>MARD</i><br>* * * * * * * * * * * * * * * * * *                           | GSR] - <i>φ</i> <sub>J</sub><br>Angry<br><i>RMSE</i><br>0.51<br>0.49<br>0.51<br>0.99<br>1.01<br>0.48<br>0.38<br>0.59<br>0.58<br>0.67<br>0.18<br>0.25<br>0.75<br><b>E</b><br>CO<br>H<br>L                          | $\begin{array}{c} \hline (v_j(n)) = \\ \hline MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.06 \\ 0.11 \\ 0.11 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.08 \\ 0.09 \\ 0.06 \\ 0.05 \\ 0.07 \\ 0.07 \\ \hline \hline 0.07 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = sigmoid,<br><b>S</b><br><i>MARD</i><br>*<br>*<br>11.46%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br><i>RMSE</i><br>0.46<br>0.52<br>0.50<br>0.62<br>0.74<br>0.70<br>0.67<br>0.46<br>0.38<br>0.48<br>0.20<br>0.20<br>0.73<br>↓<br>10<br>+1                      | $\begin{array}{c} \mathbf{d'}, \ N_h = \\ \hline MAE \\ \hline 0.06 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.06 \\ 0.07 \\ 0.06 \\ 0.08 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $= 10 \times 2, 1$ $MARD$ $*$ $*$ $*$ $*$ $64.98\%$ $96.56\%$ $39.30\%$ $49.44\%$ $30.36\%$ $*$               | $V_o = 5$ <b>Scared</b> <i>RMSE</i> 0.69 0.80 0.75 0.79 0.80 0.83 0.73 0.65 0.34 0.22 0.17 0.07 0.50 97.0                                                                                                                                       | <i>MAE</i><br>0.08<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.08<br>0.08                                                                                                                                                                          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:CR3<br>DS:CR3<br>DS:CLX<br>DS:CL3 | MARD * * * * * * * * * * 59.30%                 | Test 32<br>Happy<br><i>RMSE</i><br>0.49<br>0.59<br>0.52<br>0.77<br>0.76<br>0.77<br>0.74<br>0.54<br>0.51<br>0.60<br>0.24<br>0.59<br>0.44<br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b><br><b>*</b> | 2 - Emo<br>MAE<br>0.06<br>0.06<br>0.05<br>0.09<br>0.09<br>0.09<br>0.08<br>0.09<br>0.08<br>0.07<br>0.08<br>0.07<br>0.08<br>0.16<br>0.04<br><b>CO</b> :<br>0.04                                                     | tion Reco<br>MARD<br>*<br>98.61%<br>*<br>*<br>*<br>85.15%<br>*<br>*<br>73.29%<br>52.05%<br>46.41%<br>39.56% | Sad           RMSE           0.55           0.76           1.28           1.14           1.00           0.85           0.50           0.46           0.54           2.36           0.50           0.13           0.41    | + RTO<br><i>MAE</i><br>0.06<br>0.07<br>0.11<br>0.13<br>0.11<br>0.08<br>0.05<br>0.06<br>0.08<br>0.24<br>0.14<br>0.04<br>0.04<br>0.04<br> | R [HR+0<br><i>MARD</i><br>* * * * * * * * * * * * * * * * * *                           | GSR] - <i>φ</i> <sub>J</sub><br>Angry<br><i>RMSE</i><br>0.51<br>0.49<br>0.51<br>0.99<br>1.01<br>0.48<br>0.38<br>0.59<br>0.58<br>0.67<br>0.18<br>0.25<br>0.75<br><b>E</b><br>0.75                                  | $\begin{array}{c} \hline (v_j(n)) = \\ \hline MAE \\ \hline 0.05 \\ 0.05 \\ 0.05 \\ 0.06 \\ 0.11 \\ 0.11 \\ 0.04 \\ 0.04 \\ 0.04 \\ 0.08 \\ 0.09 \\ 0.06 \\ 0.05 \\ 0.07 \\ 0.07 \\ \hline \hline 0.07 \\ \hline \hline \hline 0.07 \\ \hline \hline \hline 0.07 \\ \hline 0.07 \\ \hline \hline 0.07 \\ \hline 0.07 \\ \hline \hline 0.07 \\ \hline \hline 0.07 \\ \hline 0.07$ | = sigmoid,<br><b>S</b><br><i>MARD</i><br>*<br>*<br>11.46%<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | opt='sg<br><i>RMSE</i><br>0.46<br>0.52<br>0.50<br>0.62<br>0.74<br>0.70<br>0.67<br>0.46<br>0.38<br>0.48<br>0.20<br>0.73<br>↓<br>100<br>++++<br>120<br>-+++<br>120<br> | $\begin{array}{c} \mathbf{d'}, \ N_h = \\ \hline MAE \\ \hline 0.06 \\ 0.06 \\ 0.06 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.08 \\ 0.07 \\ 0.06 \\ 0.07 \\ 0.06 \\ 0.07 \\ 0.06 \\ 0.08 \\ \hline \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $= 10 \times 2, 1$ $MARD$ * * * * * * * 64.98% 96.56% 39.30% 49.44% 30.36% *                                  | $V_o = 5$ Scared           RMSE           0.69           0.80           0.75           0.79           0.80           0.73           0.65           0.34           0.22           0.17           0.070           0.50                            | <i>MAE</i><br>0.08<br>0.09<br>0.09<br>0.09<br>0.09<br>0.09<br>0.08<br>0.08                                                                                                                                                                          | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>93.15 (68/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |

TABLE 9.18. Emotion recognition results tests 31 and 32. ANN with  $6 \times 10^3$  train epochs and input data with feature extraction.

|                                                                                                                                                               |                                                                                                     | Test 33                                                                                                                                                                                                                                                                                                             | - Emot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ion Recog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gnition +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RTOR                                                                                                                                                                                                                                                                 | [HR+G                                                                                                                                                                                  | $\mathbf{SR}$ ] - $\varphi_j($                                                                                                                                      | $v_j(n)) =$                                                                                                                                                                                                                | sigmoid,                                                                                                       | opt='ada                                                                                                                                                              | m', $N_h$                                                                                                                                                                                                         | $= 10 \times 2$ ,                                                                                                                                           | $N_o = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                           |                                                                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\mathbf{Flight}$                                                                                                                                             |                                                                                                     | Нарру                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        | Angry                                                                                                                                                               |                                                                                                                                                                                                                            | S                                                                                                              | Surprised                                                                                                                                                             |                                                                                                                                                                                                                   |                                                                                                                                                             | Scared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                           | Match                                                                                                                                                                                                                                         |
| Dataset                                                                                                                                                       | MARD                                                                                                | RMSE                                                                                                                                                                                                                                                                                                                | MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAE                                                                                                                                                                                                                                                                  | MARD                                                                                                                                                                                   | RMSE                                                                                                                                                                | MAE                                                                                                                                                                                                                        | MARD                                                                                                           | RMSE                                                                                                                                                                  | MAE                                                                                                                                                                                                               | MARD                                                                                                                                                        | RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MAE                                                                                                                                                       | Accuracy (%)                                                                                                                                                                                                                                  |
| DS:RC1                                                                                                                                                        | *                                                                                                   | 0.16                                                                                                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.04                                                                                                                                                                                                                                                                 | 77.53%                                                                                                                                                                                 | 0.50                                                                                                                                                                | 0.04                                                                                                                                                                                                                       | 42.25%                                                                                                         | 0.13                                                                                                                                                                  | 0.01                                                                                                                                                                                                              | *                                                                                                                                                           | 0.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                      | <b>53.73</b> ( <b>36</b> /67)                                                                                                                                                                                                                 |
| DS:RC2                                                                                                                                                        | *                                                                                                   | 0.17                                                                                                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 81.11%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.07                                                                                                                                                                                                                                                                 | 69.26%                                                                                                                                                                                 | 0.29                                                                                                                                                                | 0.03                                                                                                                                                                                                                       | 40.21%                                                                                                         | 0.12                                                                                                                                                                  | 0.01                                                                                                                                                                                                              | *                                                                                                                                                           | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.03                                                                                                                                                      | <b>82.05</b> (64/78)                                                                                                                                                                                                                          |
| DS:RC3                                                                                                                                                        | *                                                                                                   | 0.78                                                                                                                                                                                                                                                                                                                | 0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 90.95%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.11                                                                                                                                                                                                                                                                 | 60.86%                                                                                                                                                                                 | 0.28                                                                                                                                                                | 0.03                                                                                                                                                                                                                       | 5.41%                                                                                                          | 0.13                                                                                                                                                                  | 0.01                                                                                                                                                                                                              | *                                                                                                                                                           | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.03                                                                                                                                                      | <b>57.53</b> ( <b>42</b> /73)                                                                                                                                                                                                                 |
| DS:GC1                                                                                                                                                        | *                                                                                                   | 0.23                                                                                                                                                                                                                                                                                                                | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.11                                                                                                                                                                                                                                                                 | *                                                                                                                                                                                      | 0.67                                                                                                                                                                | 0.08                                                                                                                                                                                                                       | 54.81%                                                                                                         | 0.06                                                                                                                                                                  | 0.01                                                                                                                                                                                                              | *                                                                                                                                                           | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.03                                                                                                                                                      | <b>22.67</b> (17/75)                                                                                                                                                                                                                          |
| DS:GC3                                                                                                                                                        | *                                                                                                   | 0.22                                                                                                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.09                                                                                                                                                                                                                                                                 | *                                                                                                                                                                                      | 0.69                                                                                                                                                                | 0.08                                                                                                                                                                                                                       | *                                                                                                              | 0.15                                                                                                                                                                  | 0.02                                                                                                                                                                                                              | *                                                                                                                                                           | 0.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.03                                                                                                                                                      | <b>100.00</b> (78/78)                                                                                                                                                                                                                         |
| DS:LS1                                                                                                                                                        | *                                                                                                   | 0.17                                                                                                                                                                                                                                                                                                                | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.06                                                                                                                                                                                                                                                                 | *                                                                                                                                                                                      | 0.30                                                                                                                                                                | 0.02                                                                                                                                                                                                                       | 48.14%                                                                                                         | 0.07                                                                                                                                                                  | 0.01                                                                                                                                                                                                              | *                                                                                                                                                           | 0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                      | <b>22.55</b> ( <b>23</b> /102)                                                                                                                                                                                                                |
| DS:LS2                                                                                                                                                        | *                                                                                                   | 0.22                                                                                                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 58.96%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.04                                                                                                                                                                                                                                                                 | 39.43%                                                                                                                                                                                 | 0.22                                                                                                                                                                | 0.02                                                                                                                                                                                                                       | *                                                                                                              | 0.10                                                                                                                                                                  | 0.01                                                                                                                                                                                                              | *                                                                                                                                                           | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.02                                                                                                                                                      | <b>68.00</b> ( <b>51</b> /75)                                                                                                                                                                                                                 |
| DS:VC1                                                                                                                                                        | *                                                                                                   | 0.13                                                                                                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 80.27%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.04                                                                                                                                                                                                                                                                 | *                                                                                                                                                                                      | 0.34                                                                                                                                                                | 0.05                                                                                                                                                                                                                       | 23.41%                                                                                                         | 0.04                                                                                                                                                                  | 0.00                                                                                                                                                                                                              | 79.31%                                                                                                                                                      | 1.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.13                                                                                                                                                      | <b>16.67</b> (8/48)                                                                                                                                                                                                                           |
| DS:VC2                                                                                                                                                        | *                                                                                                   | 0.13                                                                                                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.06                                                                                                                                                                                                                                                                 | *                                                                                                                                                                                      | 0.35                                                                                                                                                                | 0.06                                                                                                                                                                                                                       | 28.61%                                                                                                         | 0.07                                                                                                                                                                  | 0.01                                                                                                                                                                                                              | 67.06%                                                                                                                                                      | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.07                                                                                                                                                      | 28.95 (11/38)                                                                                                                                                                                                                                 |
| DS:CR1                                                                                                                                                        | *                                                                                                   | 0.12                                                                                                                                                                                                                                                                                                                | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 75.39%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.26                                                                                                                                                                                                                                                                 | 66.63%                                                                                                                                                                                 | 0.92                                                                                                                                                                | 0.09                                                                                                                                                                                                                       | 38.77%                                                                                                         | 0.12                                                                                                                                                                  | 0.01                                                                                                                                                                                                              | 63.67%                                                                                                                                                      | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.04                                                                                                                                                      | <b>93.15</b> ( <b>68</b> /73)                                                                                                                                                                                                                 |
| DS:CR3                                                                                                                                                        | *                                                                                                   | 0.05                                                                                                                                                                                                                                                                                                                | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 52.59%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.15                                                                                                                                                                                                                                                                 | *                                                                                                                                                                                      | 0.17                                                                                                                                                                | 0.05                                                                                                                                                                                                                       | 12.88%                                                                                                         | 0.01                                                                                                                                                                  | 0.00                                                                                                                                                                                                              | 68.26%                                                                                                                                                      | 0.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.08                                                                                                                                                      | 77.78 (7/9)                                                                                                                                                                                                                                   |
| DS:CLX                                                                                                                                                        | 85.75%                                                                                              | 0.76                                                                                                                                                                                                                                                                                                                | 0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 19.38%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                 | 56.48%                                                                                                                                                                                 | 0.37                                                                                                                                                                | 0.11                                                                                                                                                                                                                       | *                                                                                                              | 0.04                                                                                                                                                                  | 0.01                                                                                                                                                                                                              | 61.16%                                                                                                                                                      | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.04                                                                                                                                                      | <b>0.00</b> ( <b>0</b> /10)                                                                                                                                                                                                                   |
| DS:CL3                                                                                                                                                        | 73.24%                                                                                              | 0.36                                                                                                                                                                                                                                                                                                                | 0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 28.45%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.03                                                                                                                                                                                                                                                                 | 60.65%                                                                                                                                                                                 | 1.10                                                                                                                                                                | 0.11                                                                                                                                                                                                                       | *                                                                                                              | 0.11                                                                                                                                                                  | 0.01                                                                                                                                                                                                              | 29.36%                                                                                                                                                      | 0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.01                                                                                                                                                      | $15.12\ (13/86)$                                                                                                                                                                                                                              |
|                                                                                                                                                               |                                                                                                     |                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                      |                                                                                                                                                                                        |                                                                                                                                                                     |                                                                                                                                                                                                                            |                                                                                                                |                                                                                                                                                                       |                                                                                                                                                                                                                   |                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                           | 00                                                                                                                                                                                                                                            |
|                                                                                                                                                               |                                                                                                     | 22                                                                                                                                                                                                                                                                                                                  | 05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>62</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 06                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        | 27                                                                                                                                                                  | 03                                                                                                                                                                                                                         |                                                                                                                | 04                                                                                                                                                                    | 00                                                                                                                                                                                                                |                                                                                                                                                             | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03                                                                                                                                                        | 5                                                                                                                                                                                                                                             |
|                                                                                                                                                               |                                                                                                     | 0                                                                                                                                                                                                                                                                                                                   | .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .0                                                                                                                                                                                                                                                                   |                                                                                                                                                                                        | 0                                                                                                                                                                   | 0.                                                                                                                                                                                                                         |                                                                                                                | 0                                                                                                                                                                     | .0                                                                                                                                                                                                                |                                                                                                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .0                                                                                                                                                        | +<br>1<br>3                                                                                                                                                                                                                                   |
|                                                                                                                                                               |                                                                                                     | +<br>•                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ы<br>Н                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ×<br>×                                                                                                                                                                                                                                                               |                                                                                                                                                                                        | ao<br>+i                                                                                                                                                            | 9                                                                                                                                                                                                                          |                                                                                                                | -+ <b>6</b>                                                                                                                                                           |                                                                                                                                                                                                                   |                                                                                                                                                             | ς.<br>Η                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4                                                                                                                                                         | 60                                                                                                                                                                                                                                            |
|                                                                                                                                                               |                                                                                                     | ).2                                                                                                                                                                                                                                                                                                                 | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0                                                                                                                                                                                                                                                                  |                                                                                                                                                                                        | 0.4                                                                                                                                                                 | 0.0                                                                                                                                                                                                                        |                                                                                                                | 0.0                                                                                                                                                                   | 0.0                                                                                                                                                                                                               |                                                                                                                                                             | 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0                                                                                                                                                       | 40.                                                                                                                                                                                                                                           |
|                                                                                                                                                               |                                                                                                     | <u> </u>                                                                                                                                                                                                                                                                                                            | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                    |                                                                                                                                                                                        | -                                                                                                                                                                   | _                                                                                                                                                                                                                          |                                                                                                                | _                                                                                                                                                                     | _                                                                                                                                                                                                                 |                                                                                                                                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                         |                                                                                                                                                                                                                                               |
|                                                                                                                                                               |                                                                                                     | Test 3                                                                                                                                                                                                                                                                                                              | 4 - Em                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | otion Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cognition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | + RTC                                                                                                                                                                                                                                                                | R [HR+                                                                                                                                                                                 | $\overline{\mathbf{GSR}}$ - $\varphi$                                                                                                                               | $v_i(v_i(n))$                                                                                                                                                                                                              | = ReLU,                                                                                                        | opt='sgd                                                                                                                                                              | $N_h =$                                                                                                                                                                                                           | $10 \times 2$ , N                                                                                                                                           | $T_{o} = 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •                                                                                                                                                         | •                                                                                                                                                                                                                                             |
| Flight                                                                                                                                                        |                                                                                                     | Test 3<br>Happy                                                                                                                                                                                                                                                                                                     | 4 - Em                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | otion Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cognition<br>Sad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + RTC                                                                                                                                                                                                                                                                | R [HR+                                                                                                                                                                                 | $\frac{\mathbf{GSR}}{\mathbf{Angrv}} - \varphi$                                                                                                                     | $\overline{v_j(v_j(n))}$                                                                                                                                                                                                   | = ReLU,                                                                                                        | opt='sgd                                                                                                                                                              | l', $N_h =$                                                                                                                                                                                                       | $10 \times 2, N$                                                                                                                                            | $T_o = 5$<br>Scared                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                           | Match                                                                                                                                                                                                                                         |
| Flight<br>Dataset                                                                                                                                             | MARD                                                                                                | Test 3<br>Happy<br>RMSE                                                                                                                                                                                                                                                                                             | 4 - Emo<br>MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | otion Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | cognition<br>Sad<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + RTC<br>MAE                                                                                                                                                                                                                                                         | OR [HR+                                                                                                                                                                                | GSR] - φ<br>Angry<br>RMSE                                                                                                                                           | $\frac{1}{p_j(v_j(n))}$ $MAE$                                                                                                                                                                                              | = ReLU, $S$ $MARD$                                                                                             | opt='sgd<br>Surprised<br>RMSE                                                                                                                                         | $I', N_h = MAE$                                                                                                                                                                                                   | $10 \times 2, N$<br>MARD                                                                                                                                    | $T_o = 5$<br>Scared<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MAE                                                                                                                                                       | Match<br>Accuracy (%)                                                                                                                                                                                                                         |
| Flight<br>Dataset                                                                                                                                             | MARD                                                                                                | Test 3<br>Happy<br>RMSE                                                                                                                                                                                                                                                                                             | 64 - Emo<br>MAE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | otion Rec<br>MARD<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | cognition<br>Sad<br>RMSE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + RTC<br>MAE<br>0.04                                                                                                                                                                                                                                                 | DR [HR+<br>MARD<br>78 20%                                                                                                                                                              | <b>GSR]</b> - φ<br><b>Angry</b><br><i>RMSE</i><br>0.50                                                                                                              | $\frac{D}{D_j(v_j(n))}$ $\frac{MAE}{0.04}$                                                                                                                                                                                 | = ReLU, $S$ $MARD$ $41.37%$                                                                                    | opt='sgd<br>Surprised<br>RMSE                                                                                                                                         | $I', N_h = $ $MAE$ $0.01$                                                                                                                                                                                         | $10 \times 2, N$<br>MARD                                                                                                                                    | $\frac{c_o = 5}{\text{Scared}}$ $\frac{RMSE}{0.19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MAE                                                                                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)                                                                                                                                                                                                        |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2                                                                                                                         | MARD<br>*                                                                                           | <b>Test 3</b><br><b>Happy</b><br><i>RMSE</i><br>0.16<br>0.17                                                                                                                                                                                                                                                        | 64 - Emo<br>MAE<br>0.02<br>0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | And the second | cognition<br>Sad<br>RMSE<br>0.42<br>0.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | + RTC<br>MAE<br>0.04<br>0.07                                                                                                                                                                                                                                         | <b>PR</b> [ <b>HR</b> +<br><i>MARD</i><br>78.20%<br>70.03%                                                                                                                             | <b>GSR]</b> - φ<br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29                                                                                                      | $\frac{D}{D_j(v_j(n))}$ $\frac{MAE}{0.04}$ 0.03                                                                                                                                                                            | = ReLU,<br>S<br>MARD<br>41.37%<br>39.42%                                                                       | opt='sgd<br>Surprised<br>RMSE<br>0.13<br>0.12                                                                                                                         | $\frac{1}{MAE}$ $\frac{MAE}{0.01}$ 0.01                                                                                                                                                                           | $10 \times 2, N$ $MARD$ $*$ $*$                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAE<br>0.02<br>0.03                                                                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)                                                                                                                                                                                       |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3                                                                                                               | MARD * * * *                                                                                        | Test 3           Happy           RMSE           0.16           0.17           0.78                                                                                                                                                                                                                                  | 44 - Eme<br>MAE<br>0.02<br>0.02<br>0.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mathematical         mathematical<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | cognition<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + <b>RTC</b><br>MAE<br>0.04<br>0.07<br>0.11                                                                                                                                                                                                                          | <b>PR</b> [ <b>HR</b> +<br><u>MARD</u><br>78.20%<br>70.03%<br>61.93%                                                                                                                   | <b>GSR] -</b> φ<br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.28                                                                                              | $     \underline{MAE} \\     0.04 \\     0.03 \\     0.03     0.03     $                                                                                                                                                   | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.42% 6.98%                                                               | opt='sgd<br>Surprised<br>RMSE<br>0.13<br>0.12<br>0.12                                                                                                                 | $P, N_h = \frac{MAE}{0.01}$                                                                                                                                                                                       | $10 \times 2, N$ $MARD$ $*$ $*$ $*$                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAE<br>0.02<br>0.03<br>0.03                                                                                                                               | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)                                                                                                                                                                      |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1                                                                                                     | MARD * * * * *                                                                                      | Test 3           Happy           RMSE           0.16           0.17           0.78           0.24                                                                                                                                                                                                                   | <u>MAE</u><br>0.02<br>0.02<br>0.07<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | attion Rec           MARD           *           81.62%           91.38%           *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>cognition</b><br><b>Sad</b><br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11                                                                                                                                                                                                                  | DR [HR+<br>MARD<br>78.20%<br>70.03%<br>61.93%<br>*                                                                                                                                     | GSR] - <i>\varphi</i><br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68                                                                                       | $\frac{MAE}{0.04}$ 0.03 0.03 0.08                                                                                                                                                                                          | = ReLU, $S$ $MARD$ $41.37%$ $39.42%$ $6.98%$ $56.95%$                                                          | opt='sgd<br>Surprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06                                                                                                 | $N_{h} = \frac{MAE}{0.01}$                                                                                                                                                                                        | 10 × 2, N<br>MARD<br>*<br>*<br>*                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAE<br>0.02<br>0.03<br>0.03<br>0.03                                                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)                                                                                                                                                     |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3                                                                                           | MARD * * * * * * *                                                                                  | Test 3<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22                                                                                                                                                                                                                                              | MAE           0.02           0.02           0.07           0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MARD           *           81.62%           91.38%           *           *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cognition<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09                                                                                                                                                                                                          | <b>PR</b> [ <b>HR</b> +<br><u>MARD</u><br>78.20%<br>70.03%<br>61.93%<br>*<br>*                                                                                                         | GSR] - φ<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69                                                                                            | $\frac{D}{D_{j}(v_{j}(n))}$ $\frac{MAE}{0.04}$ $\frac{0.03}{0.03}$ $\frac{0.03}{0.08}$ $\frac{0.08}{0.08}$                                                                                                                 | = ReLU, $S$ $MARD$ $41.37%$ $39.42%$ $6.98%$ $56.95%$ $*$                                                      | opt='sgd<br>surprised<br><u>RMSE</u><br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15                                                                                  | $\frac{V, N_h = MAE}{0.01}$ 0.01 0.01 0.01 0.02                                                                                                                                                                   | 10 × 2, N<br>MARD<br>*<br>*<br>*<br>*                                                                                                                       | $T_o = 5$<br>Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03                                                                                                               | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)                                                                                                                                   |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1                                                                                 | MARD * * * * * * * * *                                                                              | Test 3           Happy           RMSE           0.16           0.17           0.78           0.24           0.22           0.17                                                                                                                                                                                     | <u>MAE</u><br>0.02<br>0.02<br>0.07<br>0.03<br>0.03<br>0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MARD           *           81.62%           91.38%           *           *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | cognition<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $+ \text{ RTC}$ $\frac{MAE}{0.04}$ 0.07 0.11 0.11 0.09 0.06                                                                                                                                                                                                          | PR [HR+<br><u>MARD</u><br>78.20%<br>70.03%<br>61.93%<br>*<br>*<br>*                                                                                                                    | GSR] - ¢<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30                                                                                    | $\begin{array}{c} \hline \\ \hline $                                                                                                       | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.42% 6.98% 56.95% * 49.93%                                               | opt='sgd<br>Surprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07                                                                                         | $\frac{V, N_h = 0}{0.01}$ $\frac{MAE}{0.01}$ $\frac{0.01}{0.01}$ $\frac{0.01}{0.02}$ $0.01$                                                                                                                       | 10 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*                                                                                                                  | $T_o = 5$<br>Scared<br><i>RMSE</i><br>0.19<br>0.26<br>0.24<br>0.26<br>0.27<br>0.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02                                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)                                                                                                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2                                                                       | MARD * * * * * * * * * *                                                                            | Test 3           Happy           RMSE           0.16           0.17           0.78           0.24           0.22           0.17                                                                                                                                                                                     | MAE           0.02           0.02           0.07           0.03           0.02           0.03           0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MARD           *           81.62%           91.38%           *           *           59.79%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>Sad</b><br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64<br>0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $+ \mathbf{RTC}$ $\frac{MAE}{0.04}$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04                                                                                                                                                                                               | <b>PR</b> [ <b>HR</b> +<br><u>MARD</u><br>78.20%<br>70.03%<br>61.93%<br>*<br>*<br>99.98%                                                                                               | GSR] - ¢<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.67                                                                            | $\begin{array}{c} \hline \\ \hline $                                                                                                       | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.42% 6.98% 56.95% * 49.93% *                                             | opt='sgd<br>Surprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11                                                                                 | $\begin{array}{c} V, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \end{array}$                                                                                            | 10 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)                                                                                                |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1                                                             | MARD * * * * * * * * * * *                                                                          | Test 3           Happy           RMSE           0.16           0.17           0.78           0.24           0.22           0.17           0.22           0.17                                                                                                                                                       | MAE           0.02           0.02           0.07           0.03           0.02           0.03           0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MARD           *           81.62%           91.38%           *           59.79%           81.47%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Sad</b><br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64<br>0.38<br>0.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $+ \mathbf{RTC}$ $\frac{MAE}{0.04}$ 0.04 0.07 0.11 0.11 0.09 0.06 0.04 0.04                                                                                                                                                                                          | <b>MARD</b> 78.20%           70.03%           61.93%           *           99.98%           *                                                                                          | GSR] - ¢<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.67<br>0.34                                                                    | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.07 \\ 0.05 \\ \end{array}$                                                                                  | = ReLU, $S$ $MARD$ $41.37%$ $39.42%$ $6.98%$ $56.95%$ $*$ $49.93%$ $*$ $23.94%$                                | opt='sgd<br>Surprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04                                                          | $\begin{array}{l} V, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ \end{array}$                                                                                 | 10 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.13                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)                                                                                |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2                                                   | MARD * * * * * * * * * * * * * *                                                                    | Test 3           Happy           RMSE           0.16           0.17           0.24           0.22           0.17           0.22           0.13           0.14                                                                                                                                                       | $\begin{array}{c} & \\ \hline \\ \hline$                                            | MARD           *           81.62%           91.38%           *           59.79%           81.47%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>Sognition</b><br><b>Sad</b><br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64<br>0.38<br>0.31<br>0.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $+ \mathbf{RTC}$ $\frac{MAE}{0.04}$ 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.04 0.06                                                                                                                                                                                     | DR [HR+<br><u>MARD</u><br>78.20%<br>70.03%<br>61.93%<br>*<br>*<br>99.98%<br>*<br>*                                                                                                     | GSR] - ¢<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.67<br>0.34<br>0.36                                                            | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.07 \\ 0.05 \\ 0.06 \\ \end{array}$                                                                  | = ReLU, $S$ $MARD$ $41.37%$ $39.42%$ $6.98%$ $56.95%$ $*$ $49.93%$ $*$ $23.94%$ $28.42%$                       | opt='sgd<br>Surprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07                                                 | $\begin{array}{l} V, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ \end{array}$                                                                         | 10 × 2, N<br>MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02                                                                                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)                                                               |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1                               | MARD * * * * * * * * * * * * * * * * * *                                                            | Test 3           Happy           RMSE           0.16           0.17           0.24           0.22           0.17           0.22           0.13           0.14                                                                                                                                                       | $\begin{array}{c} & \\ \hline \\ \hline$                                            | $\begin{array}{c} \hline \textbf{MARD} \\ \hline \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Sognition</b><br><b>Sad</b><br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64<br>0.38<br>0.31<br>0.42<br>3.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $+ \mathbf{RTC}$ $\frac{MAE}{0.04}$ 0.07 0.11 0.11 0.09 0.06 0.04 0.04 0.04 0.06 0.34                                                                                                                                                                                | $\begin{array}{c} \textbf{PR} \ [\textbf{HR} + \\ \hline MARD \\ \hline 78.20\% \\ 70.03\% \\ 61.93\% \\ * \\ * \\ 99.98\% \\ * \\ * \\ 66.50\% \end{array}$                           | GSR] - <i>φ</i><br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.67<br>0.34<br>0.36<br>0.92                                             | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.08 \\ 0.08 \\ 0.02 \\ 0.07 \\ 0.05 \\ 0.06 \\ 0.09 \\ \end{array}$                                                          | = ReLU, $S$ $MARD$ $41.37%$ $39.42%$ $6.98%$ $56.95%$ $*$ $49.93%$ $*$ $23.94%$ $28.42%$ $37.91%$              | opt='sgd<br>surprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12                                          | $\begin{array}{l} \mathbf{P}, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}$                                                   | $10 \times 2, N$<br><i>MARD</i><br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.09 \\ 0.04 \end{array}$                                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>0.00 (0/73)                                                |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC2<br>DS:CR1<br>DS:CR3                     | MARD * * * * * * * * * * * * * * * * * * *                                                          | Test 3           Happy           RMSE           0.16           0.17           0.24           0.22           0.17           0.22           0.17           0.22           0.17           0.22           0.17           0.22           0.13           0.14           0.12           0.05                               | $\begin{array}{c} \hline & \\ \hline \\ \hline$ | MARD           *           81.62%           91.38%           *           *           59.79%           81.47%           99.99%           52.57%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} \textbf{cognition} \\ \textbf{Sad} \\ RMSE \\ \hline 0.42 \\ 0.81 \\ 1.37 \\ 0.96 \\ 0.82 \\ 0.64 \\ 0.38 \\ 0.31 \\ 0.42 \\ 3.24 \\ 0.55 \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $+ \operatorname{RTC}$ $\frac{MAE}{0.04}$ $0.07$ $0.11$ $0.11$ $0.09$ $0.06$ $0.04$ $0.04$ $0.04$ $0.06$ $0.34$ $0.15$                                                                                                                                               | $\begin{array}{c} \textbf{PR} \ [\textbf{HR} + \\ \hline MARD \\ \hline 78.20\% \\ 70.03\% \\ 61.93\% \\ * \\ * \\ 99.98\% \\ * \\ * \\ 66.50\% \\ * \end{array}$                      | GSR] - <i>q</i><br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.67<br>0.34<br>0.36<br>0.92<br>0.17                                     | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.07 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ \end{array}$                                                          | = ReLU, $S$ $MARD$ $41.37%$ $39.42%$ $6.98%$ $56.95%$ $*$ $49.93%$ $*$ $23.94%$ $28.42%$ $37.91%$ $11.56%$     | opt='sgd<br>surprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01                                  | $\begin{array}{l} \mathbf{P}, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \end{array}$                                           | $10 \times 2, N$<br><i>MARD</i><br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>78.96%<br>99.98%<br>62.94%<br>67.74%                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.09 \\ 0.04 \\ 0.08 \end{array}$                 | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>0.00 (0/73)<br>77.78 (7/9)                                 |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX | MARD * * * * * * * * * * * * * * * * * * *                                                          | Test 3           Happy           RMSE           0.16           0.17           0.78           0.24           0.22           0.17           0.22           0.17           0.22           0.17           0.22           0.17           0.22           0.13           0.14           0.12           0.05           0.76 | $\begin{array}{c} & \\ \hline \\ \hline$                                                                                                                                                                                                                    | $\begin{array}{c} \hline \textbf{MARD} \\ \hline \textbf{*} \\ 81.62\% \\ 91.38\% \\ * \\ * \\ 59.79\% \\ 81.47\% \\ * \\ 99.99\% \\ 52.57\% \\ 20.20\% \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\begin{array}{c} \textbf{cognition} \\ \textbf{Sad} \\ \hline \textbf{RMSE} \\ \hline \textbf{0.42} \\ \textbf{0.81} \\ \textbf{1.37} \\ \textbf{0.96} \\ \textbf{0.82} \\ \textbf{0.64} \\ \textbf{0.38} \\ \textbf{0.31} \\ \textbf{0.42} \\ \textbf{3.24} \\ \textbf{0.55} \\ \textbf{0.06} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | + RTC $MAE$ $0.04$ $0.07$ $0.11$ $0.11$ $0.09$ $0.06$ $0.04$ $0.04$ $0.04$ $0.04$ $0.06$ $0.34$ $0.15$ $0.02$                                                                                                                                                        | $\begin{array}{c} \textbf{PR} \ [\textbf{HR} + \\ \hline MARD \\ \hline 78.20\% \\ 70.03\% \\ 61.93\% \\ * \\ * \\ 99.98\% \\ * \\ * \\ 66.50\% \\ * \\ 56.06\% \end{array}$           | GSR] - <i>q</i><br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.67<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36                             | $\begin{array}{c} \hline \\ \hline $                                                                                                       | = ReLU, $S$ $MARD$ $41.37%$ $39.42%$ $6.98%$ $56.98%$ $*$ $49.93%$ $*$ $23.94%$ $28.42%$ $37.91%$ $11.56%$ $*$ | opt='sgd<br>surprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04                          | $\begin{array}{l} V, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ \end{array}$                                         | $\begin{array}{c} 10 \times 2, \ N\\ \hline MARD \\ *\\ *\\ *\\ *\\ *\\ *\\ *\\ 78.96\%\\ 99.98\%\\ 62.94\%\\ 67.74\%\\ 60.50\% \end{array}$                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.09 \\ 0.04 \\ 0.08 \\ 0.04 \end{array}$         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>0.00 (0/73)<br>77.78 (7/9)<br>0.00 (0/10)                  |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>*<br>* | Test 3           Happy           RMSE           0.16           0.17           0.24           0.22           0.17           0.22           0.13           0.14           0.12           0.05           0.76           0.36                                                                                           | $\begin{array}{c} & \\ \hline \\ \hline$                    | MARD           *           81.62%           91.38%           *           *           *           *           *           *           *           *           *           *           *           *           99.99%           52.57%           20.20%           28.68%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\begin{array}{c} \textbf{cognition} \\ \textbf{Sad} \\ \hline \textbf{RMSE} \\ \hline \textbf{0.42} \\ \textbf{0.81} \\ \textbf{1.37} \\ \textbf{0.96} \\ \textbf{0.82} \\ \textbf{0.64} \\ \textbf{0.38} \\ \textbf{0.31} \\ \textbf{0.42} \\ \textbf{3.24} \\ \textbf{0.55} \\ \textbf{0.06} \\ \textbf{0.39} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + RTC $MAE$ $0.04$ $0.07$ $0.11$ $0.09$ $0.06$ $0.04$ $0.04$ $0.04$ $0.06$ $0.34$ $0.15$ $0.02$ $0.03$                                                                                                                                                               | PR [HR+<br><u>MARD</u><br>78.20%<br>70.03%<br>61.93%<br>*<br>*<br>99.98%<br>*<br>*<br>66.50%<br>56.06%<br>60.21%                                                                       | <b>GSR]</b> - <i>\varphi</i><br><b>Angry</b><br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.67<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10 | $\begin{array}{c} \hline \\ \hline $                                                                                                       | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.42% 6.98% 56.95% * 49.93% * 23.94% 28.42% 37.91% 11.56% * *             | opt='sgd<br>Surprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.04<br>0.02                 | $\begin{array}{l} V, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \end{array}$                                    | $\begin{array}{c} 10 \times 2, \ N\\ \hline MARD \\ *\\ *\\ *\\ *\\ *\\ *\\ *\\ *\\ 78.96\%\\ 99.98\%\\ 62.94\%\\ 67.74\%\\ 60.50\%\\ 28.93\% \end{array}$  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} MAE \\ \hline 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.09 \\ 0.04 \\ 0.08 \\ 0.04 \\ 0.01 \end{array}$         | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>0.00 (0/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * *                                                          | $\begin{array}{c} {\bf Test \ 3} \\ {\bf Happy} \\ RMSE \\ \hline 0.16 \\ 0.17 \\ 0.78 \\ 0.24 \\ 0.22 \\ 0.17 \\ 0.22 \\ 0.13 \\ 0.14 \\ 0.12 \\ 0.05 \\ 0.76 \\ 0.36 \\ \end{array}$                                                                                                                              | $\begin{array}{c} \hline & \\ \hline \\ \hline$                                                                                                                                                                                                                         | MARD           *           81.62%           91.38%           *           *           59.79%           81.47%           99.99%           52.57%           20.20%           28.68%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | cognition           Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42           3.24           0.55           0.06           0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $+ \mathbf{RTC}$ $MAE$ $0.04$ $0.07$ $0.11$ $0.11$ $0.09$ $0.06$ $0.04$ $0.04$ $0.04$ $0.04$ $0.06$ $0.34$ $0.15$ $0.02$ $0.03$                                                                                                                                      | $\begin{array}{c} \textbf{R} \ [\textbf{HR} + \\ \hline MARD \\ \hline 78.20\% \\ 70.03\% \\ 61.93\% \\ * \\ * \\ 99.98\% \\ * \\ * \\ 66.50\% \\ * \\ 56.06\% \\ 60.21\% \end{array}$ | GSR] - ¢<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.67<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10                            | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.07 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \hline \end{array}$                                   | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.42% 6.98% 56.95% * 49.93% * 23.94% 28.42% 37.91% 11.56% * *             | opt='sgd<br>surprised<br><i>RMSE</i><br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.04<br>0.04<br>0.12          | $\begin{array}{l} I', \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.01 \\ \hline \end{array}$                         | $10 \times 2, N$<br><i>MARD</i><br>*<br>*<br>*<br>*<br>*<br>*<br>78.96%<br>99.98%<br>62.94%<br>67.74%<br>60.50%<br>28.93%                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c} MAE \\ 0.02 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.13 \\ 0.09 \\ 0.04 \\ 0.08 \\ 0.04 \\ 0.01 \end{array}$                | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>0.00 (0/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CL3                     | MARD * * * * * * * * * * * * * * * * * * *                                                          | Test 3<br>Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36                                                                                                                                                                                     | MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.21           0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MARD           *           81.62%           91.38%           *           *           59.79%           81.47%           *           99.99%           52.57%           20.20%           28.68%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20gnition<br>Sad<br>RMSE<br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64<br>0.38<br>0.31<br>0.42<br>3.24<br>0.55<br>0.06<br>0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.02<br>0.03<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 | $\begin{array}{c} \textbf{R} \ [\textbf{HR} + \\ \hline MARD \\ \hline 78.20\% \\ 70.03\% \\ 61.93\% \\ * \\ * \\ 99.98\% \\ * \\ * \\ 66.50\% \\ * \\ 56.06\% \\ 60.21\% \end{array}$ | GSR] - ¢<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.67<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10                            | $\begin{array}{c} \hline p_j(v_j(n)) \\ \hline MAE \\ \hline 0.04 \\ 0.03 \\ 0.03 \\ 0.03 \\ 0.08 \\ 0.02 \\ 0.07 \\ 0.05 \\ 0.06 \\ 0.09 \\ 0.05 \\ 0.11 \\ 0.11 \\ \hline \hline \mathbf{S} \end{array}$                 | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.42% 6.98% 56.95% * 49.93% * 23.94% 28.42% 37.91% 11.56% * *             | opt='sgd<br>Surprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.02<br>0.01<br>0.04<br>0.12         | $\begin{array}{c} \mathbf{P}, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.01 \\ \hline 0.01 \\ 0.01 \\ \hline \end{array}$  | $\begin{array}{c} 10 \times 2, \ N\\ \hline MARD \\ *\\ *\\ *\\ *\\ *\\ *\\ *\\ 78.96\% \\ 99.98\% \\ 62.94\% \\ 67.74\% \\ 60.50\% \\ 28.93\% \end{array}$ | Scared           RMSE           0.19           0.26           0.24           0.26           0.27           0.23           0.21           1.01           0.67           0.40           0.30           0.14           0.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.02<br>0.02<br>0.13<br>0.09<br>0.04<br>0.08<br>0.04<br>0.04<br>0.01                       | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>0.00 (0/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CL3                     | MARD * * * * * * * * * * * * * * * * * * *                                                          | Test 3<br>Happy<br>RMSE<br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36                                                                                                                                                                                     | MAE           0.02           0.02           0.02           0.03           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.03           0.02           0.01           0.02           0.21           0.03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MARD           *           81.62%           91.38%           *           *           59.79%           81.47%           *           99.99%           52.57%           20.20%           28.68%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | تع<br>regnition<br>Sad<br><i>RMSE</i><br>0.42<br>0.81<br>1.37<br>0.96<br>0.82<br>0.64<br>0.38<br>0.31<br>0.42<br>3.24<br>0.55<br>0.06<br>0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.02<br>0.03<br>80<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00              | $\begin{array}{c} \textbf{R} \ [\textbf{HR} + \\ \hline MARD \\ \hline 78.20\% \\ 70.03\% \\ 61.93\% \\ * \\ * \\ 99.98\% \\ * \\ * \\ 66.50\% \\ * \\ 56.06\% \\ 60.21\% \end{array}$ | GSR] - ¢<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.67<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10                            | Dj(vj(n))           MAE           0.04           0.03           0.03           0.03           0.08           0.02           0.07           0.05           0.06           0.09           0.05           0.11           0.11 | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.42% 6.98% 56.95% * 49.93% * 23.94% 28.42% 37.91% 11.56% * *             | opt='sgc<br>Surprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.02<br>0.01<br>0.04<br>0.12         | $\begin{array}{c} \mathbf{P}, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ \hline \end{array}$ | $\begin{array}{c} 10 \times 2, \ N\\ \hline MARD \\ *\\ *\\ *\\ *\\ *\\ *\\ *\\ 78.96\% \\ 99.98\% \\ 62.94\% \\ 67.74\% \\ 60.50\% \\ 28.93\% \end{array}$ | Image: second state of the second s | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.04<br>0.09<br>0.04<br>0.08<br>0.04<br>0.04<br>0.01<br><b>ECO</b> | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>0.00 (0/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:CR1<br>DS:CR3<br>DS:CLX<br>DS:CL3           | MARD * * * * * * * * * * * * * * * * * * *                                                          | Test 3<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36<br><b>₹</b> .0<br>#                                                                                                                                                          | 44 - Emo         MAE         0.02         0.02         0.03         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.04         0.05         0.07         0.08         0.09         0.01         0.02         0.03         0.04         0.05         0.06         0.07         0.08         0.09         0.01         0.03         0.03         0.04         0.05         0.06         0.07         0.08         0.09         0.01         0.03         0.03         0.04         0.05         0.06         0.07         0.08         0.09         0.01         0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MARD           *           81.62%           91.38%           *           *           59.79%           81.47%           99.99%           52.57%           20.20%           28.68%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000 | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.04<br>0.04<br>0.04<br>0.05<br>0.02<br>0.03<br>80.00<br>+ 6                                                                                                                  | $\begin{array}{c} \textbf{R} \ [\textbf{HR} + \\ \hline MARD \\ \hline 78.20\% \\ 70.03\% \\ 61.93\% \\ * \\ * \\ 99.98\% \\ * \\ * \\ 66.50\% \\ * \\ 56.06\% \\ 60.21\% \end{array}$ | GSR] - ∉<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.67<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10<br>97.00<br>H              | Dj(vj(n))         MAE         0.04         0.03         0.03         0.08         0.02         0.07         0.05         0.06         0.09         0.05         0.11         0.11                                          | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.42% 6.98% 56.95% * 49.93% * 23.94% 28.42% 37.91% 11.56% * *             | opt='sgc<br>Surprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.12<br>0.01<br>0.04<br>0.12         | $\begin{array}{c} V, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ \hline 0.00 \\ 0.01 \\ \hline \end{array}$           | $10 \times 2, N$<br><i>MARD</i><br>*<br>*<br>*<br>*<br>*<br>78.96%<br>99.98%<br>62.94%<br>67.74%<br>60.50%<br>28.93%                                        | Image: 0       = 5         Scared       RMSE         0.19       0.26         0.24       0.26         0.27       0.23         0.21       1.01         0.67       0.40         0.30       0.14         0.18       €                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MAE<br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.02<br>0.02<br>0.04<br>0.04<br>0.04<br>0.04<br>0.01<br><b>E000</b>                        | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>0.00 (0/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |
| Flight<br>Dataset<br>DS:RC1<br>DS:RC2<br>DS:RC3<br>DS:GC1<br>DS:GC3<br>DS:LS1<br>DS:LS2<br>DS:VC1<br>DS:VC2<br>DS:VC1<br>DS:CR3<br>DS:CR3<br>DS:CLX<br>DS:CL3 | MARD * * * * * * * * * * * * * * * * * * *                                                          | Test 3<br>Happy<br><i>RMSE</i><br>0.16<br>0.17<br>0.78<br>0.24<br>0.22<br>0.17<br>0.22<br>0.13<br>0.14<br>0.12<br>0.05<br>0.76<br>0.36<br><b>7</b><br>0.36                                                                                                                                                          | 44 - Emo         MAE         0.02         0.02         0.03         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.02         0.03         0.04         0.05         0.07         0.03         0.04         0.05         0.06         0.07         0.08         0.09         0.01         0.03         0.03         0.04         0.05         0.06         0.07         0.08         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         90000         900000         90000000<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MARD           *           81.62%           91.38%           *           *           59.79%           81.47%           99.99%           52.57%           20.20%           28.68%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sad           RMSE           0.42           0.81           1.37           0.96           0.82           0.64           0.38           0.31           0.42           3.24           0.55           0.06           0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + RTC<br><i>MAE</i><br>0.04<br>0.07<br>0.11<br>0.11<br>0.09<br>0.06<br>0.04<br>0.04<br>0.06<br>0.34<br>0.15<br>0.02<br>0.03<br>80.04<br>0.05<br>0.02<br>0.03                                                                                                         | $\begin{array}{c} \textbf{R} \ [\textbf{HR} + \\ \hline MARD \\ \hline 78.20\% \\ 70.03\% \\ 61.93\% \\ * \\ * \\ 99.98\% \\ * \\ * \\ 66.50\% \\ * \\ 56.06\% \\ 60.21\% \end{array}$ | GSR] - ∉<br>Angry<br><i>RMSE</i><br>0.50<br>0.29<br>0.28<br>0.68<br>0.69<br>0.30<br>0.67<br>0.34<br>0.36<br>0.92<br>0.17<br>0.36<br>1.10<br>97.00<br>#1<br>1.10     | Dj(vj(n))         MAE         0.04         0.03         0.03         0.08         0.02         0.07         0.05         0.06         0.09         0.05         0.11         0.11                                          | = ReLU, <b>S</b> <i>MARD</i> 41.37% 39.42% 6.98% 56.95% * 49.93% * 23.94% 28.42% 37.91% 11.56% * *             | opt='sgc<br>Surprised<br>RMSE<br>0.13<br>0.12<br>0.12<br>0.12<br>0.06<br>0.15<br>0.07<br>0.11<br>0.04<br>0.07<br>0.12<br>0.01<br>0.04<br>0.12<br>0.01<br>0.04<br>0.12 | $\begin{array}{c} V, \ N_h = \\ \hline MAE \\ \hline 0.01 \\ 0.01 \\ 0.01 \\ 0.01 \\ 0.02 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.00 \\ 0.01 \\ 0.01 \\ \hline \end{array}$                                  | $10 \times 2, N$<br><i>MARD</i><br>*<br>*<br>*<br>*<br>*<br>78.96%<br>99.98%<br>62.94%<br>67.74%<br>60.50%<br>28.93%                                        | Image: 0       5         Scared       RMSE         0.19       0.26         0.24       0.26         0.27       0.23         0.21       1.01         0.67       0.40         0.30       0.14         0.18       €€                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>MAE</i><br>0.02<br>0.03<br>0.03<br>0.03<br>0.03<br>0.02<br>0.02<br>0.02                                                                                | Match<br>Accuracy (%)<br>53.73 (36/67)<br>82.05 (64/78)<br>57.53 (42/73)<br>22.67 (17/75)<br>100.00 (78/78)<br>22.55 (23/102)<br>68.00 (51/75)<br>16.67 (8/48)<br>28.95 (11/38)<br>0.00 (0/73)<br>77.78 (7/9)<br>0.00 (0/10)<br>15.12 (13/86) |

TABLE 9.19. Emotion recognition results tests 33 and 34. ANN with  $6 \times 10^3$  train epochs and input data with feature extraction.

## CHAPTER 10

# Findings, Limitations and Conclusions

This work presents a multimodal solution to give support in the avoidance of aviation accidents caused by human failures. In this context, the aviation was applied through the use of simulated flights and several tasks executed by volunteers having different expertise.

The experiment's scope was based on physiologic sensing approach to recognize emotions and to analyze  $\beta$ -band signals of several volunteers that acted like pilots in flight. All simulated flights were executed using the Microsoft Flight Simulator-Steam Edition (FSX-SE) and the aircraft Cessna 172SP. Cameras, execution checklists, questionnaires, and devices to acquire data based on GSR, HR and EEG were also used. The simulated flight plan, departed from Lisbon to Alverca, Portugal and it was executed by 8 volunteers which 13 datasets were obtained on the present analysis, having data of both genders.

The present experiment was executed looking for the volunteers side, which they acted like aircraft pilots. A total of 3 different biosignals of the volunteers' body were acquired: HR, GSR, EEG and also an additional data was considered based on face recordings, to identify emotions to give support on the offline analysis. Several sensors were used: Enobio-NE8, Shimmer3+GSR/HR, MedLab Pearl 100 and Arduino Uno. In addition, some emotional questionnaires were also applied before, during and after each flight experiment.

# 10.1. Findings

Regarding to the  $\beta$ -band analysis, several results were obtained on this experiment. In the  $\beta$ band spectrogram analysis were possible to visualize the brain's behaviour during the quietest moments of the flight (reported by the volunteers through the use of questionnaires) which the spectrograms shown to have less amplitude and signal oscillation along the time, compared to the most stressful or critical flight moments. The opposite situations were also identified i.e., in flight moments which it require more attention (takeoff, approach and landing), the brain signal presented higher amplitude and oscillation. It mainly, due the level of attention and alertness that these tasks required.

Spectrograms of the EEG data were acquired from the frontal and temporal lobes, and it shown to reflect better the flight phases, according to the feelings reported by each volunteer. When the volunteers' expertise and confidence on the proposed flight simulation were considered, it showed that the highest brain magnitudes and oscillations observed of more experienced and confident volunteers, were on average close to 68.44% less compared to less experienced and unsure volunteers. Moreover, more experienced and confident volunteers in general presented different patterns of brain activities compared to volunteers having less expertise or less familiarity with fight simulations and/or electronic games. In addition, the mean of the volunteer's brain activity presented the highest amplitudes during the the takeoff, approach, final approach and landing, having values close to 37.06–67.33% higher compared to other flight moments. Additional plots of normalized mean values of brain activities for each lobe position also confirmed that the less experienced and unsure volunteers presented higher amplitudes of  $\beta$ -band mainly during critical flight tasks, which it demand more attention and self-control.

Regarding to the developed emotion recognition system, the results reached different levels of accuracy. In this recognition, several features were extracted together with datamining and ANN techniques. The tests of the produced output models, showed that the lowest recognition errors were reached when all biosignal datasets were considered or when the GSR dataset were omitted of the model training. It also showed that the emotion *surprised* was the easiest to recognize, having a mean value of RMSE of 0.13 and mean value of MAE of 0.01; the emotion *sad*, presented the worst recognition levels, having a mean value of RMSE of 0.82 and mean value of MAE of 0.08. It can be partially explained by the number of emotion instances detected by the Face Reader software, which the emotions *happy, surprised* and *scared* presented more instances along the experiments. When only the major emotion values along the time were considered, the mean of the best classification accuracies was close of 76.42%.

## 10.2. Limitations

Few limitations were faced along the present work, however, the present work has managed to get round that quite well.

Some limitations were detected on the recognition of facial emotions by the Face Reader software in real time, which it presented some undetected emotions, resulting sometimes in such decrease of facial dataset and outputted model quality. Most part of these mismatches were minimized along the preprocessing and processing, but some of them continued to affect the regression models and accuracies of the emotion recognition. Other practical limitation faced during the development of this work, was the lack of support from aviation schools and pilots from Portugal, to bring the present work to a more realistic context.

#### 10.3. Final Remarks and Future Works

To better understand the achievements of the proposed work, further studies should be performed to show the potential and applicability of emotion recognition and  $\beta$ -band analysis on aviation context. Thus, more emotion recognition tests need to be executed, omitting the datasets which it presented the lowest accuracies, to optimize the total mean accuracies; also, improvements to optimize the quality of the face emotion dataset, processed by the Face Reader software, to obtain better accuracies and lower error levels; to improve the facial emotions, the use of Tensorflow, YOLO+Darknet, can be used to replace the Face Reader software in real time. Also, the number of volunteers and flight experiments must to be increased to improve the models.

Further researches intend to apply these proposed experiments on real context, storing biosignals of real pilots in real time, also processing acquired data after each flight, to produce diagnosis of pilot emotions and brain activities along the real flights; execute experiments also within corporative environments and other places; apply and compare our ANN and deep learning architectures, over another methods of automatic emotion recognition; and develop other methods to optimize noisy dataset.

Therefore, the presented experiments and results, succeeded and shown that proposed theoretical and practical experiment architecture are scalable and feasible enough to apply in real 154
life context, whatever the emotional context and work environment, such as aviation, industry, corporative institution and so on.

## References

- Abdelwahab, M. and C. Busso (2017). "Incremental adaptation using active learning for acoustic emotion recognition." In: pp. 5160–5164. DOI: 10.1109/ICASSP.2017. 7953140.
- Adhikari, S. and H. Haddad Khodaparast (2021). "A multimodal approach for simultaneous mass and rotary inertia sensing from vibrating cantilevers." In: *Physica E: Lowdimensional Systems and Nanostructures* 125, pp. 1–10. ISSN: 1386-9477. DOI: https: //doi.org/10.1016/j.physe.2020.114366. URL: https://www.sciencedirect. com/science/article/pii/S1386947720304434.
- Agrafioti, Foteini, Dimitrios Hatzinakos, and Adam K. Anderson (2012). "ECG pattern analysis for emotion detection." In: *IEEE Transactions on Affective Computing* 3, pp. 102–115.
- al., Mikels J.A. et (2005). "Emotional Category Data on Images from the International Affective Picture System." In: 37 (4), pp. 626–630.
- Al-Fahoum, Amjed and Ausilah A Al-Fraihat (Feb. 2014). "Methods of EEG Signal Features Extraction Using Linear Analysis in Frequency and Time-Frequency Domains." In: 2014, p. 730218.
- Al-Qazzaz, NK et al. (2015). "Selection of Mother Wavelet Functions for Multi-Channel EEG Signal Analysis during a Working Memory Task." In: Sensors (Basel) 15.11, pp. 29015 –29035. DOI: https://doi.org/10.3390/s151129015.
- Alberdi, Ane, Asier Aztiria, and Adrian Basarab (2016). "Towards an automatic early stress recognition system for office environments based on multimodal measurements: A review." In: Journal of Biomedical Informatics 59, pp. 49–75. ISSN: 1532-0464. DOI: https://doi.org/10.1016/j.jbi.2015.11.007. URL: http://www. sciencedirect.com/science/article/pii/S1532046415002750.
- Alhouseini, Amjad M.R. Alzeer et al. (2016). "Emotion Detection Using Physiological Signals EEG & ECG." In: 8.3, pp. 103–112.
- Alonso, Jesús B. et al. (2015). "New approach in quantification of emotional intensity from the speech signal: emotional temperature." In: *Expert Systems with Applications* 42.24, pp. 9554 -9564. ISSN: 0957-4174. DOI: https://doi.org/10.1016/j.eswa. 2015.07.062. URL: http://www.sciencedirect.com/science/article/pii/ S0957417415005229.
- ANAC (2019). Stabilised Approach Report Aproximação Estabilizada, pp. 1-2. URL: https://www.anac.gov.br.

- Ancel, Ersin and Ann T. Shih (2012). "The Analysis of the Contribution of Human Factors to the In-flight Loss of Control Accidents." In: 12th AIAA Aviation Technology, Integration and Operations (ATIO) Conference, pp. 1–13. URL: https://ntrs.nasa. gov/search.jsp?R=20120015461.
- Bahreini, Kiavash, Rob Nadolski, and Wim Westera (2016). "Towards real-time speech emotion recognition for affective e-learning." In: *Education and Information Technologies* 21.5, pp. 1367–1386. ISSN: 1573-7608. DOI: 10.1007/s10639-015-9388-2. URL: https://doi.org/10.1007/s10639-015-9388-2.
- Bänziger, Tanja (2014). "Measuring Emotion Recognition Ability." In: Encyclopedia of Quality of Life and Well-Being Research. Ed. by Alex C. Michalos. Dordrecht: Springer Netherlands, pp. 3934–3941. ISBN: 978-94-007-0753-5. DOI: 10.1007/978-94-007-0753-5\_4188. URL: https://doi.org/10.1007/978-94-007-0753-5\_4188.
- Barkhof, Emile et al. (2015). "Specificity of facial emotion recognition impairments in patients with multi-episode schizophrenia." In: 2 (1), pp. 12–19.
- Baron, Grzegorz and Urszula Stańczyk (2021). "Standard vs. non-standard cross-validation: evaluation of performance in a space with structured distribution of datapoints." In: *Procedia Computer Science* 192. Knowledge-Based and Intelligent Information & Engineering Systems: Proceedings of the 25th International Conference KES2021, pp. 1245– 1254. ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.2021.08.128. URL: https://www.sciencedirect.com/science/article/pii/S1877050921016173.
- Barret, Lisa F., Michael Lewis, and Jeannette M Haviland-Jones (2016). "Chapter 9 -Emotion and the Autonomic Nervous System." In: ed. by Lisa F. Barret, Michael Lewis, and Jeannette M Haviland-Jones, pp. 166 –181.
- Barrett, L.F. (2006). "Solving the emotion paradox: categorization and the experience of emotion." In: *Pers. Soc. Psychol. Rev.* 10 (1), pp. 20–46.
- Barros, P. et al. (2017). "Emotion-modulated attention improves expression recognition: A deep learning model." In: 253 (1), pp. 104–114.
- Beblo, Thomas et al. (2018). "Breath Versus Emotions: The Impact of Different Foci of Attention During Mindfulness Meditation on the Experience of Negative and Positive Emotions." In: *Behavior Therapy* 49.5, pp. 702 -714. ISSN: 0005-7894. DOI: https: //doi.org/10.1016/j.beth.2017.12.006. URL: http://www.sciencedirect.com/ science/article/pii/S0005789417301363.
- Bendak, Salaheddine and Hamad S.J. Rashid (2020). "Fatigue in aviation: A systematic review of the literature." In: International Journal of Industrial Ergonomics 76, p. 102928. ISSN: 0169-8141. DOI: https://doi.org/10.1016/j.ergon. 2020.102928. URL: http://www.sciencedirect.com/science/article/pii/ S0169814118305535.
- Benoit, Alexandre et al. (Aug. 2006). In: Multimodal Focus Attention and Stress Detection and Feedback in an Augmented Driver Simulator. Vol. 204, pp. 337–344. DOI: 10.1007/ 0-387-34224-9\_38.

- Berle, D. and M.L. Moulds (2013). "Emotional reasoning processes and dysphoric mood: Cross-sectional and prospective relationships." In: 8 (6), pp. 1–9. DOI: 10.1371/ journal.pone.0067359.
- Berridge, Kent C. (2018). "Evolving Concepts of Emotion and Motivation." In: Frontiers in Psychology 9.1647, pp. 1-20. DOI: https://dx.doi.org/10.3389%2Ffpsyg.2018. 01647. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6137142/.
- Bertero, D. and P. Fung (2017). "A first look into a Convolutional Neural Network for speech emotion detection." In: pp. 5115–5119. DOI: 10.1109/ICASSP.2017.7953131.
- Boeing (2017). "Statistical Summary of Commercial Jet Airplane Accidents Boeing Aerospace Company." In: Worldwide Operations — 1959-2016, pp. 1-26. URL: https: //www.boeing.com/resources/boeingdotcom/company/about\_bca/pdf/statsum. pdf.
- (2023). "Statistical Summary of Commercial Jet Airplane Accidents Boeing Aerospace Company." In: Worldwide Operations - 1959-2022, pp. 1-26. URL: https://www. boeing.com/content/dam/boeing/boeingdotcom/company/aboutbca/pdf/ statsum.pdf.
- Bozhkov, Lachezar et al. (2015). "EEG-based Subject Independent Affective Computing Models." In: *Procedia Computer Science* 53. INNS Conference on Big Data 2015 Program San Francisco, CA, USA 8-10 August 2015, pp. 375 -382. ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.2015.07.314. URL: http://www. sciencedirect.com/science/article/pii/S1877050915018177.

Breakwell, G.M. (2014). "The Psychology of Risk." In: Landscape and Urban Planning.

- Brester, Christina et al. (2016). "Multi-Objective Heuristic Feature Selection for Speechbased Multilingual Emotion Recognition." In: 6.4, pp. 243–253. DOI: 10.1515/jaiscr-2016-0018.
- Cannon, W.B. (1927). "The James–Lange theory of emotion: a critical examination and an alternative theory." In: Am. Jour. Psyc. 39, pp. 106–124.
- Cao, Houwei, Ragini Verma, and Ani Nenkova (2015). "Speaker-sensitive emotion recognition via ranking: Studies on acted and spontaneous speech." In: Computer Speech & Language 29.1, pp. 186-202. ISSN: 0885-2308. DOI: https://doi.org/10.1016/j.csl.2014.01.003. URL: http://www.sciencedirect.com/science/article/pii/S0885230814000138.
- Capuano, A. Suchocka et al. (2017). "Interoceptive exposure at the heart of emotional identification work in psychotherapy." In: *European Psychiatry* 41. Abstract of the 25th European Congress of Psychiatry, S783. ISSN: 0924-9338. DOI: https://doi. org/10.1016/j.eurpsy.2017.01.1493. URL: http://www.sciencedirect.com/ science/article/pii/S0924933817315080.
- Cespedes-Guevara, Julian and Tuomas Eerola (2018). "Music Communicates Affects, Not Basic Emotions – A Constructionist Account of Attribution of Emotional Meanings

to Music." In: 9.215, pp. 1-19. DOI: https://dx.doi.org/10.3389%2Ffpsyg.2018. 00215. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5811634/.

- Chenchah, Farah and Zied Lachiri (2017). "A bio-inspired emotion recognition system under real-life conditions." In: *Applied Acoustics* 115, pp. 6–14. ISSN: 0003-682X. DOI: https://doi.org/10.1016/j.apacoust.2016.06.020. URL: http://www. sciencedirect.com/science/article/pii/S0003682X16301773.
- Chepin, Eugene V. et al. (2016). "The improved method for robotic devices control with operator's emotions detection." In: *IEEE Proceedia Computer Science*, pp. 173–176.
- Chi, Fengfeng et al. (2019). "Multimodal temperature sensing using Zn2GeO4:Mn2+ phosphor as highly sensitive luminescent thermometer." In: Sensors and Actuators B: Chemical 296, p. 126640. ISSN: 0925-4005. DOI: https://doi.org/10.1016/j. snb.2019.126640. URL: https://www.sciencedirect.com/science/article/pii/ S0925400519308408.
- Choi, Kwang-Ho et al. (2017). "Is heart rate variability (HRV) an adequate tool for evaluating human emotions? - A focus on the use of the International Affective Picture System (IAPS)." In: *Psychiatry Research* 251, pp. 192 -196. ISSN: 0165-1781. DOI: https://doi.org/10.1016/j.psychres.2017.02.025. URL: http://www. sciencedirect.com/science/article/pii/S0165178116312550.
- Chung, Jae W. et al. (2016). "Beta-band Activity and Connectivity in Sensorimotor and Parietal Cortex are Important for Accurate Motor Performance." In: *Neuroimage* 144, 164–173. DOI: 10.1016/j.neuroimage.2016.10.008.
- Chung, Jae W. et al. (2018). "Beta-band oscillations in the supplementary motor cortex are modulated by levodopa and associated with functional activity in the basal ganglia." In: *Neuroimage Clin.* 19, 559–571. DOI: 10.1016/j.nicl.2018.05.021.
- Clark, Caron A.C. et al. (2016). "Intersections between cardiac physiology, emotion regulation and interpersonal warmth in preschoolers: Implications for drug abuse prevention from translational neuroscience." In: *Drug and Alcohol Dependence* 163. Emotion Regulation and Drug Abuse: Implications for Prevention and Treatment, S60 –S69. ISSN: 0376-8716. DOI: https://doi.org/10.1016/j.drugalcdep.2016.01.033. URL: http://www.sciencedirect.com/science/article/pii/S0376871616001125.
- Conneau, Anne-Claire et al. (2017). "EMOEEG: a New Multimodal Dataset for Dynamic EEG-based Emotion Recognition with Audiovisual Elicitation." In: 25th European Signal Processing Conference (EUSIPCO), pp. 768–772. ISSN: 978-0-9928626-7-1.
- Critchley, Hugo D and Sarah N Garfinkel (2017). "Interoception and emotion." In: *Current Opinion in Psychology* 17. Emotion, pp. 7–14. ISSN: 2352-250X. DOI: https://doi.org/10.1016/j.copsyc.2017.04.020. URL: http://www.sciencedirect.com/science/article/pii/S2352250X17300106.
- C.Rodriguez-Guerrero et al. (2017). "Improving Challenge/Skill Ratio in a Multimodal Interface by Simultaneously Adapting Game Difficulty and Haptic Assistance through

Psychophysiological and Performance Feedback." In: *Frontiers in Neuroscience* 11, pp. 1–242. ISSN: 1534-4320. DOI: 10.3389/fnins.2017.00242.

- Cruz, Aniana et al. (2015). "Facial Expression Recognition Based on EOG Toward Emotion Detection for Human-Robot Interaction." In: pp. 31–37. DOI: 10.5220/0005187200310037. URL: https://doi.org/10.5220/0005187200310037.
- Damásio, A.R. (2001). "Emotion, cognition and the human brain." In: Unity of knowledge: The convergence of natural and human science 935, pp. 101–106.
- Davletcharova, Assel et al. (2015). "Detection and Analysis of Emotion from Speech Signals." In: Procedia Computer Science 58. Second International Symposium on Computer Vision and the Internet (VisionNet 2015), pp. 91 -96. ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.2015.08.032. URL: http://www. sciencedirect.com/science/article/pii/S1877050915021432.
- De, Anurag, Ashim Saha, and M.C. Pal (2015). "A Human Facial Expression Recognition Model Based on Eigen Face Approach." In: *Procedia Computer Science* 45. International Conference on Advanced Computing Technologies and Applications (ICACTA), pp. 282 -289. ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.2015.03. 142. URL: http://www.sciencedirect.com/science/article/pii/S1877050915003786.
- Deb, S. and S. Dandapat (2015). "A novel breathiness feature for analysis and classification of speech under stress." In: pp. 1–5. DOI: 10.1109/NCC.2015.7084826.
- Desmet, Bart and Véronique Hoste (2013). "Emotion detection in suicide notes." In: Expert Systems with Applications 40.16, pp. 6351-6358. ISSN: 957-4174. DOI: https: //doi.org/10.1016/j.eswa.2013.05.050. URL: http://www.sciencedirect.com/ science/article/pii/S0957417413003485.
- Devore, Jay L. (2000). *Probability and Statistics for Engineering and the Sciences*. 5th ed. Duxbury Thomson Learning.
- Dixon, Matthew L. et al. (2020). "Emotion Regulation in Social Anxiety Disorder: Reappraisal and Acceptance of Negative Self-beliefs." In: *Biological Psychiatry: Cognitive Neuroscience and Neuroimaging* 5.1, pp. 119 –129. ISSN: 2451-9022. DOI: https://doi.org/10.1016/j.bpsc.2019.07.009. URL: http://www.sciencedirect.com/science/article/pii/S2451902219302022.
- Ekman, Paul (1992). "Are There Basic Emotions?" In: *Psychological Review American Psychological Association, Inc.* 99.3, pp. 1–4.
- (1999). "Chapter 3: Basic Emotions." In: John Wiley & Sons Ltd., pp. 45–60.
- (2016). "What Scientists Who Study Emotion Agree About." In: Association for Psychological Science Perspective on Psychological Science 11.1, pp. 31-3410.1177/1745691615596992.
   DOI: 10.1177/1745691615596992. URL: https://lammce38pkj41n8xkpliocwe wpengine.netdna-ssl.com/wp-content/uploads/2013/07/What-Scientists Who-Study-Emotion-Agree-About.pdf.
- Ekman, Paul and W.V. Friesen (1978). "Facial Action Coding System: Investigator's Guide." In: 1, pp. 1–15.

- Elefteriou, Florent and Preston Campbell (2015). "Chapter 49 Involvement of sympathetic nerves in bone metastasis." In: ed. by Heymann and Dominique, pp. 591-597. DOI: https://doi.org/10.1016/B978-0-12-416721-6.00049-2. URL: https: //www.sciencedirect.com/science/article/pii/B9780124167216000492.
- Ezhilarasi, R. and R.I. Minu (2012). "Automatic Emotion Recognition and Classification." In: Procedia Engineering 38. INTERNATIONAL CONFERENCE ON MODELLING OPTIMIZATION AND COMPUTING, pp. 21 -26. ISSN: 1877-7058. DOI: https: //doi.org/10.1016/j.proeng.2012.06.004. URL: http://www.sciencedirect. com/science/article/pii/S1877705812019170.
- Fayek, Haytham M., Margaret Lech, and Lawrence Cavedon (2017). "Evaluating deep learning architectures for Speech Emotion Recognition." In: *Neural Networks* 92. Advances in Cognitive Engineering Using Neural Networks, pp. 60-68. ISSN: 0893-6080. DOI: https://doi.org/10.1016/j.neunet.2017.02.013. URL: http://www. sciencedirect.com/science/article/pii/S089360801730059X.
- Forgas, Joseph P. (2008). "Affect and Cognition." In: 3 (2), pp. 94–101. DOI: 10.1111/j.1745-6916.2008.00067.x.
- Franti, Eduard et al. (2017). "Voice Based Emotion Recognition with Convolutional Neural Networks for Companion Robots." In: ROMANIAN JOURNAL OF INFORMA-TION SCIENCE AND TECHNOLOGY 20.3, pp. 222 –240.
- Fukuyama, Satoru and Masataka Goto (2016). "Music emotion recognition with adaptive aggregation of Gaussian process regressors." In: *IEEE International Conference* in Acoustics, Speech and Signal Processing (ICASSP) 1, pp. 71–75. DOI: 10.1109/ ICASSP.2016.7471639.
- Goldin, Philippe R., Hooria Jazaieri, and James J. Gross (2014). "Chapter 17 Emotion Regulation in Social Anxiety Disorder." In: Social Anxiety (Third Edition). Ed. by Stefan G. Hofmann and Patricia M. DiBartolo. Third Edition. San Diego: Academic Press, pp. 511 –529. ISBN: 978-0-12-394427-6. DOI: https://doi.org/10.1016/B978-0-12-394427-6.00017-0. URL: http://www.sciencedirect.com/science/ article/pii/B9780123944276000170.
- Golinska, Agnieszka Kitlas (2013). "Poincaré Plots in Analysis of Selected Biomedical Signals." In: Studies in Logic, Grammar and Rhetoric 35 (48), pp. 117–126. DOI: 10.2478/slgr-2012-0031.
- Goran, Laura and Gabriel Negoescu (2015). "Emotions at Work. The Management of Emotions in the Act of Teaching." In: 180 (1), pp. 1605–1611.
- Goshvarpour, Atefeh, Ataollah Abbasi, and Ateke Goshvarpour (2017). "An accurate emotion recognition system using ECG and GSR signals and matching pursuit method." In: *Biomedical Journal* 40.6, pp. 355 –368. ISSN: 2319-4170. DOI: https://doi.org/ 10.1016/j.bj.2017.11.001. URL: http://www.sciencedirect.com/science/ article/pii/S2319417016301056.

- Grinde, B. and G.G. Patil (2009a). "Biophilia: Does Visual Contact with Nature Impact on Health and Well-Being?" In: 6 (1), pp. 2332–2343.
- Grinde, Bjørn and Grete Patil (2009b). "Biophilia: Does Visual Contact with Nature Impact on Health and Well-Being?" In: 6.9, pp. 2332–2343.
- Gross, J.J. and Ross Thompson (Jan. 2007). "Emotion regulation: Conceptual foundations." In: *Handbook of Emotion Regulation*, pp. 33–50.
- Gunes, Hatice and Hayley Hung (Apr. 2016). "Is Automatic Facial Expression Recognition of Emotions Coming to a Dead End? The Rise of The New Kids on the Block." In: 55 (1), pp. 6–8.
- Hafen, Ryan et al. (2014). "Chapter 1 Power Grid Data Analysis with R and Hadoop." In: Data Mining Applications with R. Ed. by Yanchang Zhao and Yonghua Cen. Boston: Academic Press, pp. 1 -34. ISBN: 978-0-12-411511-8. DOI: https://doi.org/10. 1016/B978-0-12-411511-8.00001-3. URL: http://www.sciencedirect.com/ science/article/pii/B9780124115118000013.
- Hagen, Julia, Birthe Loa Knizek, and Heidi Hjelmeland (2017). "Mental Health Nurses' Experiences of Caring for Suicidal Patients in Psychiatric Wards: An Emotional Endeavor." In: Archives of Psychiatric Nursing 31.1, pp. 31 -37. ISSN: 0883-9417. DOI: https://doi.org/10.1016/j.apnu.2016.07.018. URL: http://www.sciencedirect. com/science/article/pii/S0883941716301480.
- Haiblum-Itskovitch, Shai, Johanna Czamanski-Cohen, and Giora Galili (2018). "Emotional Response and Changes in Heart Rate Variability Following Art-Making With Three Different Art Materials." In: *Frontiers in Psychology* 9, p. 968. ISSN: 1664-1078. DOI: 10.3389/fpsyg.2018.00968. URL: https://www.frontiersin.org/article/10.3389/fpsyg.2018.00968.
- Harrivel, A.R. and A. Pope (2017). "Prediction of Cognitive States during Flight Simulation using Multimodal Psychophysiological Sensing." In: Information Systems – AIAA Infotech at Aerospace 1, pp. 1–10.
- Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2016). "The Elements of Statistical Learning: Data Mining, Inference, and Prediction." In: 2, pp. 0–745.
- Haykin, Simon O. (2011). "Neural Networks and Learning Machines." In: ed. by Kindle Edition, pp. 1–936.
- He, Cheng, Yun jin Yao, and Xue song Ye (2017). "An Emotion Recognition System Based on Physiological Signals Obtained by Wearable Sensors." In: 399, pp. 15–25. DOI: 10.1007/978-981-10-2404-7\_2.
- Heuer, Kathrin et al. (2010). "Morphed emotional faces: Emotion detection and misinterpretation in social anxiety." In: Journal of Behavior Therapy and Experimental Psychiatry 41.4, pp. 418 -425. ISSN: 0005-7916. DOI: https://doi.org/10.1016/ j.jbtep.2010.04.005. URL: http://www.sciencedirect.com/science/article/ pii/S0005791610000558.

- Huang, Mei-Ling and Yung-Yan Hsu (2012). "Fetal distress prediction using discriminant analysis, decision tree, and artificial neural network." In: *Journal of Biomedical Science and Engineering* 23, pp. 526–533. DOI: doi.org/10.4236/jbise.2012.59065.
- IATA (2016). "Environmental Factors Affecting Loss of Control In-Flight: Best Practice for Threat Recognition & Management." In: *The International Air Transport Association (IATA)* 1, pp. 1–33.
- (2020). "IATA Releases 2019 Airline Safety Report." In: International Air Transport Association (IATA) 27, pp. 1–4.
- (2022). "IATA Safety Report 2021." In: 58, pp. 1-269. URL: https://www.iata. org/contentassets/bd3288d6f2394d9ca3b8fa23548cb8bf/iata\_safety\_report\_ 2021.pdf.
- ICAO (2005). "Rules of the air Annex 2 to the convention on international civil aviation." In: International Civil Aviation Organization (ICAO). Vol. 1, pp. 1–74.
- (2017). "Accident Statistics." In: Aviation Safety International Civil Aviation Organization. URL: https://www.icao.int/safety/iStars/Pages/Accident-Statistics.aspx.
- Isasi, Carmen R., Natania W. Ostrovsky, and Thomas A. Wills (2013). "The association of emotion regulation with lifestyle behaviors in inner-city adolescents." In: *Eating Behaviors* 14.4, pp. 518 -521. ISSN: 1471-0153. DOI: doi.org/10.1016/j.eatbeh. 2013.07.009. URL: http://www.sciencedirect.com/science/article/pii/ S1471015313000792.
- J., Selvaraj, Wan K. Murugappan M, and Yaacob S. (2013). "Classification of emotional states from electrocardiogram signals: a non-linear approach based on hurts." In: *Biomedical Engineering Online* 126 (1), pp. 12–18.
- Jain, Neha et al. (2018). "Hybrid deep neural networks for face emotion recognition." In: *Pattern Recognition Letters* 115. Multimodal Fusion for Pattern Recognition, pp. 101 – 106. ISSN: 0167-8655. DOI: https://doi.org/10.1016/j.patrec.2018.04.010. URL: http://www.sciencedirect.com/science/article/pii/S0167865518301302.

James, William (1884). "What is an Emotion?" In: Mind 9, pp. 188–205.

- Jones, Marc V. et al. (2005). "Development and Validation of the Sport Emotion Questionnaire." In: vol. 27. 1, pp. 407–431.
- Joutsen, Atte S. et al. (2018). "Dry electrode sizes in recording ECG and heart rate in wearable applications." In: ed. by Hannu Eskola et al., pp. 735–738.
- Julius, O. Smith III (2008). "Introduction to Digital Filters With Audio Applications." In: pp. 1–460.
- Kandera, Branislav, Filip Škultéty, and Karina Mesárošová (2019). "Consequences of flight crew fatigue on the safety of civil aviation." In: *Transportation Research Procedia* 43. INAIR 2019 Global Trends in Aviation, pp. 278 -289. ISSN: 2352-1465. DOI: https://doi.org/10.1016/j.trpro.2019.12.043. URL: http://www.sciencedirect.com/science/article/pii/S2352146519306106.

- Kaur, Barjinder, Dinesh Singh, and Partha Pratim Roy (2018). "EEG Based Emotion Classification Mechanism in BCI." In: *Procedia Computer Science* 132. International Conference on Computational Intelligence and Data Science, pp. 752-758. ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.2018.05.087. URL: http: //www.sciencedirect.com/science/article/pii/S1877050918308196.
- Kayaa, H., F. Gürpınarb, and A.A. Salah (2017). "Video-based emotion recognition in the wild using deep transfer learning and score fusion." In: 65, pp. 66–75.
- Khalfallah, Jihen and Jaleleddine Ben Hadj Slama (2015). "Facial Expression Recognition for Intelligent Tutoring Systems in Remote Laboratories Platform." In: *Procedia Computer Science* 73. International Conference on Advanced Wireless Information and Communication Technologies (AWICT 2015), pp. 274 –281. ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.2015.12.030. URL: http://www.sciencedirect.com/science/article/pii/S1877050915034912.
- Khanna, Preeya and Jose M. Carmena (2017). "Beta band oscillations in motor cortex reflect neural population signals that delay movement onset." In: *eLife* 6, pp. 1–31. DOI: https://doi.org/10.7554/eLife.24573. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5468088/.
- Kim, J. and E. André (2008). "Emotion recognition based on physiological changes in music listening." In: *IEEE Transactions on Pattern Analysis and Machine Intelligence* 30.12, pp. 2067–2083. ISSN: 0162-8828. DOI: 10.1109/TPAMI.2008.26.
- Kima, Seung Kyung, and Meghan Sumner (2017). "Beyond lexical meaning: The effect of emotional prosody on spoken word recognition." In: *The Journal of the Acoustical Society of America* 142.1. DOI: 10.1121/1.4991328. URL: https://doi.org/10. 1121/1.4991328.
- Kingma, Diederik P. and Jimmy Ba (2015). "Adam: A Method for Stochastic Optimization." In: 9, pp. 1–15.
- Kirchsteiger, H. et al. (2015). "Performance Comparison of CGM Systems: MARD Values Are Not Always a Reliable Indicator of CGM System Accuracy." In: Journal of Diabetes Science and Technology 5, pp. 1030–1040. DOI: https://doi.org/10.1177/ 1932296815586013.
- Kolar, David R. et al. (2017). "Momentary emotion identification in female adolescents with and without anorexia nervosa." In: *Psychiatry Research* 255, pp. 394 –398. ISSN: 0165-1781. DOI: https://doi.org/10.1016/j.psychres.2017.06.075. URL: http://www.sciencedirect.com/science/article/pii/S0165178116319916.
- Krithika, L.B. and Lakshmi Priya G.G. (2016). "Student Emotion Recognition System (SERS) for e-learning improvement based on learner concentration metric." In: 85, pp. 767–776.
- Kropotov, J. D. (2009). In: Beta Rhythms. Quantitative EEG, Event-Related Potentials and Neurotherapy, pp. 59–77. DOI: 10.1016/b978-0-12-374512-5.00003-7.

- Kucikienė, Domantė and Ruta Praninskienė (2018). "The impact of music on the bioelectrical oscillations of the brain." In: Acta Med Litu 25 (2), 101–106. DOI: 10.6001/ actamedica.v25i2.3763.
- Kumar, Nitin, Kaushikee Khaund, and Shyamanta M. Hazarika (2016). "Bispectral Analysis of EEG for Emotion Recognition." In: *Procedia Computer Science* 84. Proceeding of the Seventh International Conference on Intelligent Human Computer Interaction (IHCI 2015), pp. 31-35. ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs. 2016.04.062. URL: http://www.sciencedirect.com/science/article/pii/ S187705091630076X.
- L. Bruno P. Nascimento, Válber C. Cavalcanti Roza and et al. (2018). "Goal-biased probabilistic foam method for robot path planning." In: *IEEE International Conference* on Autonomous Robot Systems and Competitions (ICARSC), pp. 199–204.
- Lagast, S. et al. (2017). "Consumers' emotions elicited by food: A systematic review of explicit and implicit methods." In: *Trends in Food Science & Technology* 69, pp. 172 –189. ISSN: 0924-2244. DOI: https://doi.org/10.1016/j.tifs.2017.09.006. URL: http://www.sciencedirect.com/science/article/pii/S092422441730208X.
- Lahane, Prashant and Arun Kumar Sangaiah (2015). "An Approach to EEG Based Emotion Recognition and Classification Using Kernel Density Estimation." In: *Procedia Computer Science* 48. International Conference on Computer, Communication and Convergence (ICCC 2015), pp. 574 –581. ISSN: 1877-0509. DOI: https://doi.org/ 10.1016/j.procs.2015.04.138. URL: http://www.sciencedirect.com/science/ article/pii/S187705091500647X.
- Lan, Zirui et al. (2016). "Real-time EEG-based emotion monitoring using stable features." In: The Visual Computer 32.3, 347 – 358. ISSN: 1432-2315. DOI: https://doi.org/ 10.1007/s00371-015-1183-y.
- Langley, J.N. (1898). "On the Union of Cranial Autonomic (Visceral) Fibres with the Nerve Cells of the Superior Cervical Ganglion." In: *The Journal of Physiology* 23, pp. 240–270. DOI: DOI:10.1113/jphysiol.1898.sp000726.
- Lanjewar, R.B., S. Mathurkar, and N. Patel (2015). "Implementation and Comparison of Speech Emotion Recognition System using Gaussian Mixture Model (GMM) and K-Nearest Neighbor (K-NN) Techniques." In: 49, pp. 50–57.
- Lenis, Gustavo et al. (2017). "Comparison of Baseline Wander Removal Techniques considering the Preservation of ST Changes in the Ischemic ECG: A Simulation Study." In: Computational and Mathematical Methods in Medicine 2017, pp. 1–13. DOI: 10. 1155/2017/9295029.
- Li, Jiaxing et al. (2017). "Facial Expression Recognition with Faster R-CNN." In: Procedia Computer Science 107. Advances in Information and Communication Technology: Proceedings of 7th International Congress of Information and Communication Technology (ICICT2017), pp. 135–140. ISSN: 1877-0509. DOI: https://doi.org/10.

1016/j.procs.2017.03.069. URL: http://www.sciencedirect.com/science/article/pii/S1877050917303447.

- Lim, Nangyeon (2016). "Cultural differences in emotion: differences in emotional arousal level between the East and the West." In: *Integrative Medicine Research* 5.2, pp. 105– 109. ISSN: 2213-4220. DOI: https://doi.org/10.1016/j.imr.2016.03.004. URL: http://www.sciencedirect.com/science/article/pii/S2213422016300191.
- Lopes, A.T. et al. (2017). "Facial expression recognition with Convolutional Neural Networks: Coping with few data and the training sample order." In: 61 (1), pp. 610–628.
- Mallat, Stéphane (2009). "A Wavelet Tour of Signal Processing." In: pp. 1–805.
- Mannepalli, Kasiprasad, Panyam Narahari Sastry, and Maloji Suman (2017). "A novel Adaptive Fractional Deep Belief Networks for speaker emotion recognition." In: Alexandria Engineering Journal 56.4, pp. 485-497. ISSN: 1110-0168. DOI: https://doi.org/ 10.1016/j.aej.2016.09.002. URL: http://www.sciencedirect.com/science/ article/pii/S1110016816302484.
- Mao, Qi-rong et al. (2015). "Using Kinect for real-time emotion recognition via facial expressions." In: Frontiers of Information Technology & Electronic Engineering 16.4, pp. 272-282. ISSN: 2095-9230. DOI: 10.1631/FITEE.1400209. URL: https://doi. org/10.1631/FITEE.1400209.
- Marsland, Stephen (2015). "Machine Learning: An Algorithmic Perspective." In: pp. 1 -457.
- Martinez, Aleix M. (2017). "Visual perception of facial expressions of emotion." In: Current Opinion in Psychology 17. Emotion, pp. 27 -33. ISSN: 2352-250X. DOI: https: //doi.org/10.1016/j.copsyc.2017.06.009. URL: http://www.sciencedirect. com/science/article/pii/S2352250X17300179.
- Mather, Mara and Julian Thayer (Feb. 2018). "How heart rate variability affects emotion regulation brain networks." In: *Current opinion in behavioral sciences* 19, pp. 98–104. DOI: 10.1016/j.cobeha.2017.12.017.
- Matiko, J.W., S. P. Beeby, and J. Tudor (2014). "Fuzzy logic based emotion classification."
  In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4389–4393. ISSN: 1520-6149. DOI: 10.1109/ICASSP.2014.6854431.
- Matlovic, T. et al. (2016). "Emotions detection using facial expressions recognition and EEG." In: pp. 18–23.
- Mayya, Veena, Radhika M. Pai, and M.M. Manohara Pai (2016). "Automatic Facial Expression Recognition Using DCNN." In: *Proceedia Computer Science* 93. Proceedings of the 6th International Conference on Advances in Computing and Communications, pp. 453 -461. ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs. 2016.07.233. URL: http://www.sciencedirect.com/science/article/pii/S1877050916314752.

- McKay, Mary Pat and Loren Groff (2016). "23 years of toxicology testing fatally injured pilots: Implications for aviation and other modes of transportation." In: Accident Analysis and Prevention 90, pp. 108 -117. ISSN: 0001-4575. DOI: https://doi.org/10. 1016/j.aap.2016.02.008. URL: http://www.sciencedirect.com/science/ article/pii/S0001457516300410.
- McRae, Kateri (2016). "Cognitive emotion regulation: a review of theory and scientific findings." In: Current Opinion in Behavioral Sciences 10. Neuroscience of education, pp. 119 -124. ISSN: 2352-1546. DOI: https://doi.org/10.1016/j.cobeha. 2016.06.004. URL: http://www.sciencedirect.com/science/article/pii/ S2352154616301206.
- Medlab, P100 (2017). "PEARL100L Medlab Pulse Digital Desktop Pulse Oximeter." In: Medlab medizinische Diagnosegeräte GmbH, pp. 1–2.
- Min, Yoon-Ki, Soon-Cheol Chung, and Byung-Chan Min (2005). "Physiological Evaluation on Emotional Change Induced by Imagination." In: vol. 30. 2, pp. 137–150. DOI: 10.1007/s10484-005-4310-0. URL: https://doi.org/10.1007/s10484-005-4310-0.
- Mishra, Badrinarayan et al. (2011). "Evaluation of work place stress in health university workers: A study from rural India." In: *Indian Journal of Community Medicine* 36.1, pp. 39–44. DOI: 10.4103/0970-0218.80792.
- Misky, M. (2006). "The Emotion Machine: commonsense thinking, artificial intelligence and the future of the human mind." In: 1. ISSN: 978-0-7432-7663-4.
- Motamed, Sara, Saeed Setayeshi, and Azam Rabiee (2017). "Speech emotion recognition based on a modified brain emotional learning model." In: *Biologically Inspired Cognitive Architectures* 19, pp. 32 –38. ISSN: 2212-683X. DOI: https://doi.org/10.1016/ j.bica.2016.12.002. URL: http://www.sciencedirect.com/science/article/ pii/S2212683X16301219.
- Murugappan, M., R. Nagarajan, and S. Yaacob (2011). "Discrete Wavelet Transform Based Selection of Salient EEG Frequency Band for Assessing Human Emotions." In: *Discrete Wavelet Transforms - Biomedical Applications*, pp. 33–52. DOI: 10.5772/ 20990.
- Muthusamy, Hariharan, Kemal Polat, and Sazali Yaacob (Mar. 2015a). "Improved Emotion Recognition Using Gaussian Mixture Model and Extreme Learning Machine in Speech and Glottal Signals." In: 2015, pp. 1–13.
- (Mar. 2015b). "Particle Swarm Optimization Based Feature Enhancement and Feature Selection for Improved Emotion Recognition in Speech and Glottal Signals." In: *PLOS ONE* 10.3, pp. 1–20. DOI: 10.1371/journal.pone.0120344. URL: https://doi. org/10.1371/journal.pone.0120344.
- Novak, D. et al. (2011). "Psychophysiological Measurements in a Biocooperative Feedback Loop for Upper Extremity Rehabilitation." In: *IEEE Transactions on Neural Systems*

and Rehabilitation Engineering 19.4, pp. 400–410. ISSN: 1534-4320. DOI: 10.1109/TNSRE.2011.2160357.

- O'Dea, Bridianne et al. (2015). "Detecting suicidality on Twitter." In: Internet Interventions 2.2, pp. 183 -188. ISSN: 2214-7829. DOI: https://doi.org/10.1016/j. invent.2015.03.005. URL: http://www.sciencedirect.com/science/article/ pii/S2214782915000160.
- Okegbile, Samuel Dayo et al. (Apr. 2019). "A Multimodal Approach to Enhancing Automobile Security." In: Int. J. Comput. Vis. Image Process. 9.2, 32-47. ISSN: 2155-6997.
  DOI: 10.4018/IJCVIP.2019040103. URL: https://doi.org/10.4018/IJCVIP.2019040103.
- Ong, D.C., J. Zaki, and N.D. Goodman (2015). "Affective cognition: Exploring lay theories of emotion." In: 143, pp. 141–162.
- Oppenheim, Alan V. and George C. Verghese (2015). Signals, Systems and Inference. Vol. 1. 1, pp. 1–561.
- Othman, Marini et al. (2013). "EEG Emotion Recognition Based on the Dimensional Models of Emotions." In: *Procedia - Social and Behavioral Sciences* 97. The 9th International Conference on Cognitive Science, pp. 30-37. ISSN: 1877-0428. DOI: https: //doi.org/10.1016/j.sbspro.2013.10.201. URL: http://www.sciencedirect. com/science/article/pii/S187704281303646X.
- Ozseven, Turgut (2019). "A novel feature selection method for speech emotion recognition." In: *Applied Acoustics* 146, pp. 320 -326. ISSN: 0003-682X. DOI: https://doi. org/10.1016/j.apacoust.2018.11.028. URL: http://www.sciencedirect.com/ science/article/pii/S0003682X18309915.
- Patsakis, C. et al. (2014). "Personalized medical services using smart cities' infrastructures." In: pp. 1–5. DOI: 10.1109/MeMeA.2014.6860145.
- Patwardhan, A. S. (2017). "Multimodal mixed emotion detection." In: pp. 139–143. DOI: 10.1109/CESYS.2017.8321250.
- Pereira, C.M.G. and S.M.M. Faria (2015). "Do you feel what I feel? Emotional development in children with ID." In: 165 (1), pp. 52–61.
- Perlovsky, Leonid I. (2020). "Higher emotions and cognition." In: Cognitive Systems Research 61, pp. 45-52. ISSN: 1389-0417. DOI: https://doi.org/10.1016/j.cogsys. 2017.04.008. URL: https://www.sciencedirect.com/science/article/pii/ S1389041719305091.
- Petrovica, Sintija, Alla Anohina-Naumeca, and Hazım Kemal Ekenel (2017). "Emotion Recognition in Affective Tutoring Systems: Collection of Ground-truth Data." In: *Procedia Computer Science* 104. ICTE 2016, Riga Technical University, Latvia, pp. 437 -444. ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.2017.01.157. URL: http://www.sciencedirect.com/science/article/pii/S1877050917301588.

- Piskorski, J. and P. Guzik (2007). "Geometry of the Poincaré plot of RR intervals and its asymmetry in healthy adult." In: *Physiology Measurement* 28, pp. 287–300. DOI: 10.1088/0967-3334/28/3/005.
- Plutchik, Robert (1980). "Theories of Emotion: Emotion Theory, Research, and Experience." In: 1, pp. 141–162.
- Plutchik, Robert and Henry Kellerman (2013). "The Measurement of Emotions Theories of Emotion: Emotion Theory, Research, and Experience." In: 4, pp. 1–334.
- Poels, K. and S. Dewitte (2006). "How to capture the heart? Reviewing 20 years of emotion measurement in advertising." In: J. Advert. Res. 46 (1), pp. 18–37.
- Postolache, O. Adrian (2017). "IoT for Healthcare: Smart Physiotherapy." In: 22nd IMEKO TC4 International Symposium & 20th International Workshop on ADC Modelling and Testing.
- Preckel, Katrin, Philipp Kanske, and Tania Singer (2018). "On the interaction of social affect and cognition: empathy, compassion and theory of mind." In: *Current Opinion in Behavioral Sciences* 19. Emotion-cognition interactions, pp. 1–6. ISSN: 2352-1546. DOI: https://doi.org/10.1016/j.cobeha.2017.07.010. URL: http://www. sciencedirect.com/science/article/pii/S2352154617300700.
- Qamar, Saqib and Parvez Ahmad (2015). "Emotion Detection from Text using Fuzzy Logic." In: 121.3, pp. 29–32.
- Quah, Ee Ling Sharon (2018). "Emotional reflexivity and emotion work in transnational divorce biographies." In: *Emotion, Space and Society* 29, pp. 48-54. ISSN: 1755-4586. DOI: https://doi.org/10.1016/j.emospa.2018.09.001. URL: http://www. sciencedirect.com/science/article/pii/S1755458618300197.
- Quesada Tabares, Roylán et al. (July 2017). "Emotions Detection based on a Singleelectrode EEG Device." In: DOI: 10.5220/0006476300890095.
- Rajeswari, J. and M. Jagannath (2017). "Advances in biomedical signal and image processing A systematic review." In: *Informatics in Medicine Unlocked* 8, pp. 13-19. ISSN: 2352-9148. DOI: https://doi.org/10.1016/j.imu.2017.04.002. URL: http://www.sciencedirect.com/science/article/pii/S2352914817300242.
- Rajhans, Purva et al. (2016). "Putting the face in context: Body expressions impact facial emotion processing in human infants." In: *Developmental Cognitive Neuroscience* 19, pp. 115 -121. ISSN: 1878-9293. DOI: https://doi.org/10.1016/j.dcn. 2016.01.004. URL: http://www.sciencedirect.com/science/article/pii/S1878929315300360.
- Randler, Christoph et al. (2017). "Anxiety, disgust and negative emotions influence food intake in humans." In: International Journal of Gastronomy and Food Science 7, pp. 11 -15. ISSN: 1878-450X. DOI: https://doi.org/10.1016/j.ijgfs.2016.11.005. URL: http://www.sciencedirect.com/science/article/pii/S1878450X16300567.
- Reis, E., P. Arriaga, and O. Adrian Postolache (2015). "Emotional flow monitoring for health using FLOWSENSE: An experimental study to test the impact of antismoking

campaigns." In: 2015 E-Health and Bioengineering Conference (EHB), pp. 1–4. DOI: 10.1109/EHB.2015.7391608.

- Reybrouck, Mark, Tuomas Eerola, and Piotr Podlipniak (2018). "Editorial: Music and the Functions of the Brain: Arousal, Emotions, and Pleasure." In: *Frontiers in Psychology* 9.113, pp. 1–2. DOI: https://doi.org/10.3389/fpsyg.2018.00113. URL: https: //www.ncbi.nlm.nih.gov/pmc/articles/PMC5811634/.
- Riaz, Amir, Shirley Gregor, and Aleck Lin (2018). "Biophilia and biophobia in website design: Improving internet information dissemination." In: Information and Management 55.2, pp. 199-214. ISSN: 0378-7206. DOI: https://doi.org/10.1016/j.im. 2017.05.006. URL: http://www.sciencedirect.com/science/article/pii/ S0378720617304640.
- Ritter, Petra, Matthias Moosmann, and Arno Villringer (2009). "Rolandic alpha and beta EEG rhythms' strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex." In: 30, 1168–1187. DOI: doi.org/10.1002/hbm. 20585.
- Roberson, Patricia N.E. et al. (2018). "How health behaviors link romantic relationship dysfunction and physical health across 20 years for middle-aged and older adults." In: Social Science & Medicine 201, pp. 18-26. DOI: https://doi.org/10.1016/ j.socscimed.2018.01.037. URL: https://www.sciencedirect.com/science/ article/pii/S0277953618300443.
- Rosso, I.M. et al. (2004). "Cognitive and emotional components of frontal lobe functioning in childhood and adolescence." In: Annals of the New York Academy of Sciences 1021, pp. 355–362. DOI: 10.1196/annals.1308.045.
- Roza, V. César Cavalcanti and O. A. Postolache (2016). "Citizen emotion analysis in Smart City." In: 1.1, pp. 1–6. DOI: 10.1109/IISA.2016.7785335.
- (2019). "Multimodal Approach for Emotion Recognition Based on Simulated Flight Experiments." In: Sensors 19.24, p. 5516. DOI: https://doi.org/10.3390/s19245516.
- (2021). "β-Band Analysis from Simulated Flight Experiments." In: Aerospace 8.120, pp. 1–35. DOI: https://doi.org/10.3390/aerospace8050120.
- Roza, V. César Cavalcanti et al. (2019). "Emotion Assessment on Simulated Flights."
  In: 14th IEEE International Symposium on Medical Measurements & Applications (MEMEA 2019) 14.1, pp. 1–6.
- Roza, Válber C. Cavalcanti, Ana M. de Almeida, and Octavian A. Postolache (2017).
  "Design of an artificial neural network and feature extraction to identify arrhythmias from ECG." In: pp. 391–396. DOI: 10.1109/MeMeA.2017.7985908.
- Roza, Válber C. Cavalcanti and Octavian A. Postolache (2017). "Design of a Multimodal Interface based on Psychophysiological Sensing to Identify Emotion." In: 22nd IMEKO TC4 International Symposium & 20th International Workshop on ADC Modelling and Testing 1, pp. 1–6.

- Roza, Válber C. Cavalcanti and Octavian A. Postolache (Oct. 2018). "Emotion Analysis Architecture Based on Face and Physiological Sensing Applied with Flight Simulator." In: pp. 1036–1040. DOI: 10.1109/ICEPE.2018.8559732.
- Roza, Válber C. Cavalcanti, Regina de Souza, and Octavian A. Postolache (2017). "A multi-sensing physical therapy assessment for children with cerebral palsy." In: *Eleventh International Conference on Sensing Technology (ICST)*, pp. 1–6.
- Roza, Válber C. Cavalcanti et al. (2018). "Performance Analysis Performance Analysis of ANN and SVM in ECG Based Arrhythmia Identification." In: *Journal of Physics: Conference Series* 1065, p. 132004. DOI: 10.1088/1742-6596/1065/13/132004.
- Salankar, Nilima et al. (2017). "Fuzzy Logic Based Approach for Automation of Emotion Detection in Misophonia." In: 9.1, pp. 37–55. DOI: DOI:10.5121/ijcsit.2017.9104.
- Sanchez, Alvaro et al. (2017). "Identification of emotions in mixed disgusted-happy faces as a function of depressive symptom severity." In: Journal of Behavior Therapy and Experimental Psychiatry 57, pp. 96-102. ISSN: 0005-7916. DOI: https://doi.org/ 10.1016/j.jbtep.2017.05.002. URL: http://www.sciencedirect.com/science/ article/pii/S0005791616301744.
- Sánchez-Gutiérrez, Máximo E. et al. (2014). "Deep Learning for Emotional Speech Recognition." In: ed. by José Francisco Martínez-Trinidad et al., pp. 311–320.
- Savitzky, A. and M.J.E Golay (1964). "Smoothing and Differentiation of Data by Simplified Least Squares Procedures." In: 36.8, pp. 1627–1639. DOI: 10.1021/ac60214a047.
- Shahin, Ismail and Mohammed Nasser Ba-Hutair (2015). "Talking condition recognition in stressful and emotional talking environments based on CSPHMM2s." In: International Journal of Speech Technology 18.1, pp. 77–90. ISSN: 1572-8110. DOI: 10.1007/s10772-014-9251-7. URL: https://doi.org/10.1007/s10772-014-9251-7.
- Shalin, T.B. and L. Vanitha (2013). "Emotion detection in human beings using ECG signals." In: International Journal of Engineering Trends and Technology 4 (5), pp. 1337– 1342.
- Shimmer3 (2017). "Shimmer GSR+ Unit." In: pp. 1–2.
- Shin, Dongmin, Dongil Shin, and Dongkyoo Shin (2017). "Development of emotion recognition interface using complex EEG/ECG bio-signal for interactive contents." In: *Multimedia Tools and Applications* 76.9, pp. 11449–11470. ISSN: 1573-7721. DOI: 10.1007/ s11042-016-4203-7. URL: https://doi.org/10.1007/s11042-016-4203-7.
- Shukla, Sumitra, S. Dandapat, and S. R. Mahadeva Prasanna (2016). "A Subspace Projection Approach for Analysis of Speech Under Stressed Condition." In: *Circuits, Systems, and Signal Processing* 35.12, pp. 4486–4500. ISSN: 1531-5878. DOI: 10.1007/s00034-016-0284-9. URL: https://doi.org/10.1007/s00034-016-0284-9.
- Siddiquee, Masudur R. et al. (2018). "Movement artefact removal from NIRS signal using multi-channel IMU data." In: *BioMed Eng Online* 17.120, pp. 1–16. DOI: https://dx.doi.org/10.1186%2Fs12938-018-0554-9.

- Sierra, A.S. (2011). "A stress-detection system based on physiological signals and fuzzy logic." In: *IEEE Transactions on Industrial Electronics* 58 (10), pp. 4857–4865.
- Silva, Ana Patricia et al. (2017). "What's in a name? The effect of congruent and incongruent product names on liking and emotions when consuming beer or non-alcoholic beer in a bar." In: *Food Quality and Preference* 55, pp. 58-66. ISSN: 0950-3293. DOI: https://doi.org/10.1016/j.foodqual.2016.08.008.URL: http://www.sciencedirect.com/science/article/pii/S0950329316301707.
- Sánchez-Porras, María José and Estrella Martínez Rodrigo (2017). "Emotional Benefits of Coca-Cola Advertising Music." In: *Procedia - Social and Behavioral Sciences* 237. Education, Health and ICT for a Transcultural World, pp. 1444 -1448. ISSN: 1877-0428. DOI: https://doi.org/10.1016/j.sbspro.2017.02.227. URL: http: //www.sciencedirect.com/science/article/pii/S1877042817302276.
- Soto-Vásquez, Marilú Roxana and Paúl Alan Arkin Alvarado-García (2017). "Aromatherapy with two essential oils from Satureja genre and mindfulness meditation to reduce anxiety in humans." In: Journal of Traditional and Complementary Medicine 7.1, pp. 121 -125. ISSN: 2225-4110. DOI: https://doi.org/10.1016/j.jtcme. 2016.06.003. URL: http://www.sciencedirect.com/science/article/pii/ S2225411016300438.
- Steam and Microsoft (2006). Microsoft Flight Simulator X: Steam Edition. https://
  store.steampowered.com/app/314160/Microsoft\_Flight\_Simulator\_X\_Steam\_
  Edition/.
- Subhashinia, R. and P.R. Niveditha (2015). "Analyzing and Detecting Employee's Emotion For Amelioration Of Organizations." In: 48 (1), pp. 530–336.
- Sun, Fangmin et al. (2017). "A wearable H-shirt for exercise ECG monitoring and individual lactate threshold computing." In: *Computers in Industry* 92-93, pp. 1–11. ISSN: 0166-3615. DOI: https://doi.org/10.1016/j.compind.2017.06.004. URL: http://www.sciencedirect.com/science/article/pii/S0166361516303116.
- Sun, Yaxin, Guihua Wen, and Jiabing Wang (2015). "Weighted spectral features based on local Hu moments for speech emotion recognition." In: *Biomedical Signal Processing* and Control 18, pp. 80 -90. ISSN: 1746-8094. DOI: https://doi.org/10.1016/j. bspc.2014.10.008. URL: http://www.sciencedirect.com/science/article/pii/ S174680941400158X.
- Suzuki, Seigo et al. (2017). "Physio-psychological Burdens and Social Restrictions on Parents of Children With Technology Dependency are Associated With Care Coordination by Nurses." In: Journal of Pediatric Nursing 36, pp. 124–131. ISSN: 0882-5963. DOI: https://doi.org/10.1016/j.pedn.2017.06.006. URL: https: //www.sciencedirect.com/science/article/pii/S0882596316304341.
- Szaszák, Gyorgy, Máté Ákos Tundik, and Branislav Gerazov (2018). "Prosodic stress detection for fixed stress languages using formal atom decomposition and a statistical hidden Markov hybrid." In: *Speech Communication* 102, pp. 14–26. ISSN: 0167-6393.

DOI: https://doi.org/10.1016/j.specom.2018.06.005. URL: http://www.sciencedirect.com/science/article/pii/S0167639317304089.

- Takeda, R. et al. (2014). "Drift Removal for Improving the Accuracy of Gait Parameters Using Wearable Sensor Systems." In: Sensors (Basel, Switzerland) 14.12, pp. 23230 -23247. DOI: 10.3390/s141223230.
- Tang, Yi-Yuan, Rongxiang Tang, and Michael I. Posner (2016). "Mindfulness meditation improves emotion regulation and reduces drug abuse." In: Drug and Alcohol Dependence 163. Emotion Regulation and Drug Abuse: Implications for Prevention and Treatment, S13-S18. ISSN: 0376-8716. DOI: https://doi.org/10.1016/j. drugalcdep.2015.11.041. URL: http://www.sciencedirect.com/science/ article/pii/S0376871616001174.
- Tarnowski, Paweł et al. (2017). "Emotion recognition using facial expressions." In: Proceedia Computer Science 108. International Conference on Computational Science, ICCS 2017, 12-14 June 2017, Zurich, Switzerland, pp. 1175 -1184. ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.2017.05.025. URL: http://www.sciencedirect.com/science/article/pii/S1877050917305264.
- Tayel, Mazhar B. and Eslam I. AlSaba (2015). "Poincaré Plot for Heart Rate Variability." In: 9.9, pp. 708–711.
- Thomas, M.V. et al. (2013). "The effect of music on the human stress response." In: 8 (8), pp. 1–12.
- Thompson, Catharine Ward et al. (2012). "More green space is linked to less stress in deprived communities: Evidence from salivary cortisol patterns." In: Landscape and Urban Planning 105.3, pp. 221-229. ISSN: 0169-2046. DOI: https://doi.org/10. 1016/j.landurbplan.2011.12.015. URL: http://www.sciencedirect.com/ science/article/pii/S0169204611003665.
- Tieding, Lu, Chen Xijiang, and Zhou Shijian (2010). "Optimization for Impact Factors of Dam Deformation Based on BP Neural Network Model." In: 2, pp. 854–857. DOI: 10.1109/ICICTA.2010.853.
- Trigeorgis, G. et al. (2016). "Adieu features? End-to-end speech emotion recognition using a deep convolutional recurrent network." In: pp. 5200–5204. DOI: 10.1109/ICASSP. 2016.7472669.
- Troy, Allison S. et al. (2018). "Cognitive Reappraisal and Acceptance: Effects on Emotion, Physiology, and Perceived Cognitive Costs." In: Emotion 18.1, pp. 58-74. DOI: 10.1037/emo0000371. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC6188704/.
- Umeda and Satoshi (2013). "Emotion, Personality, and the Frontal Lobe." In: Emotions of Animals and Humans: Comparative Perspectives. Ed. by Watanabe et al. Tokyo: Springer Japan, pp. 223-241. ISBN: 978-4-431-54123-3. DOI: 10.1007/978-4-431-54123-3\_10. URL: https://doi.org/10.1007/978-4-431-54123-3\_10.

- Vojtech, L. et al. (2013). "Wearable textile electrodes for ECG measurement." In: 11 (5), pp. 410–414.
- Voznenko, Timofei I. et al. (2016). "The Research of Emotional State Influence on Quality of a Brain-Computer Interface Usage." In: *Procedia Computer Science* 88. 7th Annual International Conference on Biologically Inspired Cognitive Architectures, BICA 2016, held July 16 to July 19, 2016 in New York City, NY, USA, pp. 391–396. ISSN: 1877-0509. DOI: https://doi.org/10.1016/j.procs.2016.07.454. URL: http: //www.sciencedirect.com/science/article/pii/S1877050916317100.
- Wang, K. et al. (2015). "Speech Emotion Recognition Using Fourier Parameters." In: *IEEE Transactions on Affective Computing* 6.1, pp. 69–75. ISSN: 1949-3045. DOI: 10. 1109/TAFFC.2015.2392101.
- Wang, Xiashuang et al. (2020). "Use of multimodal physiological signals to explore pilots' cognitive behaviour during flight strike task performance." In: *Medicine in Novel Technology and Devices* 5, p. 100030. ISSN: 2590-0935. DOI: https://doi.org/10.1016/j.medntd.2020.100030. URL: http://www.sciencedirect.com/science/article/pii/S2590093520300047.
- Wen, Guihua et al. (2017a). "Random Deep Belief Networks for Recognizing Emotions from Speech Signals." In: Computational Intelligence and Neuroscience 2017, pp. 1 -9. DOI: 10.1155/2017/1945630.
- (2017b). "Random Deep Belief Networks for Recognizing Emotions from Speech Signals." In: Computational Intelligence and Neuroscience 2017, pp. 1–9. DOI: 10.1155/2017/1945630.
- Woaswi, Wan et al. (Dec. 2016). "Human Emotion Detection via Brain Waves Study by Using Electroencephalogram (EEG)." In: International Journal on Advanced Science, Engineering and Information Technology 6, p. 1005. DOI: 10.18517/ijaseit.6.6. 1072.
- Wu, S., T.H. Falk, and W.-Y. Chan (2011). "Automatic speech emotion recognition using modulation spectral features." In: 53 (5), pp. 768–785.
- Xu, Zhicha et al. (2017). "Selecting pure-emotion materials from the International Affective Picture System (IAPS) by Chinese university students: A study based on intensityratings only." In: 3 (8), pp. 83–92. DOI: 10.1016/j.heliyon.2017.e00389.
- Xue, Yawen, Yasuhiro Hamada, and Masato Akagi (2018). "Voice conversion for emotional speech: Rule-based synthesis with degree of emotion controllable in dimensional space." In: Speech Communication 102, pp. 54 -67. ISSN: 0167-6393. DOI: https: //doi.org/10.1016/j.specom.2018.06.006. URL: http://www.sciencedirect. com/science/article/pii/S0167639317303187.
- Yang, D. et al. (2018). "An Emotion Recognition Model Based on Facial Recognition in Virtual Learning Environment." In: *Proceedia Computer Science* 125. The 6th International Conference on Smart Computing and Communications, pp. 2–10. ISSN:

1877-0509. DOI: https://doi.org/10.1016/j.procs.2017.12.003. URL: http: //www.sciencedirect.com/science/article/pii/S1877050917327679.

- Yeh, Y.C. (2003). "Application and practice of artificial neural network." In: Scholar Books Co. Ltd. 1.1.
- Yin, Zhong et al. (2017a). "Physiological Feature Based Emotion Recognition via an Ensemble Deep Autoencoder with Parsimonious Structure." In: *IFAC-PapersOnLine* 50.1. 20th IFAC World Congress, pp. 6940-6945. ISSN: 2405-8963. DOI: https://doi. org/10.1016/j.ifacol.2017.08.1220. URL: http://www.sciencedirect.com/ science/article/pii/S2405896317317263.
- Yin, Zhong et al. (2017b). "Recognition of emotions using multimodal physiological signals and an ensemble deep learning model." In: Computer Methods and Programs in Biomedicine 140, pp. 93 -110. ISSN: 0169-2607. DOI: https://doi.org/10.1016/j. cmpb.2016.12.005. URL: http://www.sciencedirect.com/science/article/pii/ S0169260716305090.
- Yogesh, C.K. et al. (2017a). "A new hybrid PSO assisted biogeography-based optimization for emotion and stress recognition from speech signal." In: *Expert Systems with Applications* 69, pp. 149 -158. ISSN: 0957-4174. DOI: https://doi.org/10.1016/j. eswa.2016.10.035. URL: http://www.sciencedirect.com/science/article/pii/ S0957417416305759.
- Yogesh, C.K. et al. (2017b). "Bispectral features and mean shift clustering for stress and emotion recognition from natural speech." In: *Computers & Electrical Engineering* 62, pp. 676 -691. ISSN: 0045-7906. DOI: https://doi.org/10.1016/j.compeleceng. 2017.01.024. URL: http://www.sciencedirect.com/science/article/pii/ S0045790617302033.
- Zaśko-Zielińska, M. and Maciej Piasecki (2015). "Lexical Means in Communicating Emotion in Suicide Notes - on the Basis of the Polish Corpus of Suicide Notes." In: 15, pp. 237–252.
- Zha, C. et al. (2016). "Spontaneous Speech Emotion Recognition via Multiple Kernel Learning." In: pp. 621–623. DOI: 10.1109/ICMTMA.2016.152.

## APPENDIX A

## Publications

Along this work, several researches were developed as shown in Table A.1. The first publications tried to get more background on work needs e.g. biosignals, signal processing, feature extractions and data mining.

TABLE A.1. Publications developed during the studies of the present PhD.

|                           | PhD Context - Emotions, Biosignals, Signal Processing and Data Mining                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|                           | Reference                                                                                                                                                                                                        | Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Published                                       |
| 1                         | Roza and Postolache, 2016                                                                                                                                                                                        | $\diamond$ Citizen emotion analysis in Smart City.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | IISA                                            |
| 2                         | Roza, Almeida, and Posto-                                                                                                                                                                                        | $\diamond$ Design of an Artificial Neural Network and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MeMeA                                           |
|                           | lache, 2017                                                                                                                                                                                                      | Feature Extraction to Identify Arrhythmias from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |
|                           |                                                                                                                                                                                                                  | ECG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |
| 3                         | Roza and Postolache, 2017                                                                                                                                                                                        | $\diamond$ Design of a Multimodal Interface based on Psy-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | IMEKO                                           |
|                           |                                                                                                                                                                                                                  | chophysiological Sensing to Identify Emotion.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |
| 4                         | Roza et al., 2018                                                                                                                                                                                                | $\diamond$ Performance Analysis of ANN and SVM in ECG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IMEKO                                           |
|                           |                                                                                                                                                                                                                  | based on Arrhythmia Identification.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                 |
| 5                         | Roza and Postolache, 2018                                                                                                                                                                                        | ♦ Emotion Analysis Architecture based on Face                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | EPE                                             |
|                           |                                                                                                                                                                                                                  | and Physiological Sensing Applied with Flight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |
|                           |                                                                                                                                                                                                                  | Simulator.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                 |
| 6                         | Roza et al., 2019                                                                                                                                                                                                | $\diamond$ Emotions Assessment on Simulated Flights.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MeMeA                                           |
| 7                         | Roza and Postolache, 2019                                                                                                                                                                                        | ♦ Multimodal Approach for Emotion Recognition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Sensors                                         |
|                           |                                                                                                                                                                                                                  | based on Simulated Flight Experiments. (Jour-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                 |
|                           |                                                                                                                                                                                                                  | nal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                 |
| 8                         | Roza and Postolache, 2021                                                                                                                                                                                        | $\diamond$ $\beta\text{-Band}$ Analysis from Simulated Flight Exper-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aerospace                                       |
|                           |                                                                                                                                                                                                                  | iments. (Journal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                 |
|                           |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                 |
|                           | Out of PhD Context - R                                                                                                                                                                                           | tobotics, Path Modeling and Sensing Platfor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m                                               |
|                           | Out of PhD Context - R<br>Reference                                                                                                                                                                              | tobotics, Path Modeling and Sensing Platfor<br>Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | m<br>Event                                      |
| 9                         | Out of PhD Context - R<br>Reference<br>Roza et al., 2017                                                                                                                                                         | Aboutics, Path Modeling and Sensing Platfor         Title <ul> <li>Development of a Kinematic Model based on</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | m<br>Event<br>BAILAR                            |
| 9                         | Out of PhD Context - R<br>Reference<br>Roza et al., 2017                                                                                                                                                         | Aboutics, Path Modeling and Sensing Platfor         Title <ul> <li>Development of a Kinematic Model based on<br/>Bezier Curves for Improvement of Safe Trajecto-</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m<br>Event<br>BAILAR                            |
| 9                         | Out of PhD Context - R<br>Reference<br>Roza et al., 2017                                                                                                                                                         | <ul> <li>Abobtics, Path Modeling and Sensing Platfor<br/>Title</li> <li>&gt; Development of a Kinematic Model based on<br/>Bezier Curves for Improvement of Safe Trajecto-<br/>ries in Active Orthosis Walking Tasks.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m<br>Event<br>BAILAR                            |
| 9                         | Out of PhD Context - R<br>Reference<br>Roza et al., 2017<br>Roza, Souza, and Posto-                                                                                                                              | Application       Application         Cobotics, Path Modeling and Sensing Platfor         Title         Overlopment of a Kinematic Model based on         Bezier Curves for Improvement of Safe Trajectories in Active Orthosis Walking Tasks.         A Multi-Sensing Physical Therapy Assessment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m<br>Event<br>BAILAR<br>ICST                    |
| 9<br>10                   | Out of PhD Context - R<br>Reference<br>Roza et al., 2017<br>Roza, Souza, and Posto-<br>lache, 2017                                                                                                               | <ul> <li><b>Abobics, Path Modeling and Sensing Platfor</b><br/><b>Title</b><br/>Development of a Kinematic Model based on<br/>Bezier Curves for Improvement of Safe Trajecto-<br/>ries in Active Orthosis Walking Tasks.<br/>A Multi-Sensing Physical Therapy Assessment<br/>for Children with Cerebral Palsy.         </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | m<br>Event<br>BAILAR<br>ICST                    |
| 9<br>10<br>11             | Out of PhD Context - R<br>Reference<br>Roza et al., 2017<br>Roza, Souza, and Posto-<br>lache, 2017<br>L. Bruno P. Nascimento et                                                                                  | <ul> <li><b>Abobics, Path Modeling and Sensing Platfor</b> <ul> <li><b>Title</b></li> <li>Development of a Kinematic Model based on Bezier Curves for Improvement of Safe Trajectories in Active Orthosis Walking Tasks.</li> <li>A Multi-Sensing Physical Therapy Assessment for Children with Cerebral Palsy.</li> <li>Goal-Biased Probabilistic Foam Method for Ro-</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m<br>Event<br>BAILAR<br>ICST<br>ICARSC          |
| 9<br>10<br>11             | Out of PhD Context - R<br>Reference<br>Roza et al., 2017<br>Roza, Souza, and Posto-<br>lache, 2017<br>L. Bruno P. Nascimento et<br>al., 2018                                                                     | <ul> <li><b>A BALE NOTE:</b> A Constant of a Kinematic Model based on Bezier Curves for Improvement of Safe Trajectories in Active Orthosis Walking Tasks.</li> <li>A Multi-Sensing Physical Therapy Assessment for Children with Cerebral Palsy.</li> <li>A Goal-Biased Probabilistic Foam Method for Robot Path Planning.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | m<br>Event<br>BAILAR<br>ICST<br>ICARSC          |
| 9<br>10<br>11             | Out of PhD Context - R<br>Reference<br>Roza et al., 2017<br>Roza, Souza, and Posto-<br>lache, 2017<br>L. Bruno P. Nascimento et<br>al., 2018                                                                     | Abbotics, Path Modeling and Sensing Platfor         Title <ul> <li>Development of a Kinematic Model based on<br/>Bezier Curves for Improvement of Safe Trajecto-<br/>ries in Active Orthosis Walking Tasks.</li> <li>A Multi-Sensing Physical Therapy Assessment<br/>for Children with Cerebral Palsy.</li> <li>Goal-Biased Probabilistic Foam Method for Ro-<br/>bot Path Planning.</li> </ul> <li>Vot Published - Writing</li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m<br>Event<br>BAILAR<br>ICST<br>ICARSC          |
| 9<br>10<br>11             | Out of PhD Context - R<br>Reference<br>Roza et al., 2017<br>Roza, Souza, and Posto-<br>lache, 2017<br>L. Bruno P. Nascimento et<br>al., 2018<br>N<br>Reference                                                   | Abbility       Abbility       Abbility       Abbility         Correction       Co | m<br>Event<br>BAILAR<br>ICST<br>ICARSC<br>Event |
| 9<br>10<br>11<br>12       | Out of PhD Context - R<br>Reference<br>Roza et al., 2017<br>Roza, Souza, and Posto-<br>lache, 2017<br>L. Bruno P. Nascimento et<br>al., 2018<br>N<br>Reference<br>Roza and Postolache, 2017                      | Robotics, Path Modeling and Sensing Platfor         Title <ul> <li>Development of a Kinematic Model based on</li> <li>Bezier Curves for Improvement of Safe Trajectories in Active Orthosis Walking Tasks.</li> <li>A Multi-Sensing Physical Therapy Assessment for Children with Cerebral Palsy.</li> <li>Goal-Biased Probabilistic Foam Method for Robot Path Planning.</li> </ul> <li>Vot Published - Writing         <ul> <li>Title</li> <li>Emotion Recognition based on Speech and ANN</li> </ul> </li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | m Event BAILAR ICST ICARSC Event -              |
| 9<br>10<br>11<br>12       | Out of PhD Context - R<br>Reference<br>Roza et al., 2017<br>Roza, Souza, and Posto-<br>lache, 2017<br>L. Bruno P. Nascimento et<br>al., 2018<br>N<br>Reference<br>Roza and Postolache, 2017                      | Robotics, Path Modeling and Sensing Platfor         Title <ul> <li>Development of a Kinematic Model based on</li> <li>Bezier Curves for Improvement of Safe Trajectories in Active Orthosis Walking Tasks.</li> <li>A Multi-Sensing Physical Therapy Assessment for Children with Cerebral Palsy.</li> <li>Goal-Biased Probabilistic Foam Method for Robot Path Planning.</li> </ul> <li>Not Published - Writing         <ul> <li>Emotion Recognition based on Speech and ANN (main context).</li> </ul> </li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | m Event BAILAR ICST ICARSC Event -              |
| 9<br>10<br>11<br>12<br>13 | Out of PhD Context - R<br>Reference<br>Roza et al., 2017<br>Roza, Souza, and Posto-<br>lache, 2017<br>L. Bruno P. Nascimento et<br>al., 2018<br>N<br>Reference<br>Roza and Postolache, 2017<br>Roza et al., 2018 | Robotics, Path Modeling and Sensing Platfor         Title <ul> <li>Development of a Kinematic Model based on</li> <li>Bezier Curves for Improvement of Safe Trajectories in Active Orthosis Walking Tasks.</li> <li>A Multi-Sensing Physical Therapy Assessment for Children with Cerebral Palsy.</li> <li>Goal-Biased Probabilistic Foam Method for Robot Path Planning.</li> </ul> <li>Not Published - Writing         <ul> <li>Emotion Recognition based on Speech and ANN (main context).</li> <li>A State of the Art based on Emotion (main</li> </ul> </li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m Event BAILAR ICST ICARSC Event                |
| 9<br>10<br>11<br>12<br>13 | Out of PhD Context - R<br>Reference<br>Roza et al., 2017<br>Roza, Souza, and Posto-<br>lache, 2017<br>L. Bruno P. Nascimento et<br>al., 2018<br>N<br>Reference<br>Roza and Postolache, 2017<br>Roza et al., 2018 | Robotics, Path Modeling and Sensing Platfor         Title <ul> <li>Development of a Kinematic Model based on</li> <li>Bezier Curves for Improvement of Safe Trajectories in Active Orthosis Walking Tasks.</li> <li>A Multi-Sensing Physical Therapy Assessment for Children with Cerebral Palsy.</li> <li>Goal-Biased Probabilistic Foam Method for Robot Path Planning.</li> </ul> <li>Vot Published - Writing         <ul> <li>Emotion Recognition based on Speech and ANN (main context).</li> <li>A State of the Art based on Emotion (main context).</li> </ul> </li>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | m Event BAILAR ICST ICARSC C Event              |

In 2017, was developed the first publication on the main scope of this work i.e., multimodal sensing and emotions. Between 2018 and 2019, other publications were also developed, regarding to multimodal sensing to identify emotions and its relation with flight simulated.

### A.1. Experiment with Pictures and Emotions

In 2017, the present work executed the first experiment using pictures to trigger different emotion in the user.

The IAPS dataset was applied considering 7 emotions such as: anger, boredom, disgust, anxiety/fear, happiness, sadness and normal. The emotion identification was based on ANN and Support Vector Machine (SVM).

The interface was executed with 20 healthy volunteers (N = 20) of both genders with age from 23-50 years old. All participants signed a consent term. For each experiment were used 14 different pictures, 2 pictures by each emotion. Each picture is presented during 15s (t = 15s)resulting on 280 emotions, selected by all volunteers. All sensing acquisition and questionnaires were executed in laboratory with the same conditions of light and temperature (Figure A.1).



FIGURE A.1. Flow diagram of the pictures selection process from the IAPS dataset.

Considering the small "local" database used to predicts emotions (i.e. 140 emotions for training and 140 for test), the SVM prediction reached a total accuracy of 77.14%, and the best predicted emotion was happiness with 84% of accuracy.

The ANN-MLP prediction reached a total accuracy of 85.71% and the best predicted emotion was boredom with 88.20% of accuracy. Thus, the experiment shown that the prediction of emotions from psychophysiological signals reached better results when using ANN-MLP.

The electrodes used in these tasks are shown in Figure A.2, including ECG, GSR and SpO2 acquisition techniques.



FIGURE A.2. Electrode positions for EEG (up); main and auxiliary electrodes for emotion detection (up-right); ECG, GSR and SpO2 (bottom).

### A.2. Speech Emotion Recognition

Experiments including speech analysis and emotion identification were also executed in 2017 inside the context of the present work.

There, the OpenSMILE software was used to extract 88 features based on, jitters, pitches, means, standard deviations and MFCCs. To this experiment the emotion classifier was based on a light artificial neural networks using the backpropagation algorithm (Figure A.3), with 88 inputs features, 7 outputs neurons and softmax algorithm at output function. Were considered 7 different emotions in German idiom such as: anger, boredom, disgust, anxiety, happiness, sadness and normal. Each speech presented a duration time of 3 to 5 seconds.



FIGURE A.3. ANN result comparison and ANN squared errors during the training.

Preliminary results shown accuracies between 47.00% to 84.40% for training, 54.43% to 93.67% for validation, giving the worst result at test (25.32% to 54.43%) phase due short dataset used in the training (Figure A.4).



FIGURE A.4. ANN outputs during the training.

## A.3. Emotion in Smart City

The initial contribution of the present work to smart city within the context of emotion identification, was initially executed in 2016.

Was proposed a design of an Android application, database and emotion identification algorithm to map specific emotions according to pictures of a city (Figure A.5), using a questionnaire to select the felt emotion when a picture was presented on screen.

The method to classify the acquired biosignals were cross-correlation (Equation ??). The Flowsense application (Reis, Arriaga, and Postolache, 2015) was used as an initial experimental parameter, considering the biosignals such as, ECG, GSR, HR and SpO2.



FIGURE A.5. Smart phone application screens: questionnaire and the main screen.

The initial results shown that, in 20 analyzed emotions of 18 cases, the classifier correctly match the emotion (i.e. 90% accuracy).

## A.4. Main Publications

## Citizen Emotion Analysis in Smart City

Válber César Cavalcanti Roza Instituto Universitário de Lisboa/ISCTE-IUL Universidade Federal do Rio Grande do Norte, UFRN Lisbon, Portugal vccra@iscte.pt

Abstract— Applications in Smart City context are improving the quality of life of citizens through several technological interactions. These interactions can be also used to relate the citizens' emotions to city's areas. Thus, the main objective of this work is to present a smart phone application that analyzes the citizens' emotions and the relations between these parameters and different city's areas. Daily the citizens deal with a variety of emotions due a set of factors such as, violence, street illumination or car noises, trash and pollution, for instance. The techniques used to do the acquisition of the citizens' emotions involve, heart rate (HR), heart rate variability (HRV) and galvanic skin response (GSR), measured by Shimmer3 sensors. Additionally the citizens fill an on-line questionnaire using a smart phone application. The acquired signals are also processed by a smart phone application that includes signal acquisition control, citizens' emotions analysis, emotion mapping, and data storage. Once identified and stored these citizen's emotions reported to a city's area, it can be represented by green, yellow or red color, circular icons that are plotted over the city's map, using the Google Maps API on the mobile application. Several tests for ten are presented.

Keywords— Citizens' emotion; signal analysis; smart cities; mobile application.

#### I. INTRODUCTION

Developments in smart city technology and the growth of embedded devices made nowadays, turn possible that their citizens receive information such as: available services in the city, alert of occurrences at different areas, information about accessibility conditions, real time traffic and road info, for instance.

Thus, there is an effort of researchers to turn the cities in a higher interactive environment, with capabilities to engage citizens in a personalized way [1], [2] and try, among other things, discover the emotions felt by its citizens, due several aspects of the city's areas such as: public transports, pollutions, street illuminations, cleaning conditions and violence. for instance.

Emotions are an important part of the human behavior and are used in several researches, such as: development of a tool of meaning detection of language to understand, classify and recognize emotions in English sentences [3]; suicide preventions [4]; detections and interpretations of emotional facial expressions in highly socially anxious individuals compared to non-anxious controls [5]; association of emotion regulation with lifestyle behaviors [6]; and a link of emotions to sustainable consumption in a big city [7]. Octavian Adrian Postolache Instituto de Telecomunicações, Instituto Universitário de Lisboa/ISCTE-IUL Lisbon, Portugal octavian.adrian.postolache@iscte.pt

There are also researches in detection methods based on emotion, such as: emotion-recognition from human speech [8, 9, 10]; emotion recognition, based on guidance from psychological studies of emotions, as well as from the nature of emotions and its interaction with attention [11].

This work uses electrocardiography (ECG) and galvanic skin response (GSR) to detect the citizens' emotions. These technologies are already reported in literature in several application, such as: pattern analysis for emotion detection [12]; classification of emotional states based on acquired ECG signals, as the non-linear approach based on Hurst [13] and identification of emotional states of human body [14].

Physiological reactions like stress can cause oscillation of emotions. Thus, other researches use these technologies to do also the detection and analysis of stress, such as: real time stress detection with GSR by the means of different parameter signals [15]; stress detection based on GSR and classification via Fuzzy logic [16]; production of relative diagnostic, prognostic and economic value of stress, as an initial investigation for the detection of coronary artery disease [17, 18] and use of this detection with wearable and mobile technology associated with ECG [19, 20] including via textiles [21].

Other researches report that city areas can produce positive emotions in their citizens, as the contact with natural places inside the cities. It that can promote psychological restoration, improve the mood and attention, and reduce stress and anxiety. Furthermore, this evidence is particularly important for positive associations between, experience of natural places and mental or physical health [22], what confirm the importance of the knowledge about city's areas as a good emotions agent.

To increase the level of interaction in smart city context, this work develops a smart phone application (APP) to analyze the citizens' emotions and share it to other citizens.

This APP is an important tool to improve the level of citizens' information about, what kind of emotions the citizens feel when they visit a certain city's area.

Thus, this work focuses in citizens' emotions detection, when they visit different areas of the city. Additionally, this paper refers the emotions' representation and the sharing of these emotions between citizens.

FIGURE A.6. Publication regarding to the emotional relation between city places and citizens' emotions (Roza and Postolache, 2016).

# Design of a Multimodal Interface based on Psychophysiological Sensing to Identify Emotion

Válber César Cavalcanti Roza<sup>1</sup>, Octavian Adrian Postolache<sup>2</sup>

<sup>1</sup>Instituto Universitário de Lisboa, ISCTE-IUL/IT&UFRN, Lisbon, Portugal, vccra@iscte-iul.pt <sup>2</sup>Instituto de Telecomunicações, IT-IUL&ISCTE-IUL, Lisbon, Portugal, opostolache@lx.it.pt

Abstract - This work proposes a design of a multimodal interface to classify or identity emotion states. Thus, 7 emotions are considered such as: anger, boredom, disgust, anxiety/fear, happiness, sadness and normal. A sensing technologies couple of to collect psychophysiological signals are used such as: galvanic (GSR), heart skin response rate (HR), electrocardiography (ECG), oxygen saturation (SpO2) and electroencephalography (EEG). The International Affective Picture System (IAPS) dataset is used to aids the classificator system. In classification task, a comparison between artificial neural networks (ANN-MLP) and support vector machine (SVM) are presented. The tests were carried out for 20 healthy volunteers  $(N_v = 20)$  of both genders with age from 23-50 years old. The proposed classifier presents accuracies of 85.71% when using ANN-MLP and 77.14% when using SVM.

*Keywords* – Multimodal interface, signal analysis, emotion classification, psychophysiological signals.

### I. INTRODUCTION

Emotion is an important part of the human behavior and is organized in two primary categories – conscious and unconscious. Conscious emotion relates the emotional response based on some cognitive processes and the unconscious emotion is based on the autonomic process from nervous system [1, 2]. The interactions with pleasant places [3], hazards situations or by the judgment that it requires [4], memory bias and societal influences [2] are some situations that may determine the emotional state of an individual.

The emotions studies and its effects may be used for several purposes, researches and applications such as: detection of the relation among emotion and the regulation of lifestyle behavior [5]; analysis of its positives effects in individuals when they are in green and natural city's places [3]; analysis of suicides notes to avoid recurrent occurrences [6]; developments of tools of meaning detection of language to understand, identify and recognize emotions [7]; developments of interfaces to detect emotions from facial expressions to helps anxious individuals [8]; also to give support in healthcare, based in smart city context and internet of things (IoT) [9].

Automatic emotion classifiication is a complex and important task that also can be used to improve the health and the life's quality. Different techniques may be used on the automatic emotion prediction or identification task, such as: salivary cortisol analysis [3], Hilbert-Huang transform [10], electrocardiography (ECG) [10-12], fuzzy logic, galvanic skin response (GSR) [13] and electroencephalography (EEG) [14]. Other researches present the importance of the multimodal sensing interfaces to acquire and identify emotions as for instance: identification of cognitive states of aircraft pilots while they are using flight simulators [15]; to exam of the usefulness of psychophysiological measurements in a biocooperative feedback loop to adjusts the difficulty of an upper extremity rehabilitation task [16]; and to harmonizes robotic devices and emotion states as frustration and boredom [17].

The proposed design of a multimodal sensing interface is used to gives support to emotion acquisition, processing and identification tasks using several sensing devices and identification techniques. The emotions considered are: anger, boredom, disgust, anxiety/fear, happiness, sadness and normal. Moreover, to give support to the acquisition system, the International Affective Picture System (IAPS) dataset is used, which its pictures have been rated by both male and female volunteers [18].

#### II. DATASET PICTURES SELECTION

The International Affective Picture System (IAPS) dataset is considered in this work to provoke emotions in the vonlunteers. The IAPS dataset folder "test images artphoto" with 807 pictures was initially analyzed. Its pictures are labeled as amusement, anger, awe, contentment, disgust, excitement, fear and sad.

These pictures were valued by 5 healthy volunteers (they were not part of the main experiment) to select the most representative pictures according with the emotions: anger, boredom, disgust, anxiety/fear, happiness, sadness and normal. To reduce the dataset from 807 to 14 pictures (2 pictures representing each emotion), these volunteers first selected visually a subset of 40 pictures related to the

FIGURE A.7. Publication regarding to the design of a multimodal interface based on emotion (Roza and Postolache, 2017).

This full text paper was peer-reviewed at the direction of IEEE Instrumentation and Measurement Society prior to the acceptance and publication.

## Design of an Artificial Neural Network and Feature Extraction to Identify Arrhythmias from ECG

Válber César Cavalcanti Roza ISCTE Instituto Universitário de Lisboa/IT Universidade Federal do Rio Grande do Norte valber\_cesar roza@iscte.pt Ana Maria de Almeida ISCTE Instituto Universitário de Lisboa ana.almeida@iscte.pt Octavian Adrian Postolache Instituto de Telecomunicações/IT ISCTE Instituto Universitário de Lisboa opostolache@lx.it.pt

Abstract—This paper presents a design of an artificial neural network (ANN) and feature extraction methods to identify two types of arrhythmias in datasets obtained through electrocardiography (ECG) signals, namely arrhythmia dataset (AD) and supraventricular arrhythmia dataset (SAD). No special ANN toolkit was used; instead, each neuron and necessary calculus were modeled and individually programmed. Thus, four temporal-based features are used: heart rate (HR), R-peaks root mean square (R-RMS), RR-peaks variance (RR-VAR), and QSRcomplex standard deviation (QSR-SD). The network architecture presents four neurons in the input layer, eight in hidden layer and an output layer with two neurons. The proposed classification method uses the MIT-BHI Dataset (Massachusetts Institute of Technology–Beth Israel Hospital) for training, validation and execution or test phases. Preliminary results show the high efficiency of the proposed ANN design and its classification method, reaching accuracies between 98.76% and 98.91%, when in the identification of NSRD and arrhythmic ECG; and accuracies of 86.37% (AD) and 76.35% (SAD), when analyzing only classifications between both arrhythmias.

Keywords—arrhythmia identification; pattern recognition; signal analysis; artificial neural network.

#### I. INTRODUCTION

Electrocardiography (ECG) is an important non-invasive technique used in medicine to observe the heart variation and abnormalities over a period of time. Continuous and typical ECG signal consists of P-waves, QRS-complexes and T-waves [1], and provides fundamental information about the electrical activity of the heart. Abnormalities in this electrical activity may represent heart diseases defined by the absence of any structural cardiac defects and are responsible for a large number of sudden, unexpected deaths, including those of young individuals [2]. Thus, several diseases may be detected through ECG analysis such as, atrial fibrillation (AF) [3,4], long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia and the short QT syndrome [2] and arrhythmia [5]. Some of these diseases cannot be visually distinguished easily by a medical specialist due to its similar appearance with other signals [6]. However, a deep computational analysis may be used to detect small differences and possible diseases. To allow for such automatic detection, several features may be extracted from ECG signals such as, heart rate variability (HRV) triangular index [7], morphological features [8] through the temporal-domain analysis [7,9] and frequency-domain [1,7,10], and wavelet transform coefficients [11,1,2,13,14]. Furthermore, automatic methods to correctively identify diseases or patterns from these

signals may be reached through statistical Markov models [15], artificial neural networks (ANN) [1,3,6,16], linear discriminant analysis [17], and support vector machine (SVM) [18]. Arrhythmia is defined as a general term for an irregularity

Arrhythma is denied as a general term for an megularity or rapidity of the heartbeat or an abnormal heart rhythm [4]. Arrhythmias can initiate or exacerbate acute systolic heart failure in patients with pre-existing heart disease [19]. Therefore, studies in arrhythmias characteristics, definition and consequences are explored in several works.

Leren et al., investigated early markers of arrhythmic events and improved risk stratification in early arrhythmogenic right ventricular cardiomyopathy, performing resting and signal averaged ECG [5]. Farwell et al., presents a paper review about the current clinical and molecular understanding of the electrical diseases of the heart associated with sudden cardiac death [2]. Kohno et al., presents a state-of-the-art about the relation between atrial arrhythmias and pacing-induced rhythms disorders, inside the context of cardiac implanted devices [20]. Gopinathannair et al., exposed the arrhythmiainduced cardiomyopathies (AIC) showing its definition, potential reversible condition and aspects [19].

In the arrhythmia identification context, other works present classifications and methods used. Caswell et al. used new techniques to analyze arrhythmia through morphology of the ECG waveform with success in correctly detecting fatal arrhythmias through waveform correlation analysis of intracardiac electrograms. They also defined a two-dimensional feature space with linear decision boundaries using a least squares minimum distance classifier [21]. Povinelli et al., proposed a novel, nonlinear, phase space based method to quickly and accurately identify life-threatening arrhythmias, determined for six different ECG signal lengths [22]. Artis et al. used ANNs to identify AF, using the MIT-BIH Dataset, with each AF and non-AF recordings with 15-min [3]. Shadmand and Mashoufi, developed a new personalized ECG signal classification using ANN variant named block-based neural network (BBNN) and then classify ECG heartbeats, possibly also detecting arrhythmia patterns [6]. Lin, proposed a method for heartbeat identification from ECG using ANN and grey relational analysis (GRA) to classify cardiac arrhythmias patterns [1].

This paper presents a new approach to identify two types of arrhythmias patterns from ECG signals: the arrhythmia dataset (AD) and the supraventricular arrhythmia dataset (SAD), Moreover, are used four temporal-based features: heart rate (HR), R-peaks Root Mean Square (R-RMS), RR-peaks

FIGURE A.8. Publication regarding to the design of an ANN to detect arrhythmias from ECG data (Roza, Almeida, and Postolache, 2017).

# Emotion Analysis Architecture Based on Face and Physiological Sensing Applied with Flight Simulator

Válber César Cavalcanti Roza Instituto Universitário de Lisboa, ISCTE-IUL & IT-IUL Universidade Federal do Rio G. do Norte, UFRN Lisboa, Portugal <u>valber\_cesar\_roza@iscte.pt</u>

Abstract—This work presents an architecture as an important contribution regarding to emotional events along tasks based on flight simulations. This architecture considered eight beginner users of flight simulator (n = 8) while they execute a simulated flight according with the basic concepts of visual flight rules (VFR). The acquired physiological sensing were: heart rate (HR), electroencephalography (EEG) and galvanic skin response (GSR). One small camera was also used to record the users' face in order to extract, after the post-processing, the emotions of the user during the flight. The considered emotions were: happy, sad, angry, surprised, scared and disgust. Initial analysis of the GSR signals shown that the takeoff task presented 13% more variability (or emotional events) between the climb and approach tasks together; and in the same way, the landing task presented 16% more variability between the climb and approach tasks together, what shows the importance of these researches in flight safety context, mainly in these critical phases.

#### Keywords—emotion analysis architecture; flight simulator; physiological sensing; aviation safety; human error prevention

#### I. INTRODUCTION

Emotion analysis architectures arise to try to understand and classify accurately the emotional states during the execution of several tasks [1]. Computationally, several algorithms are frequently developed to reach an emotion's recognition level that be capable to be applied everywhere (e.g. stressful administrative jobs, cities' routines, critical aviation's procedures, entertainments, etc.), starting from a specific emotions sources (e.g. face, speech or physiological sensing) to a final emotion pattern recognition.

Emotion plays a critical role in human bio-regulation and survival - it is leaded by the brain, representing the result from chemical process that joins several biological (internal) and external factors as its inputs, to produce an output reflected as an emotion [2]. It can also compromise the decision-making and cognitive functioning in the aviation [3].

Its effects may result in severe aviation accidents caused by human fail as consequence of several errors that sometimes produces some hazards as for instance: failures in the analysis of flight problems and failures in the choice of a correct action that a certain situation requires [4]. Due to that, the emotional researches inside of the aviation context are getting relevance over time. Octavian Postolache Instituto Universitário de Lisboa, ISCTE-IUL Instituto de Telecomunicações, IT-IUL Lisboa, Portugal opostolache@lx.it.pt

In 2017, the Boeing Aerospace Company presented a statistical summary [5], about commercial jet airplane accidents confirmed to worldwide operations for 1959 through 2016, considering airplanes that are heavier than 60,000 pounds maximum gross weight. With this summary is possible to note that each year the aviation has been safer, reaching lower levels of accidents with fatalities including hull losses or not. Although, there are no reasons to relax, because there are another problems to solve, i.e. the emotional factors that can be dangerous on the flight operations.

This work uses a proposal of emotions analysis architecture to apply on aviation context. In this study, only simulated flights were used with beginner users of flight simulator.

#### II. METHODOLOGY

Before the main experiment starts, each beginner user was trained to the main experiment based on: the flight maneuvers, airplane controls in the air, takeoff, climb, navigation (cruise route), descend, approach and landing. It was applied to show to the flight simulator's users how each flight control works, learning how to execute actions in an airplane such as, pitch, roll and also the tasks of the proposed experiment.

After the training, the main experiment presents a data acquisition from 8 beginner users (n = 8) of flight simulator during the execution of 7 different tasks while flying based on basic concepts of visual flight rules (VFR) through the air traffic rules and procedures applicable to air traffic in Lisbon FIR and Santa Maria Oceanic FIR, conform with Annex 2 and 11 to the Convention on International Civil Aviation [6].

Using the aviation context, this work is based on several data acquisition such as: face recordings, questionnaires, heart parameters, skin conductivity and electroencephalography. These data were stored to execute an initial feasibility analysis and to show that the proposed architecture can be applied in this context (Fig. 1).

#### A. Flight Scenario - Route of the Experiment

The experimental scenario or route used in this work was based on a real flight plan, using the same place of the real experiment, i.e. Lisbon. It was useful to give more realism to the experiment, what can produce more effective reactions being very important to this work.

FIGURE A.9. Publication regarding to the design of a multimodal architecture based on emotion and flight simulator (Roza and Postolache, 2018).

## Performance Analysis of ANN and SVM in ECG Based Arrhythmia Identification

#### V C C Roza<sup>1,2</sup>, A M Almeida<sup>1</sup>, P M B Silva Girão<sup>3,4</sup>, and O A Postolache<sup>1,5</sup>

<sup>1</sup> Instituto Universitário de Lisboa, ISCTE-IUL/IT, Lisbon, Portugal
 <sup>2</sup> Universidade Federal do Rio Grande do Norte, UFRN, RD Norte, Brazil
 <sup>3</sup> Instituto de Telecomunicações, Lisbon, Portugal

DEEC, Instituto Superior Técnico/UL, Lisbon, Portugal

<sup>5</sup> Instituto de Telecomunicações, IT-IUL, Lisbon, Portugal

E-mails: valber\_cesar\_roza@iscte.pt, ana.almeida@iscte.pt, psgirao@tecnico.ulisboa.pt, opostolache@lx.it.pt

Abstract. This paper presents a performance analysis of Artificial Neural Network (ANN) and Support Vector Machine (SVM) algorithms in arrhythmia identification task based on ECG signals. Six features are used for both algorithms: short signal 1-D wavelet energy (SS-WVE), short signal continuous wavelet transform mean (SS-CWTM), heart rate (HR), R-peaks root mean square (R-RMS), RR-peaks variance (RR-VAR) and QRS-complex standard deviation (QRS-SD). The identification methods use the MIT-BIH Dataset (Massachusetts Institute of Technology–Beth Israel Hospital) for training, validation and test phases. In this work, preliminary results shown that the classification obtained using SVM is marginally better than the one obtained with the ANN classifier for the same classification task (i.e. arrhythmia pattern identification).

### 1. Introduction

One of the most important and non-invasive techniques used in medicine is the Electrocardiography (ECG). It is used to observe the heart activities, i.e. variation and abnormalities over a period of time. This signal consists of several waves patterns such as U-waves, P-waves, T-waves and QRS-complexes and provides an important information about the electrical activity of the heart. Abnormal patterns in this electrical activity may represent heart diseases such as, atrial fibrillation (AF) [1], Brugada syndrome, long QT syndrome, short QT syndrome, and arrhythmia [2], that are defined by any structural cardiac defects, responsible for a large number of sudden, unexpected deaths. However, some of these diseases can't be visually distinguished easily by a medical specialist due to its similar appearance with other ECG signals [3]. A computational analysis may be used to detect these small abnormalities. Then, to allow an automatic detection of these abnormalities, several features may be extracted from ECG such as: heart rate variability (HRV) [4], morphological features using temporal and frequency-domain analysis [5, 6]. To identify it, Markov models, artificial neural networks (ANN) and support vector machine (SVM) [7-9] can be used.

In a general definition, arrhythmia represents an irregularity or rapidity of the heartbeat or an abnormal heart rhythm and can initiate or exacerbate acute systolic heart failure [1, 9, 10, 11]. Its analysis and patterns are explored in several works. Leren et al., investigated early markers of arrhythmic events and improved risk stratification in early arrhythmogenic right ventricular cardiomyopathy [2]. Lin, proposes a method for heartbeat identification from ECG using ANN and grey relational analysis (GRA) [1]. Shadmand and Mashoufi developed a new personalized ECG signal classification using an ANN variant named block-based neural network (BBNN) [3]. Povinelli et al. proposed a novel nonlinear phase space based method to quickly and accurately identify life-threatening arrhythmias [12].

This paper presents a comparison analysis between the performance ANN and SVM in arrhythmia identification based on two types of arrhythmias patterns from ECG signals, considering six different features and the MIT-BIH Arrhythmia Dataset.

#### 2. Dataset description

This work uses the MIT–BIH (Massachusetts Institute of Technology–Beth Israel Hospital) Dataset to provide the ECG signals used during training, validation, and test of both classifiers.

FIGURE A.10. Publication regarding to the performance analysis of ANN and SVM on arrhythmia identification (Roza et al., 2018).

## Emotions Assessment on Simulated Flights

V. C. Roza, Instit. de Telecomunicações ISCTE-IUL, Lisbon Portugal valber\_cesar\_toza@iscte.pt

O. Postolache Instit. de Telecomunicações, ISCTE-IUL, Lisbon Portugal opostolache@lx.it.pt,

Abstract— The emotions on pilots play important role on their performance during the service. Thus, an emotion prediction methodology based on physiological parameters such as galvanic skin response and heart rate as on as the facial recognition was considered in the present work. Several tests with eight volunteers were carried out that were used flight simulator. A small camera and the Face Reader software were used to record the users' face during the fly task and to perform the video off-line processing to extract facial emotions during performed flights. The considered emotions were: happy, sad, angry, surprised, scared and disgust. To predict these emotions, the Artificial Neural Network (ANN) was applied. The experiment shows that is possible to predict emotions using these data and the best prediet model was reached with 2 hidden layers, having a minimum squared error of 0.219.

Keywords— Emotion monitoring, heart rate, GSR sensing, emotion analysis, flight simulator, aviation safety.

#### I. INTRODUCTION

Emotion analysis and prediction are an important research field that are useful to try to understand and predict accurately several emotions inside a certain contexts and tasks [1]. Several algorithms were developed to reach the best emotional predictions which can be applied on different scenarios (e.g. entertainments, cities' routines, stressful administrative jobs, critical aviation's, procedures). The acquisition of these emotions is majority taken from physiological sensing, speech, face and body gestures.

Emotions play a critical role in human bio-regulation and survival. These emotions' characteristics are leaded by the brain as results of several chemical processes that joins several biological and external factors, which produce an output reflected as an emotion [2]. The influence of emotions can also compromise the decision- making and cognitive functioning in the aviation affecting the heart functioning [3], for instance. Its effects may result in severe aviation accidents caused by human failure as consequence of systematic errors that sometimes produces some hazards as for instance: failures in the analysis of flight problems and failures in the choice of a correct action that a certain situation requires [4]. These are some reasons that motivate the need of emotional researches inside of the aviation contexts as for instance: drugs abuse, familiar problems, suicides, alcohol consumptions, workload, stress long flights, among others.

V. Groza University of Ottawa, Inst Canada vgroza@uottawa.ca

J. M. Dias Pereira, Instit. de Telecomunicações, EST-IPS Setúbal, Portugal dias.pereira@estsetubal.ips.pt

Looking for the same problem, Antonio et al. (2018), developed a study based on flight simulator, emotion and heart rate. They confirmed the sensitivity of the HR to cognitive demand and training effects, with increased HR when the task was more difficult and decreased HR with training (time-on-task) which can be critical in many flight situations [5].

The Boeing Aerospace Company presented a statistical summary [6], about the commercial jet airplane accidents confirmed to worldwide operations for 1959 through 2016, considering airplanes that are heavier than 60,000 pounds maximum gross weight.

There was shown that each year, the amount of air accidents is getting lower (decreasing the events of accident) including fatalities with hull losses or not. Even with these data, there are other problems that need to find good solutions, as for instance, the emotional factors that can be dangerous on the flight operations when it is treated with irresponsibility.

#### II. METHODOLOGY

Preliminary training was carried out with the volunteers including simulation tasks such as: flight maneuvers, airplane controls in the air, takeoff, climb, navigation (cruise route), descend, approach and landing. The training focused on how each flight control works, controls that are later used to execute airplane navigation tasks during the proposed experiment.

In the present work eight volunteers (beginners on flight simulator (Fig.1)) were performed seven different tasks based on basic concepts of visual flight rules (VFR) through the air traffic rules and procedures applicable to air traffic in Lisbon FIR and Santa Maria Oceanic FIR. The rules and procedure conform with Annex 2 and 11 from the Convention on International Civil Aviation [7][8].



Fig. 1. Simulator GUI for Aircraft Cessna-172.

FIGURE A.11. Publication regarding to the emotional assessment on simulated flight experiments (Roza et al., 2019).



Article



## Multimodal Approach for Emotion Recognition Based on Simulated Flight Experiments

### Válber César Cavalcanti Roza 1,2,•💿 and Octavian Adrian Postolache 1

- Instituto Universitário de Lisboa (ISCTE-IUL) and Instituto de Telecomunicações (IT-IUL), Av. das Forças Armadas, 1649–026, Lisbon, Portugal; valbercesar@gmail.com (V.C.C.R.); opostolache@lx.it.pt (O.A.P.)
   Universidade Federal do Rio Grande do Norte (UFRN), Av. Sen. Salgado Filho, 3000, Candelária, 59064–741,
- Natal-RN, Brazil Correspondence: valberœsar@gmail.com

Received: 18 October 2019; A ccepted: 9 December 2019; Published: date



Abstract: The present work tries to fill part of the gap regarding the pilots' emotions and their bio-reactions during some flight procedures such as, takeoff, climbing, cruising, descent, initial approach, final approach and landing. A sensing architecture and a set of experiments were developed, associating it to several simulated flights ( $N_{flights} = 13$ ) using the Microsoft Flight Simulator Steam Edition (FSX-SE). The approach was carried out with eight beginner users on the flight simulator ( $N_{pilots} = 8$ ). It is shown that it is possible to recognize emotions from different pilots in flight, combining their present and previous emotions. The cardiac system based on Heart Rate (HR), Galvanic Skin Response (GSR) and Electroencephalography (EEG), were used to extract emotions, as well as the intensities of emotions detected from the pilot face. We also considered five main emotions: happy, sad, angry, surprise and scared. The emotion recognition is based on Artificial Neural Networks and Deep Learning techniques. The Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) were the main methods used to measure the quality of the regression output models. The tests of the produced output models showed that the lowest recognition errors were reached when all data were considered or when the GSR datasets were omitted from the model training. It also showed that the emotion surprised was the easiest to recognize, having a mean RMSE of 0.13 and mean MAE of 0.01; while the emotion std was the hardest to recognize, having a mean RMSE of 0.82 and mean MAE of 0.08. When we considered only the higher emotion intensities by time, the most matches accuracies were between 55% and 100%.

Keywords: emotion recognition; physiological sensing; multimodal sensing; deep learning; flight simulation

### 1. Introduction

With the growth of air safety and accident prevention, especially in the mechanical-structural and avionics aspects, a gap of probable cause of accidents is emerging, which can justify the occurrence of several unwanted situations. This can be referred to as the relationship between emotions and aviation accidents caused by human failure.

The development of research about the relation between emotions and aviation activities is quite new and is mainly based on preliminary and final accident reports. It was important to show the real need of improvements and strategies regarding emotion effects in risky situations of a real flight, mainly on take off, approach and landing.

To know how important are the studies of emotions over the aviation contexts, we first need to understand emotion definitions. Emotion is led by the brain and it can sometimes be the result of chemical processes that join several internal and external factors to produce an output or response

Sensors 20z, xx, 5; doi:10.3390/soc010005

www.mdpi.com/journal/sensors

FIGURE A.12. Publication regarding to the multisensing approach to identify emotions based on simulated flight experiments (Roza and Postolache, 2019).





## Article $\beta$ -Band Analysis from Simulated Flight Experiments

Válber César Cavalcanti Roza 1,2,4 🗇 and Octavian Postolache 1 🗊

- Instituto de Telecomunicações (IT-IUL), Instituto Universitário de Lisboa (ISCTE-IUL), AV. das Forças
- Armadas, 1649-026 Lisbon, Portugal; opostolache@k.it.pt Centro de Tecnologia (CT), Universidade Federal do Rio Grande do Norte (UFRN), Av. Sen. Salgado Filho, 3000, Candelária, Natal 59064-741, Brazil
- Correspondence: valberce sar@gmail.com

Abstract: Several safety-related improvements are applied every year to try to minimize the total number of civil aviation accidents. Fortunately, these improvements work well, reducing the number of accident occurrences. However, while the number of accidents due to mechanical failures has decreased, the number of accidents due to human errors seems to grow. On that basis, this work presents a contribution regarding the brain's  $\beta$ -band activities for different levels of volunteers' expertise on flight simulator, i.e., experienced, mid-level and beginner, in which they acted as pilots in command during several simulated flights. Spectrogram analysis and statistical measurements of each volunteer's brain's β-band were carried out. These were based on seven flight tasks: take off, climb, cruise flight, descent, approach, final approach and landing. The results of the proposed experiment showed that the takeoff, approach and landing corresponded to the highest brain activities, i.e., close to 37.06-67.33% more than the brain activity of the other flight tasks: when some accidents were about to occur, the intensities of the brain activity were similar to those of the final approach task. When the volunteers' expertise and confidence on flight simulation were considered, it was shown that the highest brain magnitudes and oscillations observed of more experienced and confident volunteers were on average close to 68.44% less, compared to less experienced and less confident volunteers. Moreover, more experienced and confident volunteers in general presented different patterns of brain activities compared to volunteers with less expertise or less familiarity with fight simulations and/or electronic games

Keywords: electroencephalography; beta band; statistical analysis; aviation safety

#### 1. Introduction

The present research considers the analysis of the beta band, based on electroencephalography (EEG) data in the context of simulated flight, with several flight tasks. With such analysis, it is possible to reinforce the need for studies on this field and also the development of new technologies that increase the ability of real pilots to regulate their physiological response before, during and after real flights

Now adays, aviation accidents continue to occur, and together with these undesirable situations come the aviation safety's improvements. Some of these improvements were presented in the airline safety report on 6 April 2020 by the International Air Transport Association (IATA). It revealed the accident rates of 2019 and showed all improvements compared to 2018-2014. In 2019, there were 53 accidents, 8 of which were fatal, includin g 240 deaths. In 2018, there were a total of 62 accidents, 11 of which were fatal, including 523 deaths. The represents a reduction by 9 accidents (3 fatal) and 283 deaths in 2019 compared to 2018. For the period of 2014-2018, there were an average of 63.2 accidents, including 8.2 fatal, with 303.4 deaths per year [1]. In 2017, the Boeing Aerospace Company presented a statistical summary [2] of commercial jet airplane accidents confirmed for worldwide operations for 1959 through 2016. It considered airplanes that are heavier than 60,000 pounds maximum gross weight, showing a very clear statistical analysis of

Aerospace 2021, 8, 120. https://doi.org/10.3390/aerospace8050120

https://www.mdpi.com/journal/aerospace

FIGURE A.13. Publication regarding to the  $\beta$ -band analysis (Roza and Postolache, 2021).



Citation: Roza, V.C.C.; Postolache, O. B-Band Analysis from Simulated Flight Experiments. Acrospace 2021, 8, 120. https://doi.org/10.3390/ aerospace8050120

Academic Editor: Mario Irree

Received: 8 March 2021 Accepted: 15 April 2021 Published: 21 April 2021

Publisher's Note: MDPI stays neutral with negard to jurisdictional claims in published maps and institutional affiliations



Copyright: @ 2021 by the authors. Licensee MDPI, Basel, Switzerland, This article is an open access article distributed under the terms and conditions of the Casative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).

### A.5. Publications out of Main Work Context (Parallel Publications)

At the same period, several parallel publications i.e., out of PhD context, were also developed, which most of it were published inside the context of robotics, path planning and multisensing platforms (Figures A.14 to A.16).

### Development of a Kinematic Model based on Bézier Curves for Improvement of Safe Trajectories in Active Orthosis Walking Tasks

Válber C.C. Roza<sup>1</sup>, Kassio J.S. Eugenio<sup>2</sup>, Vanessa G.S. Morais<sup>3</sup>, Pablo J. Alsina<sup>4</sup> and Márcio V. de Araújo<sup>5</sup>

Abstract—This work presents a kinematic walking model r an active orthosis with 4 degrees of freedom based on or an active ortho Bézier curves as foot trajectory. Moreover, the proposed model reinforces the importance of this model for crossing holes and other obstacles. Gravitational reactions and balance control are not considered in this paper, because the user is supported by a couple of crutches. The proposed method was simulated based on Ortholog orthosis parameters with 20kg of structural weight, for users from 1,55m to 1,70m height and weight up to 65kg. Simulation experiments shown that for walking task, including crossing holes and small obstacles, the proposed model obtained good results.

Keywords: kinematics walking model; Bézier curves trajectory; orthosis modelling; assistive robotics.

#### L INTRODUCTION

In recent years, the development of assistive devices is growing in the academic community. Besides of other robotic systems, the assistive technology that includes robotics systems must be based mainly on reliability, robustness and safety just as several devices around the world that tries to fill this field such as: smart wheelchair [1], active orthosis using biosignals [2] and mechanical/robotic prothesis for arms, hands and foot [3].

There are several kinematic walking models to active orthosis or humanoid robots. Uchiyama et al., simulated a walking motion for a powered orthosis using a couple of central pattern generators (CPG) [4]. Haghighi and Nekoui, used Cubic Polynomial method as a foot trajectory generator for one humanoid robot eight joints [5]. Santos et al., proposed a new architecture for a biped robot with seven DOF per each leg and one DOF corresponding to the toe joint, dividing the walking gait into the Sagittal and Frontal planes [6]. Marques et al., presented a different method to model kinematics of humanoid robots avoiding the restriction to the frontal and sagittal planes [7]. Rameez and Khan, presented dynamic equations of motion and its Matlab simulation of joints position using equations with forward kinematics and inverse kinematics [8].

With the Bézier curves other approaches may define a geometric representation of trajectories and curves such as:

<sup>1</sup>Válber Roza is with Dept. of Science and Technology, University Institute of Lisbon (ISCTE-IUL, Portugal) and Federal University of Rio Grando do Notte (UFRN, Brazil), valber\_cesar\_roza@iscte.pt <sup>2,3</sup>Kassio Eugenio and Vanessa Morais are with the Dept. of Mechatronic

"^ Kassio Eugenio and Vanessa Morais are with the Dept. of Mechatronic Engineering, UFRN, Brazil, Kassioeugenio@gmail.com <sup>4</sup>Pablo Alsina is with the Dept. of Computation Engineering and Mecha-tronic Engineering, UFRN, Brazil, pablo@dca.br <sup>5</sup>Márcio Aradio is with the Dept. of Mechanical Engineering and Mecha-tronic Engineering, UFRN, Brazil.marcio@ct.ufrn.br

Cubic Polynomial method [5], Nelson polynomials [9] and polynomial spirals [10].

This work presents a solution for foot trajectory modeling based on Bézier curves and inverse kinematics, applied to a 4 degrees of freedom active orthosis on walking task, crossing holes and small obstacles. The gravitational reactions and balance control are not considered, since the user walking is supported by a couple of crutches.

#### II. THE ORTHOLEG PROTOTYPE

The proposed inverse kinematic model is based on an active orthosis parameters with 4 degrees of freedom (DoF) named Ortholeg v1.0. It has four actuators placed in the knees and hips controlled on sagittal plane, 20kg of structural weight and being applied to users within a height range between 1,55m to 1,70m and 65kg weight. It is able to perform movements such as straight walk, sit and stand up Î111.

Furthermore, other Ortholeg version is being developed by the group [12] as shown in Figure 1.



Fig. 1. Orthesis Ortholeg v1.0 (left) and v2.0 (right)

#### III. BÉZIER CURVES AS FOOT TRAJECTORY

Bézier curves are a powerful tool for constructing freeform curves and surface. It have a fundamental importance for computer aided geometric design (CAGD) and computer graphics (CG) [13]. In this work are used to define the foot trajectories of an active orthosis, giving support to walking and crossing obstacles tasks.

Mathematically the Bézier curves are based on the binomial coefficients and are defined by a set of control points  $\{\mathcal{P}_0, \mathcal{P}_1, \mathcal{P}_2, ..., \mathcal{P}_n\}$  where *n* represents the order's curve. For

FIGURE A.14. Publication regarding to the inverse kinematic applied to orthosis walking tests (Roza et al., 2017).

## A Multi-sensing Physical Therapy Assessment for Children with Cerebral Palsy

Regina de Souza Instituto Universitário de Lisboa, ISCTE-IUL Instituto Universitário de Lisboa, ISCTE-IUL Instituto Universitário de Lisboa, ISCTE-IUL Instituto de Telecomunicações, IT-IUL regina\_souza@iscte.pt

Válber César Cavalcanti Roza IT-IUL&UFRN valber\_cesar\_roza@iscte-iul.p

Octavian Postolache Instituto de Telecomunicações, IT-IUL opostolache@lx.it.pt

Abstract - This work presents the development of a multi-sensing Abstract — This work presents the development of a manuscrising interface called Palsy Thera Sense, to provide information data obtained during physical therapy of the children's motor skills, and provide metrics that can be later used for proper and effective training. This interface is based on distributed force measurement system characterized by two different load cells. The signals from signals from the load cells distributed on the level of a force platform and at the level of child's body support ropes that are tied on the cerebral palsy spider cage are acquired and wireless transmitted to a client computation platform. Thus different tests can be carried out including, center of forces measurements and gait simulations. These tests can be study of children balance during different activities such as serious game playing for upper limb rehabilitation. The interface shown to be an important tool that provide support to cerebral palsy rehabilitation process, and for objective evaluation of the patients during the rehabilitation period. Several experimental results are included in the paper highlighting the capabilities of the designed and implemented multi-sensing system.

Keywords - Cerebral palsy; rehabilitation; assistive technology; signal analysis: multi-sensing devices.

#### I. INTRODUCTION

Physical medicine and rehabilitation (PM&R), also known as physiatry or rehabilitation medicine, aims to enhance and restore the functional ability and quality of life to those with physical impairments or disabilities affecting the brain, spinal cord, nerves, bones, joints, ligaments, muscles, and tendons [1]. Subjective and objective evaluations that are current used by physiotherapist provide information about rehabilitation process. The usage of scale physical rehabilitation outcome is a current method to extract information about motor capability of the patient under physical rehabilitation, however is highly affected by subjective elements that conduct to less accurate evaluation results. Nowadays, to increase the accuracy of the motor condition progress of the patients under physical rehabilitation, the smart sensors and advanced signal processing are used [1-2], however, there are still a lack of implementation in the field of cerebral palsy rehabilitation monitoring and physical rehabilitation outcome.

Cerebral palsy is a term generalized from the chronic nonprogressive encephalopathy. It consists of a group of changes in the development of motor functions, resulting from a static lesion in the central nervous system [3]. This injury can occurs due to several factors during periods of prenatal, natal and neonatal [4-5]. The incidence of this pathology is very high, being the most common disorder in child development [6].

The most common types of cerebral palsy are: spastic, dyskinesia, ataxia and Mixed forms (most often spasticity and ataxia, athetosis, less often and athetosis) [7]. As solution to improve physical condition of this type of children, physical therapy allows to stimulate the patient's motor development, allowing their brain to "learn" the movements performed during the sessions that can be appropriate monitored using smart sensing systems [reference].

Several multi-sensing solutions that are designed to give support to stimulation of motion and to provide the balance aid during the gait rehabilitation process, are reported in literature [8-12], however are less or not reported systems for cerebral palsy monitoring. Several metrics can be mentioned as a sensing systems associated with the postural analysis of the body and its static and dynamic balance such as, center of pressure position and trajectory pressure that were considered in different practical approaches [13-15].

In this context the work presents the development of a multisensing interface called Palsy Thera Sense, to give support to the physical rehabilitation for children with cerebral palsy, allowing the monitoring of static and dynamic behavior and providing accurate information about the motor skills, and to evaluate the physical rehabilitation plan effectiveness.

This paper is organized such as: Section II presents the Palsy Thera Sense description, including the hardware and software; Section III, presents the results analysis, as such as the tests executed with all developed platforms and its output signals; Section IV presents the conclusions and future works and the acknowledgements presented in Section V

#### MULTI-SENSING FRAMEWORK DESCRIPTION п

This work presents a multi-sensing interface called Palsy Thera Sense. It is a rehabilitation system composed of two platforms that includes two types of force sensors (i.e. load cells) to monitor the forces applied by a patient with cerebral palsy while he performs the gait rehabilitation under physiotherapist's supervision.

It is represented by a wireless sensor network including node with multiple force measurement channels that support the physical training monitoring for children with cerebral palsy. The signals obtained for different performed tasks such as, gait task and body equilibrium (or body balance during serious game performing) are transmitted to the wireless sensor

FIGURE A.15. Publication regarding to the development of a multisensing platform to give support to children with cerebral palsy (Roza, Souza, and Postolache, 2017).
18<sup>th</sup> IEEE International Conference on Autonomous Robot Systems and Competitions (ICARSC) April 25-27 2018, Torres Vedras, Portugal

# Goal-biased Probabilistic Foam Method for robot path planning

Luís B. P. Nascimento, Diego S. Pereira, Pablo J. Alsina, Mauricio R. Silva, Daniel H. S. Fernandes Departament of Computing Engineering and Automation Federal University of Rio Grande do Norte (UFRN)

Natal, RN, Brazil

lbruno@ufrn.edu.br, dgspereira@gmail.com, pablo@dca.ufrn.br, mauricio@bsd.com.br, eng.danielhsfernandes@gmail.com

Válber C. C. Roza Department of Information Science and Technology Instituto Universitário de Lisboa (ISCTE-IUL) Lisboa, Portugal valber\_cesar\_roza@iscte.pt

Abstract—This paper presents an improved variation of Probabilistic Foam Method (PFM) for robot path planning. In PFM, a structure named probabilistic foam, formed by bubbles propagate through the free space from initial configuration to goal as a breadth-first search, obtaining a collision-free path. Although the method is able to obtain a navigable path, it is computationally expensive. We propose a new foam propagation approach inspired on random tree growth from RRT. Results from simulation experiments using 2D and 3D map show benefits with the new method.

Index Terms—autonomous robotics, path planning, collisionfree path, probabilistic foam method, bubbles of free-space.

#### I. INTRODUCTION

Probabilistic path planners are interesting strategies that aim to generate a set of robot configurations on free space by its sampling in a random way until finding the goal configuration. These methods usually use few computation resources because they construct an approximate model of the configuration space [1], as opposed to some deterministic methods that construct an exact space model [2].

There are several probabilistic path planners in literature, Probabilistic Roadmaps [3] and Rapidly-Exploring Random Tree (RRT) [4], [5] are the most known, but in the last years a lot of studies have been developed in this area, including applications on autonomous vehicle navigation applications [6], in Unmanned Aerial Vehicles (UAVs) [7], in robots manipulators [8], among other relevant ones.

In [9] and [10] bubbles of free space were introduced. A bubble was defined as a circle centered at a robot configuration with radius computed using minimum distance between the robot and the set of obstacles in workspace. In this context, the bubbles were used on Elastic Bands, a finite series of bubbles that makes the collision-free path be able to deform itself when changes in the environment are detected in real time.

978-1-5386-5346-6/18/\$31.00 © 2018 IEEE

Armando S. Sanca Department of Technology State University of Feira de Santana Feira de Santana, Bahia, Brazil armando@ecomp.uefs.br



Fig. 1: Collision-free path obtained by Probabilistic Foam propagated through the free space

In [11] a new robot path planning, called Probabilistic Foam Method (PFM) was proposed. The foam propagates in free space by the expansion of connected bubbles from initial configuration to goal configuration, a method similar to wavefront propagation (strategy for several methods based on potential fields), thus forming a search tree similar to the RRT. The formed foam represents an approximate coverage of the free space, similar to methods based on approximated convex cell decomposition. An important characteristic of the PFM is that bubbles provide a safe region to robot maneuverability, just using distance information. Figure 1, shows an example of the probabilistic foam.

Although PFM has yielded good results, the method does not use strategies that minimize the computational effort in the search process, considering that the propagation of the foam executes a breadth-first search over the free space, which can be a slow process until it finds the goal. In this way, we presented the Goal-biased Probabilistic Foam (GBPM), a new approach for the foam propagation of the Probabilistic Foam Method that aims to reduce computed bubbles number, as a result minimizing the processing time. GBPM is inspired on

FIGURE A.16. Publication regarding to the improvement of a probabilistic method over path planning tasks (L. Bruno P. Nascimento et al., 2018).

#### APPENDIX B

# Additional Plots of each Volunteer

Figures B.1-B.7, show the brain magnitudes of several lobes along each proposed flight tasks and volunteers' expertise. Figures B.6 and B.7, show smoother signals, having less abrupt variation along short window of time, comparing to the signal variation and shape of the beginner and mid-level volunteers.

However, even when the volunteers are mid-level e.g., it doesn't ensure that they will feel insecure (not confident) sometimes and consequently, reflecting similar pattern of a beginner level; it is simple to understand that, the massive training for each different flight and aircraft are the point and for this reason, different expertise of volunteers may reflect similar brain patterns if they are not confident in some situation. The training is the key of a successful flight and this work tries to bring clearly the need to train more the pilots to avoid several problems in the flight procedures.

These low amplitudes and signal variations along the time, may mean that the volunteer is more relaxed during the flight, presenting less brain oscillations over short times. It makes sense, since the volunteer of the flights VC1 and VC2 reported to be confident with the proposed flight tasks and aircraft commands, but sometimes he said to push himself to execute the tasks as well as possible.



FIGURE B.1. Mean of magnitudes by tasks and lobes, of the flight dataset CL3 (beginner level volunteer).



FIGURE B.2. Mean of magnitudes by tasks and lobes, of the flight dataset CR1 (beginner level volunteer).



FIGURE B.3. Mean of magnitudes by tasks and lobes, of the flight dataset CR3 (beginner level volunteer).



FIGURE B.4. Mean of magnitudes by tasks and lobes, of the flight dataset GC3 (mid-level volunteer).



FIGURE B.5. Mean of magnitudes by tasks and lobes, of the flight dataset LS1 (mid-level volunteer).



FIGURE B.6. Mean of magnitudes by tasks and lobes, of the flight dataset VC1 (experienced level volunteer).



FIGURE B.7. Mean of magnitudes by tasks and lobes, of the flight dataset VC2 (experienced level volunteer).

### APPENDIX C

# Emosense Software - User Manual

The present work developed two software to give support to the data acquisition, processing and emotion recognition, those are: Emosense RT (real time/online version), and Emosense Processing (offline version).

#### C.1. Emosense Realtime/Online

Figure C.1, shows the configuration panel of the Emosense RT, which it have all parameters to be configured before the acquisition process, e.g., sensors to connect, experiment and test time, log file, real time markers, and so on.



FIGURE C.1. Configuration panel.

Figure C.2, shows three main panels: RT acquisition panel, aviation experiment setup and electrodes setup for ExG (ECG, EMG, EEG and EOG), GSR and HR. In the RT acquisition panel, 7 different signals can be acquired; serial data, bluetooth data, TCP data and accelerometers data. In the aviation experiment panel, the experiments based on aviation can be adapted, producing a final report having specific information on aviation context.

The electrodes panel, presents several electrodes selections, according to experiment in case. In addition of several signal acquisition, the face of the user in experiment, is also recorded to be analyzed in the post processing phase.



FIGURE C.2. Three main panel: RT acquisition panel, aviation experiment panel and electrodes setup panel.

#### C.1.1. Log File Nomenclature

The Emosense RT software, produces files of its own. A total of two data files are produced: readable data file (.emo), having a data table that permits to be processed further; and a plot file (.pdf), having images of plots of the data acquired in real time. In addition, a additional file are produced when a RT marker is used, taking a photo of the user at the same moment of the markers.

After stop the experiment, the Emosense RT, record a pair of files, data.emo and plot.pdf, following by the date and time of recording, being the ID of the finished experiment (Figure C.3). Other log files are produced also, but based on the configuration system, experiment steps and errors warnings along the acquisition.



FIGURE C.3. Log storage and nomenclature.

## C.2. Emosense Offline

Figure C.4, shows the Emosense Offline software that uses the recorded data by the Emosense RT, to execute processing and to find patterns to aim the regression/classification process.

Several resources are provided by it: Filtering, FFT, wavelets, auto markers, signal cutting, spectrograms, features extractions, cross correlation, Pearson's coefficient, print plots, and so on.



FIGURE C.4. Emosense Offline software.