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Abstract

Several safety-related improvements are applied every year to try to minimize the

number of civil aviation accidents. Fortunately, these improvements work well, reducing

the number of accident occurrences. However, while the number of accidents due to

mechanical failures has decreased, the number of accidents due to human errors seems

to grow. Based on that and to try to minimize these unwanted situations, the present

work developed a sensing architecture and a set of experiments bringing two different

solutions focused on the pilot of the aircraft through of simulated flights and volunteers

having different expertise on flight procedures. The flight simulations were executed by

the Microsoft Flight Simulator–Steam Edition (FSX-SE). The two proposed solutions are

based on: emotion recognition and β-band analysis of pilots’ brain in flight. Volunteers

was invited to acted like pilots in simulated flights along seven flight moments: takeoff,

climb, cruise flight, descent, approach, final approach and landing. Regarding to β-band

analysis, Electroencephalography (EEG) was considered and also several spectrogram

and statistical measurements of each volunteer were carried out. The results of this

analysis shown that the takeoff, approach and landing corresponded to the highest brain

signal amplitudes, i.e., close to 37.06%-–67.33% higher than the brain activity of other

flight tasks. When some accidents were about to occur, the amplitudes of the brain

activities were similar to those of the final approach task. Considered the volunteers’

expertise and their confidence on the proposed flight simulation, it shown that the highest

brain amplitudes and oscillations observed of more experienced and confident volunteers

were on average close to 68.44% less, compared to less experienced and less confident

volunteers in the same tasks. Moreover, in general, more experienced and confident

volunteers, presented different patterns of brain activities compared to volunteers with

less expertise or less familiarity with fight simulations and/or electronic games. Regarding

to emotion recognition, the present work shown that it is possible to recognize emotions

of different pilots in flight, combining their actual and previous emotions felt in flight.

Three biosignals were considered: Galvanic Skin Response (GSR), cardiac system based

on Heart Rate (HR) through PPG sensor, and EEG. The reference to produce the emotion

recognition model was based on the intensities of emotions detected of the volunteers’ faces

by the software Face Reader. These biosignals were used to extract the emotions patterns

along the flights. Five main emotions were considered: happy, sad, angry, surprise and

scared. The emotion recognition was based on Deep Neural Networks (DNN) techniques.

The Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) were the main

methods used to measure the quality of the multi-outputted regression models. The tests

v



of the produced multi-output models shown that the lowest recognition errors were reached

when all biosignals were considered or when the GSR datasets were omitted of the model

training . It also showed that the emotion surprised was the easiest to recognize, having

a mean RMSE of 0.13 and mean MAE of 0.01; while the emotion sad was the hardest

to recognize, having a mean RMSE of 0.82 and mean MAE of 0.08. When only the

major emotion values along the time were considered, the mean of the best classification

accuracies was close of 76.42%.
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Resumo

Várias melhorias são aplicadas todos os anos para minimizarem o número de acidentes

na aviação civil. Felizmente, estas melhorias têm funcionado bem, reduzindo a quantidade

de ocorrências de acidentes. No entanto, enquanto o número de acidentes aéreos causados

por falhas mecânicas tem diminuido, o número de acidentes causados por falhas humanas

parece ter aumentado. Baseado nisto e para tentar minimizar tais indesejadas situações,

o presente trabalho desenvolveu uma arquitetura sensorial e um conjunto de experimen-

tos, trazendo duas diferentes perspectivas focadas no piloto da aeronave através de voos

simulados e voluntários possuindo diferentes ńıveis de conhecimento em procedimentos

de voo simulado. Os voos simulados foram executados com o software Flight Simulator–

Steam Edition (FSX-SE). As duas soluções propostas são baseadas em: reconhecimento

de emoções e análises de ondas beta dos cérebros dos pilotos em voo. Os voluntários do

experimento, foram convidados a atuaram como pilotos nos voos simulados ao longo de

sete momentos ou tarefas de voo, definidas como: decolagem, subida, voo de cruzeiro,

descida, aproximação, aproximação final e pouso. Sobre as análises das ondas beta, dados

de Eletroencefalografia (EEG) foram considerados e também diversos espectrogramas e

medições estat́ısticas para cada voluntário foram executadas. Os resultados desta análise

mostraram que as tarefas de decolagem, aproximação e pouso, corresponderam aos mo-

mentos com sinais cerebrais de maiores amplitudes sendo, 37.06%–67.33% maiores que as

atividades cerebrais das demais tarefas. Quando algum acidente estava prestes a aconte-

cer, as amplitudes cerebrais foram similares a tarefa de aproximação final. Considerando

a experiência e autoconfiança dos voluntários em executar os voos simulados propostos,

isto mostrou que as mais altas amplitudes cerebrais observadas em voluntários mais ex-

perientes e confiantes foram em média 68.44% menor, comparadas a voluntárions menos

experientes e menos confiantes para executas as mesmas tarefas. Além disso, em geral, vol-

untários mais experientes e confiantes no experimento, apresentaram diferentes padrões

de atividades cerebrais comparadas a voluntários menos experientes ou com menor fa-

miliaridade com simuladores de voo e/ou jogos eletrônicos. Sobre o reconhecimento de

emoções, o presente trabalho mostrou que é posśıvel reconhecer emoções de diferentes

pilotos em voo, combinando suas emoções sentidas durante o voo e anteriormente. Para

isso, três biosinais foram considerados, EEG, Resistência Galvânica da Pele (RGP) e um

sistema card́ıaco baseado em Ritmo Card́ıaco (RC). A referência para produzir o modelo

de reconhecimento de emoções, foi baseada nas intensidades de emoções detectadas das

faces dos voluntários pelo software Face Reader. Todos os biosinais foram usados para
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extrair padroões de emoções ao longo dos voos. Cinco emoções principais foram consider-

adas: alegria, tristeza, raiva, surpresa e medo. O reconhecimento das emoções foi baseado

em técnicas de Redes Neurais Artificiais Profundas (RNAP). O Erro Quadrático Médio

(EQM) e o Erro Médio Absoluto (EMA) foram os métodos principais usados para medir

a qualidade dos múltiplos modelos de regressão criados. Os testes dos múltiplos modelos

criados mostraram que os menores erros de reconhecimento de emoções foram alcançados

quando todos os biosinais foram consideredos ou quando os dados de RGP foram omitidos

do processo de treinamento. Também mostrou que a emoção surpresa foi a mais fácil de

reconhecer, tendo o EQM de 0.13 e EMA médio de 0.01; enquanto que a emoção tristeza

foi a mais dif́ıcil de ser reconhecida, apresentando um EQM de 0.82 e EMA médio de

0.08. Quando apenas as emoções faciais com maiores intensidades ao longo do tempo

foram consideradas, a média das melhores classificações foi de aproximadamente 76.42%.
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CHAPTER 1

Introduction

Going deep in the daily researches about emotions, it was notice that in fact, each emotion

is a complex explosion of “selfish” sensations, which each sensation goes in its own way

and sometimes it blocks and interferes with other sensations.

Its complexity and inseparability between all emotions are somehow, the reason that

only one measurement channel is not sufficient to fully identify it. Since emotions are

present at every moment, researchers should be able to understand its aspects and re-

sponses, especially because in everyday life the people suffer with emotion-related prob-

lems such as: stress and emotional disturbance affecting their actions, humor, work,

well-being, family and general relationship that can also cause mental health disturbance

(Quah, 2018; Hagen, Knizek, and Hjelmeland, 2017), low immunity and malignant dis-

eases such as cancers and others irreversible damages (Alberdi, Aztiria, and Basarab,

2016; Elefteriou and Campbell, 2015).

Emotion is an important part of the human behavior and it is organized on two primary

categories – conscious and unconscious. Conscious emotion relates the emotional response

based on some cognitive processes; and the unconscious emotion that is based on the

autonomic process from nervous system (Barrett, 2006; Poels and Dewitte, 2006). Based

on that, several researches shown that the interactions with different environments (Lim,

2016), pleasant places (Thompson et al., 2012), hazards situations or by the judgment

that it require (Breakwell, 2014), memory bias and societal influences (Poels and Dewitte,

2006) are some situations that can determine and influence the emotional state of an

individual. Spontaneous positive feedback obtained when walking in green city’s places

establishing a visual contact with nature (Thompson et al., 2012; Grinde and Patil, 2009a),

listening some music (Thomas et al., 2013), meditation (Tang, Tang, and Posner, 2016)

and affective cognition (Misky, 2006; Ong, Zaki, and Goodman, 2015) are some of external

factors that can also induce or optimize some emotional states. It is important to also

note the use of music and meditation to induce good fillings or relaxing moments.

Besides that, the emotion is leaded by the brain and it is the result of chemical

processes that bring together several internal (biological) and external factors to produce

an output or response which it reflects as an emotional state (Misky, 2006). Additionally,

this response is perceived as being felt in the body (Barret, Lewis, and Haviland-Jones,

2016) and sometimes it reflects some physiological changes in our human body (Roberson

et al., 2018) or psychophysiological modes that themselves track and steer the redirection

of physiological and psychological resources to adapt behaviour (Critchley and Garfinkel,

2017).
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Sometimes the emotion arouses from biological resources while it suppress other e.g.,

in the anger emotion, that it seems that the body arouse resources that increase the

muscles’ power to run or fight 1, while it inhibits the resource of planning and prudence,

replacing cautiousness with aggressiveness and the sympathy for hostility (Misky, 2006).

In particular, the primary emotion anger plays a fundamental role in the human life such

as, fear and trust, that are directly related to protection, defense and maintenance of life.

Regarding to the emotion analysis, several methods and techniques can be applied

to improve the health and emotion recognition through the use of a couple of hard-

ware devices and software such as: in multisensing systems (Roza and Postolache, 2017),

Artificial Intelligence (AI), robotics (Chepin et al., 2016) and Internet of Things (IoT)

(Postolache, 2017), for instance. We can also present the advances in biomedical signal

and image processing, liking the emotions’ treatments to several techniques such as the

relationship between electrophysiological signals i.e., Electrocardiogram (ECG), Electro-

cardiogram (EMG), Electroencephalogram (EEG) and functional image processing and

their derived interactions (Rajeswari and Jagannath, 2017).

This work uses a multimodal approach 2 based on a set of these technologies, concepts

and a practical methodology architecture to recognize emotions, through the signal ac-

quisition, processing, feature extraction and recognition techniques, which it can be also

applied to several workplaces e.g., administrative sectors (Mishra et al., 2011), aviation

(Roza and Postolache, 2018), smart vehicles (Okegbile et al., 2019) and in urban areas

(Roza and Postolache, 2016).

1.1. Main Motivation and Practical Contribution

Nowadays, aviation accidents continue to occur and together with these undesirable sit-

uations, comes several improvements on aviation safety. Despite being in a COVID-19

pandemic situation, it was possible to note important improvements as presented in April

2022, by the International Air Transport Association (IATA). It revealed that in 2021,

there were 26 accidents versus 35 in 2020, where the number of fatalities declined from

132 in 2020 to 121 in 2020. Part of these substantial reduction was due to the COVID-19

pandemic since that just over 25 million flights were operated in 2021, an increase of 16%

compared to 2020, but 55% below than 2019 (IATA, 2022).

Before the pandemic context, these improvements also happened. In April 2020, the

IATA presented a safety report revealing the accident rates along 2019 and shows all

reached improvements compared to 2014-2018. In 2019, were a total of 53 accidents,

which 8 of them were fatal, having 240 deaths. In 2018, were a total of 62 accidents,

which 11 were fatal, having 523 deaths. Looking for the period 2018-2014, were an average

of 63.2 accidents, 8.2 fatal, having 303.4 deaths per year (IATA, 2020). It represents a

reduction of 9 accidents (3 fatal), compared to 2018, and a reduction of 283 deaths. Also

1It is also known as fight or flight, it is a physiological reaction that occurs in response to a perceived
attack, harmful event or threat to survival.
2Sometimes it is called multisensing or multimodal sensing system, which it consists of a system that
uses several input modes to return a resultant output.
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in 2017, the Boeing Aerospace Company presented a statistical summary (Boeing, 2017),

about commercial jet airplane accidents confirmed to worldwide operations since 1959 till

2016. It considered airplanes that are heavier than 60,000 pounds maximum gross weight,

showing a very clear statistical analysis of accidents, which it was possible to note the

impressive evolution of aviation safety along the past years. In addition, according to the

last Boeing’s report (Boeing, 2023), the rates of fatal accidents as well as hull losses are

steadily decreasing over time.

As well as the Boeing, the International Civil Aviation Organization (ICAO) also

presented a similar report considering the period between 2008 to 2018. It shown the same

evolution of aviation safety along this period (ICAO, 2017). Fortunately, the aviation has

been safer year by year, reaching lower levels of accidents, considering fatalities with hull

losses or not. However, there aren’t reasons to forget these risks, because there are another

problems to solve along the next years that is, the analysis of physio-psychological burden

(Suzuki et al., 2017) and behaviour from the aircrew inside of a real flight activity (IATA,

2016), which it surely can result on a mitigation of accidents by human failures.

Analyzing several accident reports from the last 15 years, it shown that the main

causes of these accidents, were the human factors and their respective physiological aspects

(ANAC, 2019; IATA, 2016; Ancel and Shih, 2012). Based on that, it is possible to note

that the aviation safety is facing a new age of accident factors, i.e. the age of aviation

accidents caused by human failure, what it motivate us to find new solutions to minimize

these undesirable occurrences. The lack of a proper attention on these aspects, can result

on irreversible problems, e.g. serious injuries and fatal accidents. Stress, drugs, fatigue,

high workload, lack of pilot skills during an unexpected event and emotional disorders

(Bendak and Rashid, 2020; Kandera, Škultéty, and Mesárošová, 2019; McKay and Groff,

2016) can optimize the occurrence of accidents. Same reasoning can be applied to the

people of the airport ground staff, air traffic controls, among others. Figure 1.1, shows

the progress of accidents rate on commercial aviation since 1959 up to 2022.

Figure 1.1. Boeing statistical summary about fatal accident rate per mil-
lion departures between 1959 through 2022 (Boeing, 2023).
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1.1.1. Human Factors and Aviation Accidents

Table 1.1, presents some accidents on commercial aviation, which the final reports

indicated the main causes as human factors.

Table 1.1: Some accidents on commercial aviation, caused

mainly by human failure. The victims situation was defined

as fatal (F) and injured (I).

Company Depart/Arrival Year Victims Main Cause/Probable Cause

China Eastern Air-

lines

China/ China 2022 132

(F)

� No final report was presented yet.

But according to US NTSB, the analy-

sis suggests someone in the cockpit in-

tentionally downed the plane.

Pakistan Interna-

tional Airlines

Pakistan/ Pakistan 2020 97 (F)

2 (I)

� Crashed on go around (under investi-

gation). First information indicate hu-

man failure, probably due the lack of

attention of the pilots.

Pegasus Airlines Turkey/ Turkey 2020 3/179

(F/I)

� Runway overrun during landing (un-

der investigation).

Ethiopian AL Ethiopian/ Kenyan 2019 157

(F)

� Incorrect MCAS operation/conflict.

Aeroflot Russia/ Russia 2019 41 (F) � Incorrect approach, landing weight

and landing (bounced landing).

Lion Air Indonesia/ Indonesia 2018 189

(F)

� Incorrect MCAS operation/conflict.

Cubana de

Aviación

Cuba/Cuba 2018 112

(F)

� Wrong aircraft weight setup and un-

correct takeoff.

Fly Dubai UAE/Russia 2016 62 (F) � Incorrect landing.

German Wings Spain/Germany 2015 150

(F)

� co-pilot suicide.

Malaysia AL Malaysia/China 2014 239

(F)

� Probable co-pilot suicide.

Lion Air Indonesia/Indonesia 2013 46 (I) � Crashed into water in final approach.

Pilot under the influence of drugs.

**demo flight ** Indonesia/ Indonesia 2012 45 (F) � Controlled flight into terrain.

Air France Brazil/ France 2009 228

(F)

� Lost of control after wrong proce-

dures in flight.

Turkish Airlines Turkey/ Netherlands 2008 9 (F) � Stall close to the landing. The crew

noticed the problem too late.

TAM L. Aéreas Brazil/Brazil 2007 199

(F)

� Incorrect landing (wrong reverse

setup).
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Gol L. Aéreas Brazil/Brazil 2006 154

(F)

� Partial collision with another aircraft

(TCAS 3 off). Failure of the air traffic

control.

Bashkirian Airlines Russia/ Spain 2002 71 (F) � In-flight collision mainly due the air

traffic control failure.

Air Transat Canada/ Portugal 2001 18 (I) � Fuel starvation and the bad crew ex-

ecution of fuel control in flight.

American Airlines USA/ USA 2001 265

(F)

� Incorrect co-pilot procedures during

takeoff under strong turbulence pro-

duced by another aircraft.

Aero México Mexico/ USA 1986 64+3

(F)

� In-flight collision with another air-

craft (Piper PA-28-181 Archer). Sec-

ond aircraft did not contact the tower

to change course, intercepting the route

of the other aircraft.

1.1.2. Looking for Real Pilots’ Feedback Regarding to the Research

Application

During the development of this work, some meetings were held with real pilots4 of some

air companies and military air force from Brazil and Portugal. It were important to obtain

some practical and realistic feedback from professional pilots regarding to the proposed

work in a practical and real situation.

Several feedback were also acquired regarding to the proposed work methodology,

which all contacted pilots really agreed with the need of these researches on real aviation.

When the possibility of real application were presented, some of them agreed and others

were afraid to, for several reasons as presented below.

”I have more than 20 years as civil pilot and surely it will bring more problems

than benefits to us, because the pilots maybe will be afraid to reveal your own

emotional condition before each flight!” (Civil aviation pilot, 2018)

”Pilots like to fly and if the companies start to prohibit us to fly due our

majority emotional state, it will not be good!” (Civil aviation pilot, 2018)

”I recognize how important your researches are but, I think that for aviation

context it will not worth. Why you don’t try to apply it on car contexts?!”

(Civil aviation pilot, 2018)

Other feedback were also obtained, where they presented real situations that occurred

in their work, revealing to us the need for a deeper emotional analysis of the pilots during

training and flight activities.

3A Traffic Collision Avoidance System (TCAS) or traffic alert and collision avoidance system.
4In this work section, the pilot and co-pilot will be referred as pilot or simply, aircrew.
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”Really interesting this approach! We can use it to try to measure our emo-

tional stability during our first flight just after the end of vacation, that is when

we are very excited to fly again!” (Military pilot – Air Force, 2015)

”Interesting work! It can be useful to us. Keep me in touch.” (Military pilot

– Air Force, 2018)

”Nowadays, we don’t have how to measure the level of nervousness of our

cadets, or even if they were really confident at each flight exercise. This pro-

posed work, can be useful to us.” (Military pilot – Air Force, 2020)

”Surely it will be useful to our pilots along the training because it can show us

if our pilots are confident enought along the flight missions.” (Military pilot –

Air Force, 2021)

When they was argued about the huge amount of system compensation that the

modern aircraft have (e.g. fly-by-wire, self navigation, instrument landing system and

other automatic flight controls) to make the pilots’ work easier during a flight, they said:

”Today, I understand our work more as a system operator then indeed, an

aircraft pilot!” (Civil aviation pilot, 2018)

When was presented other probable perspective, regarding to the devices to be used

to store their biosignals in real time and how much time it will sometimes be necessary

to a probably device set-up, dataset storage and calibration just before and/or after each

flight, they said:

”I think that sometimes to arrive a little bit early to the airline company, only

to collect my biosignals will increase our stress!” (Civil aviation pilot, 2018)

They also presented a probable feedback from the airline companies regarding to future

practical applications.

”Nowadays, it is almost impossible to be applied on any airline company, be-

cause it will be expensive for them to implement it!” (Civil aviation pilot, 2018)

In 2016, a Portuguese flight school was contacted to try to apply the proposed work

there, together with their students and flight simulator but unhappiness it wasn’t possible.

For our request they said:

”Sorry, but we can not execute these experiments with our students because it

will produce a lot of instabilities in their training!” (Flight school Directory –

Portugal, 2016)

In 2015, talking about aviation with a military pilot, he said about his returns to the

flight activities after days of vacation:

”That day, I was very excited to fly again after my vacation. Due to that, I

couldn’t sleep before that day!” (Military pilot – Air Force, 2015)
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These feedback are important to motivate us to go deeper in these researches, because

it give us professional perspective regarding to the demand of the development of the

proposed work.

1.1.3. Contribution

The main contribution of the present work is to study the complex hazards and to improve

the physiological data analysis of the pilots also looking for their emotional responses be-

fore, during and after the flights and than, to give support on aviation accidents avoidance,

caused by human failures. With these data, it is possible to create a multisensing inte-

grated dataset, to build a generalist and also particular pilot dataset profile based on the

emotional and β-band responses along the flight activities. In a further developments, the

integrated multisensing dataset can also includes physiological data from three different

phases: before, during and after the flight, as shown in Figure 1.2.

Figure 1.2. Work scope diagram – practical contribution regarding to the
on-flight phase.

Therefore, this work presents a practical contribution regarding to the on-flight phase,

including the data acquisition, processing, storage and recognition on offline mode.

Some main questions and answers are presented below, about the proposed dataset,

system outputs and the data acquisition in real context.

1.1.3.1. Using the Produced Dataset This work considers that all acquired and processed

data from the flight experiments, represent a sample about what can happen in a real

flight context. In real application, the dataset must to be defined on two different types:

generalist dataset, having data from all pilots, considering the similarity of emotional

patterns between them; and the particular dataset, which it brings information of each
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pilot. Both dataset must share information to produce high generalism on the emotion

recognition process based on deep leaning and data mining techniques. It must be the

best way to produce a better engine of emotion recognition, not missing the particular

patterns of each pilot nor their general aspects either. However, since the present work

focused on the generalist dataset, the training, testing and validation were executed over

some sets of the same dataset.

1.1.3.2. System Outputs on Real Application In the context of emotion recognition, the

proposed system must to return intensities of emotions (i.e. 5 different emotions in this

case) based on EEG, HR and GSR techniques. In a practical real life context, once

obtained the dataset, the chosen learning method5 trains over this dataset, being able to

be used before, during or after every flight.

In a practical context and inside the context of aviation, an airline company can use

the proposed system to know which emotions the pilots are feeling before, during or after a

flight. This way, the company must to use the proposed system and put some skin surface

electrodes on the pilots’ body to acquire their biological data (in this case, without facial

information because now, the recognition model was already developed after the model

training). These acquired data must to be stored and analyzed offline. At the end, the

system must return e.g. a report, presenting the recognized emotions that probably were

felt by the pilot along the time.

These outputs can be used by the flight supervisor or medical team to carry out the

necessary actions to improve the flight safety and avoid future accident. In case of the

pilot presents some critical emotions when it are not compatible with some flight phase,

the system should alert about it. In addition, to reach good results, the system must

present high accuracies which it can be improved with the time and more good data of

other experiments.

1.1.3.3. Real Pilots and Electrodes Application during a Real Flight To recognize emotions

based on biosignals, some electrodes must to be used. The pilot comfort should also be

considered in real life and for this reason, a possible approach can be through the use of

smart wearable textiles.

Emotion recognition based on face, should only be used if the system needs more data

to improve the learning process otherwise, once we have the learning method already

trained, only bio acquisition based on electrodes is necessary to recognize new emotions.

1.2. Challenges

A multisensing architecture aims to do multi-data acquisition in a synchronized way to

keep the minimum of data coherence along the time for each event. It should to return

data according to the computed inputs.

During the development of this work, a couple of challenger situations happened, as

presented below:

5The chosen learning method is the technique used to recognize emotions based on the acquired dataset.
It is presented in detail later.
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• Impossibility to execute experiments with real pilots on a real aviation context

e.g., flight school;

• The choice of an environment to execute the experiments;

• No major support from airline companies;

• The choice of the psychological data acquisition inside the experiment context;

• Short time to develop a device that execute this data acquisition together with

some wearable technologies e.g., t-shirt;

• The non-existence of a software that do the synchronized data acquisition, pro-

cessing and recognition;

• Functional integration between several electrodes, acquisition software and the

face recognition software;

• High noise acquired during each experiment.

These main challengers were solved using flight simulator. The real pilots were replaced

by voluntaries i.e., beginner volunteers of flight simulator; the environment of experiment

was adapted on laboratory. The psychological support was mainly introduced through

questionnaires. Due to the short time to develop very complex devices and wearable, it

were replaced by a couple of commercial sensors. To figure out the work requirements

about the data acquisition, processing and emotion recognition in a multimodal way, three

proprietary software prototypes were developed: EmoSense - Real Time (ES-RT) for real

time multi-acquisition, EmoSense - Processing (ES-P) for offline data processing, and

EmoSense - Machine Learning (ES-ML) for emotion recognition based on deep learning.

Several software and sensors were used together; three execution checklists (defining

the correct execution step) were developed to give support to the correct execution and

synchronization of the system. It were executed before, during and after each flight

experiment.

A set of other methods were also used and developed to remove or attenuate the noises

of the data, mainly due to motion artifacts.

1.3. Going Deep on Emotion Researches

Since the 18th century the researchers try to find out a reliable approach to know what

indeed happens behind the feelings and emotions.

William James, said that observing the body expressions caused by some emotional

stimuli, they appear to prove that there are pleasures and pains inherent in certain forms

of nerve-action wherever that action occurs (James, 1884). Other authors based on the

definition of the autonomic, sympathetic, parasympathetic and enteric nervous systems,

executed the initial researches to understand how different emotional states are repre-

sented within the brain and how it are expressed in different patterns of activities (Lan-

gley, 1898; Cannon, 1927).

According to Paul Ekman, one of the main references on emotion and facial expres-

sions, in recent years the field of emotion researches has grown enormously as well as the

number of scientists involved in (Ekman, 2016). It probably gave support to nowadays,
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to say that these first authors were correct in their suspicions about emotions. A couple

of analysis proved that emotions are completely linked to the Autonomic Nervous System

(ANS) and it play a critical role in the human bio-regulation, survival, social inclusion and

human relationship (Preckel, Kanske, and Singer, 2018; Clark et al., 2016; Damásio, 2001).

Physiologically, the emotion and the ANS share similar temporal features, which the ANS

responses can change during an emotion state (Barret, Lewis, and Haviland-Jones, 2016).

These responses are inconstant and short-term event that come from chemical processes

that join several biological (internal) and external factors to produce an output reflected

as an emotional state (Misky, 2006). The emotion can also be understood as a mental

state or feeling that can also occurs in spontaneous manner, reflecting the physiological

changes in the human body which it is leaded by the brain (Roberson et al., 2018). These

external and spontaneous factors can induce or optimize some emotions (e.g. positive

feedback) resulting in several situations as e.g., motivations (Berridge, 2018), good feel-

ings when listening an appraisal music (Cespedes-Guevara and Eerola, 2018; Reybrouck,

Eerola, and Podlipniak, 2018; Thomas et al., 2013), when walking in green places of a city,

establishing a visual contact with nature (Riaz, Gregor, and Lin, 2018; Thompson et al.,

2012; Grinde and Patil, 2009b); meditating (Beblo et al., 2018; Tang, Tang, and Posner,

2016), or even when executing an affective cognition tasks (Petrovica, Anohina-Naumeca,

and Ekenel, 2017; Ong, Zaki, and Goodman, 2015; Misky, 2006). It is important to note

that is also possible to induce emotions e.g., when the person choices to listen some songs,

looking for good feelings or relaxing moments. Music (Sánchez-Porras and Rodrigo, 2017),

smell (Soto-Vásquez and Alvarado-Garćıa, 2017), food (Lagast et al., 2017; Randler et

al., 2017) and meditation (Soto-Vásquez and Alvarado-Garćıa, 2017) are some interesting

examples that show that our emotional states can also be induced by our wishes (Preckel,

Kanske, and Singer, 2018).

These emotional responses to several inputs can certainly justify its inconstancy about

each event along the time. In addition, the emotion regulation can also be affected by

some body impairments such as, depression (Sanchez et al., 2017), drugs abuse (Clark et

al., 2016), intellectual disability (Pereira and Faria, 2015), nervous anorexia (Kolar et al.,

2017), stress (Alberdi, Aztiria, and Basarab, 2016), schizophrenia and brain’s damages,

representing specific deficits or part of a more general cognitive dysfunction inside of the

social information processing as for instance in the recognition of facial emotions and

identity (Yang et al., 2018; Barkhof et al., 2015).

Robert Plutchik, considered that there are eight primary emotions related to improve

the animal and human survival process. He identified these emotions as: anger, fear,

sadness, disgust, surprise, anticipation, trust and joy (Plutchik, 1980). Although, due

to the complex mechanism of the brain having its several inputs, outputs and reactions,

there isn’t a precise answer for that question.
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Figure 1.3, shows the circumplex model developed by Robert Plutchik and Keller-

man to clearly describe the observed emotion-related categories (Plutchik and Kellerman,

2013).

Figure 1.3. Circumplex model of emotion-related categories (Plutchik
and Kellerman, 2013).

Computationally, a couple of researches also tried to answer this question using the

emotion processing and recognition methods (sometimes called of automatic emotion pro-

cessing and classification). These studies are getting space in academic fields, developing

several applications and techniques to try to understand and accurately classify or recog-

nize the human’s emotional states. A huge set of algorithms and methods are frequently

developed to try to recognize emotions automatically and then, apply it in different con-

texts. There are a massive amount of researches and datasets that lead with emotions

as such as the methods to evaluate it. Signal processing, feature extraction techniques,

artificial intelligence, data mining and statistical learning are some examples that comply

the role in the processing, analysis and recognition of emotions’ patterns.

In details, the automatic emotion classification, identification or recognition, is a com-

plex and important task that also can be used to improve the health and the life’s quality

as presented in this work, which the emotion recognition techniques are applied to find a

manner to recognize and measure emotions using several approaches. These approaches

and techniques can be used based on: Gaussian process regressions and Mel-Frequency

Cepstrum Coefficients (MFCC) (Fukuyama and Goto, 2016); fuzzy logic (Salankar et

al., 2017; Qamar and Ahmad, 2015; Matiko, Beeby, and Tudor, 2014); analysis of the

potential of physiological signals for emotion recognition using the extended linear dis-

criminant analysis (pLDA) to extract features (Kim and André, 2008); cross-correlation

(Roza and Postolache, 2016); Artificial Neural Networks (ANN) (Roza and Postolache,

11



2017); wavelets (Al-Fahoum and A Al-Fraihat, 2014); Hilbert-Huang transform (Agrafioti,

Hatzinakos, and Anderson, 2012), among others.

There are different ways to start a research based on emotions recognition: analyzing

and acquiring physiological data (i.e. biosignals), using basically a set of dry or wet elec-

trodes in a non-intrusive and non-invasive manner (Sun et al., 2017; Joutsen et al., 2018;

Roza and Postolache, 2016); analyzing psychological questionnaires and picture presen-

tation to trigger and detect different emotions (Xu et al., 2017; Reis, Arriaga, and Pos-

tolache, 2015); analyzing facial expression using computer vision techniques (Tarnowski

et al., 2017; Li et al., 2017; Gunes and Hung, 2016); analyzing suicide notes (O’Dea et al.,

2015; Desmet and Hoste, 2013), and other textual analysis based in lexical means in com-

munication (Kima, and Sumner, 2017); analyzing the body expressions during emotional

triggers (Rajhans et al., 2016); and analyzing and acquiring human speech data (Franti

et al., 2017; Wen et al., 2017a; Sánchez-Gutiérrez et al., 2014).

The based-emotions researches and its effects or mechanisms may be used for several

purposes. Some of these purposes are based on researches and applications including

subjective and objective analysis such as: tests of emotional influence through behavioral

mechanisms (Roberson et al., 2018); analysis of product-evoked emotions (Silva et al.,

2017) to give support in health care based on smart city context and concepts of IoT

(Postolache, 2017; Patsakis et al., 2014); detection of the relation between emotions and

the regulation of lifestyle behavior (Isasi, Ostrovsky, and Wills, 2013); analysis of suicides

notes to avoid recurrent occurrences (Desmet and Hoste, 2013); analysis of its positives

effects in individuals when they are in green and natural city’s places (Thompson et al.,

2012); developments of tools of meaning detection of language to understand, recognize

emotions (Ezhilarasi and Minu, 2012); and also by developing of interfaces to detect

emotions from facial expressions to helps anxious individuals (Heuer et al., 2010).

1.4. Thesis Content

This thesis is organized in such way to propose a clear and easy understanding regarding

to the main steps developed in this work. Each method and techniques were applied to

reach the emotion recognition which it were set in details, chapter by chapter, as briefly

presented below.

Chapter 3, outlines the developed multimodal sensing system and data acquisition,

presenting the sensors and acquisition processes; Chapter 4, outlines the preprocessing

techniques to be executed before the phases: processing, features extraction and recogni-

tion process; Chapter 5, outlines the data processing and the techniques applied on this

task; Chapter 6, outlines the feature extraction and detailed descriptions of the used tech-

niques for that; Chapter 7, outlines the emotion recognition methodology and application;

Chapter 8, outlines the result analysis regarding to the β-Band spectrogram; Chapter 9,

outlines the result analysis regarding to the emotion recognition process; Chapter 10,
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outlines all findings conclusions and limitations; Appendix A, outlines all produced pub-

lications along the present work and Appendix B, outlines additional plots referent to the

brain data of all volunteers.
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CHAPTER 2

Literature Review – Techniques on Emotion Sensing and

Recognition

Several examples on literature has appeared to reveal the importance of the multimodal

sensing systems to recognize emotions: emotion recognition through the presentation of

several pictures and use of several biosignals (Roza and Postolache, 2017); identification

of cognitive states of aircraft pilots while they are using flight simulators (Wang et al.,

2020; Harrivel and Pope, 2017); harmonization of robotic devices and emotion states as

frustration and boredom (C.Rodriguez-Guerrero et al., 2017); development a multimodal

dataset to improve the emotion analysis, where the physiological responses to both visual

and audiovisual stimuli are recorded (Conneau et al., 2017); multimodal sensing with

support of cross-correlation method to identify emotions (Roza and Postolache, 2016);

use of two different physiological signals to identify emotions (Alhouseini et al., 2016);

and multimodal system to exam of the usefulness of physiological measurements in a bio-

cooperative feedback loop to adjusts the difficulty of an upper extremity rehabilitation

task (Novak et al., 2011).

These multimodal sensing systems are usually based on a couple of techniques and

exam types such as: Heart Rate Variability (HRV) (Mather and Thayer, 2018; Haiblum-

Itskovitch, Czamanski-Cohen, and Galili, 2018); Electrocardiography (ECG) analysis

(Roza, Almeida, and Postolache, 2017; J., Murugappan M, and S., 2013; Shalin and

Vanitha, 2013; Agrafioti, Hatzinakos, and Anderson, 2012); Electroencephalography (EEG)

(Roza and Postolache, 2017; Voznenko et al., 2016; Othman et al., 2013) analysis; salivary

cortisol analysis (Thompson et al., 2012); Galvanic Skin Response (GSR) (Sierra, 2011).

Generally, to acquire the biosignals are used a set of electrodes on a non-intrusive and

non-invasive manner (Roza and Postolache, 2016; Vojtech et al., 2013) through the use

of: psychological questionnaires, using emotion valence and picture/video presentation

(Reis, Arriaga, and Postolache, 2015; al., 2005; Pereira and Faria, 2015); facial expres-

sion recognition using computer vision (Gunes and Hung, 2016); speech communication

(Wu, Falk, and Chan, 2011), using speech analysis; analysis of suicide notes (Desmet

and Hoste, 2013), and other textual analysis based on lexical means in communication

(Zaśko-Zielińska and Piasecki, 2015).

Regarding to the recognition system architecture, it is possible to affirm that emotions

can’t be recognized accurately using only one metric such as Heart Rate (HRV), for

instance. Previous researches shown that in fact, the HRV could reflect the human emotion

only in emotional situations that are relatively strong or intense, what is not applicable nor
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feasible either to daily applications (Choi et al., 2017). If the system intends to recognize

emotions accurately, fatally the usage of multimodal sensing is the main requirement.

In the following sections, a state of the art is presented based on emotion analysis and

recognition. Multimodal systems relying on face, speech and physiological sensing were

considered, which the researches based on face and physiological sensing are the main

trunk of this work.

2.0.1. Emotion Recognition Techniques based on Facial Expressions

Facial Emotion Recognition (FER) is a powerful and very important research topic in

the fields of computer vision and artificial intelligence. It can be applied to give support

to the health, security, robotics, among others. Some of these automatic facial emotion

recognition are based on the researches of Paul Ekman and Friesen (Ekman and Friesen,

1978), whom they defined the Facial Coding System (FACS), which it is a system based

on facial muscle changes. The FACS is being very useful to characterize facial actions to

express individual and involuntary emotions reactions.

In this scope, according to Paul Ekman, it is sufficient to note that there is consistent

evidence across investigators, of an universal facial expressions for at least five emotions; he

also putted in discussion if there are more emotions that have universal facial expressions

(Ekman, 1992). It is also valid to consider that not necessary, the facial expression and

what it signified is socially learned as culturally variable (Ekman, 1999). Figure 2.1, shows

the general architecture of a FER system for mainly all supervised learning process.

Figure 2.1. General architecture of a FER system.

On this context, Barros et al., proposed a neurocomputational model that learns

to attend to emotional expressions and to modulate emotion recognition (Barros et al.,

2017). Chenchah and Lachiri, examined an assessment of emotion error rate using classical

descriptors (MFCC and PLP) and new type of speech features considered as more robust

to noise and reverberation distortions also using various Signal-to-Noise Ratio (SNR) levels

(Chenchah and Lachiri, 2017). De et al., presented a human facial expression and emotion

recognition system using eigenface approach and Hue-Saturation-Value (HSV) color model

to detect on offline mode the human face in an image (De, Saha, and Pal, 2015). Jain et

al., proposed a network architecture based on convolution layers followed by Recurrent
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Neural Network (RNN) to design a combined model to extract the relations within facial

images (Jain et al., 2018). Kayaa et al., describes a multimodal approach for video-

based emotion recognition in the wild, using summarizing functional of complementary

visual descriptors for video modeling (Kayaa, Gürpınarb, and Salah, 2017). Khalfallah

and Ben Hadj Slama, presented a web-based intelligent tutoring system called Remote

Laboratory (RL), that it is a computer-based learning environment that allows students

from anywhere to access and perform experiments on real laboratory equipment based

on Internet (Khalfallah and Slama, 2015). Krithika and Lakshmi, developed a system

to recognize emotions based on the movements of the head and eyes, captured from a

recording using a video camera (Krithika and G.G., 2016). Lopes et al., proposed a

simple solution for facial expression recognition that uses a combination of Convolutional

Neural Network (CNN) and specific image pre-processing steps (Lopes et al., 2017).

Mao et al., proposed a real-time emotion recognition approach based on both 2D and

3D facial expression features captured by Kinect sensors (Mao et al., 2015). Martinez,

proposed a model that predicts emotions and the existence of a large number of previously

unknown facial expressions, including compound emotions, affect attributes and mental

states that are regularly used by people (Martinez, 2017). Matlovic et al., focused on two

approaches to identify emotions such as, namely emotions detection using facial expres-

sions recognition and electroencephalography (EEG) (Matlovic et al., 2016). Mayya et al.,

proposed a novel method for automatically recognize facial expressions using Deep Con-

volutional Neural Network (DCNN) features (Mayya, Pai, and Pai, 2016). Patwardhan,

developed a multimodal system to detect emotions based on audio-visual continuous data

(Patwardhan, 2017). Subhashinia and Niveditha, developed a C# application to analyz-

ing and detection of the employees’ emotions for amelioration of organizations, using facial

images and Bézier Curves (BC) (Subhashinia and Niveditha, 2015). Tarnowski et al., de-

veloped a system to identify emotions based on facial expressions using three-dimensional

face model (Tarnowski et al., 2017).

2.0.2. Emotion Recognition Techniques based on Human Speech

Emotion recognition based on speech analysis, represents a complex problem inside of

signal processing, including a couple of features mainly based on frequency analysis e.g.

filter-banks and wavelets. To try to solve this complex goal, several researches presented

feasible solutions. The emotion recognition tasks through human speech data can be

understood basically, as shown in Figure 2.2.

Abdelwahab and Busso, present a solution to address the problem of low performance

of speech emotion classifiers by combining Active Learning (AL) and supervised Domain

Adaptation (DA) using an elegant approach for Support Vector Machine (SVM) (Ab-

delwahab and Busso, 2017). Alonso et al., developed a system to recognize emotional

intensity from speech using a few feature set obtained from a temporal segmentation of

the speech signal of different language like German, English and Polish (Alonso et al.,

2015). Bahreini et al., present the voice emotion recognition part of the Framework for
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Figure 2.2. General architecture of a speech-based system to recognize emotions.

Improving Learning Through Webcams And Microphones (FILTWAM) for real-time emo-

tion recognition on affective e-learning settings (Bahreini, Nadolski, and Westera, 2016).

Bertero and Fung, developed a real-time Convolutional Neural Network (CNN) model

for speech emotion detection, also providing an in-depth model visualization and analysis

(Bertero and Fung, 2017). Brester et al., propose an evolutionary feature selection tech-

nique based on two-criterion optimization model to give support to emotion recognition

task (Brester et al., 2016). Cao et al., presented a ranking approach for emotion recogni-

tion which naturally incorporates information about the general expressibility of several

speaker (Cao, Verma, and Nenkova, 2015). Davletcharova et al., conducted an experimen-

tal study on recognizing emotions from human speech, considering the emotions neutral,

anger, joy and sadness, using several recognition methods (Davletcharova et al., 2015).

Deb and Dandapat, explored the effect of breathiness component on speech under stress

inside of the speech emotion analysis (Deb and Dandapat, 2015). Fayek et al., developed

a frame-based formulation to speech emotion recognition that relies on minimal speech

processing and end-to-end deep learning to empirically explore feed-forward and Recur-

rent Neural Network (RNN) architectures and their variants (Fayek, Lech, and Cavedon,

2017). Goran and Negoescu, presented a framework to improve the class quality and the

student memorization in the school, using emotional constraints by speech, face and texts

(Goran and Negoescu, 2015). Lanjewar et al., developed a speech emotion recognition

system based on spectral components of Mel Frequency Cepstrum Coefficients (MFCC),

wavelets features of speech and pitch of vowel traces (Lanjewar, Mathurkar, and Patel,

2015). Mannepalli et al., developed an adaptive fractional Deep Belief Network (DBN)

and several spectral features to recognize different emotions from speech (Mannepalli,

Sastry, and Suman, 2017). Motamed et al., developed an optimized model based on lim-

bic system of mammalian brain for speech emotion recognition on dynamic situations like

the brain’s emotional networks (Motamed, Setayeshi, and Rabiee, 2017).

Muthusamy et al., presented a new feature enhancement to improve the discrimina-

tory power of the features extracted from speech and glottal signals (Muthusamy, Polat,

and Yaacob, 2015a). They also presented a novel Particle Swarm Optimization system
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based Clustering (PSOC) and Wrapper based Particle Swarm Optimization (WPSO) to

enhance the discerning ability of the features and to select the discriminating features

respectively (Muthusamy, Polat, and Yaacob, 2015b). Ozseven, presented a new feature

selection methods to increase the emotional recognition success and to reduce the process-

ing workload with these fewer features (Ozseven, 2019). Shahin and Ba-Hutair, present

a solution to speech emotion recognition using the second-order Circular Suprasegmental

Hidden Markov Models (CSPHMM2s) as the classifiers (Shahin and Ba-Hutair, 2015).

Shukla et al., presents a novel subspace projection approach for analysis of speech signal

under stressed condition (Shukla, Dandapat, and Prasanna, 2016). Sun et al., presents

a novel Weighted Spectral Features (WSF) based on local Hu moments to improve the

speech emotion recognition (Sun, Wen, and Wang, 2015). Szaszak et al., developed an

information analysis technique, called Weighted Correlation based Atom Decomposition

(WCAD) to execute the speech synthesis inside the context of stress detection that can

also be applied to some emotion status (Szaszák, Tundik, and Gerazov, 2018). Trigeorgis

et al., proposed a solution to the problem of context-aware emotional relevant feature

extraction, by combining Convolutional Neural Networks (CNNs) with Long short-term

memory (LSTM) networks in order to automatically learn the best representation of the

speech signal (Trigeorgis et al., 2016).

Yogesh et al., presented a new set of features and feature enhancement techniques,

e.g. Generalized Regression Neural Network (GRNN), to recognize emotion and stress

from speech signals (Yogesh et al., 2017b). Yogesh et al., also developed a speech emotion

and stress recognition system, by identifying speakers’ emotion from their voices, using

higher order spectral and selection algorithm features (Yogesh et al., 2017a). Wang et al.,

developed a new Fourier parameter model using the perceptual content of voice quality and

the first- and second-order differences for speaker-independent speech emotion recognition

(Wang et al., 2015). Wen et al., present an ensemble of random Deep Belief Networks

(DBN) method for speech emotion recognition (Wen et al., 2017b). Xue et al., propose a

rule-based voice conversion system for emotion which it is capable of converting neutral

speech to emotional speech using dimensional space (arousal and valence) to control the

degree of emotion on a continuous scale (Xue, Hamada, and Akagi, 2018). Zha et al.,

apply Multiple Kernel Learning (MKL) algorithm to recognize the spontaneous speech

emotion (Zha et al., 2016).

2.0.3. Emotion Recognition Techniques based on Physiological Parameters

Emotion recognition using physiological sensing (biosignal) is the main contribution of

this work. In general, the emotion recognition systems using biosignal are mainly based

on multimodal sensing.

Various researches shown that an emotion recognition system using only a single-mode

channel of biosignal does not worth for several emotional situations. This way, to increase

the range of the emotion analysis, the proposed work decided to use a multimodal or a

more complex approach. Figure 2.3, shows a general architecture of a supervised system
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to recognize emotions from biosignals data. It starts on input data; during the training

phase, input data are stored in some dataset to be processed further. After the processing,

several features are extracted from these data to train and produce a model to recognize

emotions automatically. In the test, no models are created but the features of the input

data are applied over the produced model of the training phase.

Figure 2.3. General architecture of a biosignal-based system to recognize emotions.

Alhouseini et al., presented an analysis of emotional properties based on two physio-

logical signals such as, ECG and EEG (Alhouseini et al., 2016). Bozhkov et al., proposed

an unified system for efficient discrimination of positive and negative emotions in a group

of 26 volunteers based on EEG signals (Bozhkov et al., 2015). Capuano et al., used the

Friedman test to verify whether the work on exposure and emotional identification influ-

ences help to decrease the levels of anxiety and depression (Capuano et al., 2017). Cruz

et al., presented an automatic recognizer of the facial expression around the eyes and

forehead based on Electrooculography (EOG) signals, giving support to emotion recog-

nition task (Cruz et al., 2015). Goshvarpour et al. (2017), used GSR and ECG data

to develop a study to examine the effectiveness of Matching Pursuit (MP) algorithm

in emotion recognition, using mainly Principal Component Analysis (PCA) to reduce

the features dimensionality and Probabilistic Neural Network (PNN) as the recognition

technique (Goshvarpour, Abbasi, and Goshvarpour, 2017). He et al., presented an emo-

tion recognition system based on physiological signals using ECG and respiration (RSP)

signals, recorded simultaneously by a physiological monitoring device based on wearable

sensors (He, Yao, and Ye, 2017). Kaur et al., proposed a methodology and also performed

an analysis about the impact of positive and negative emotions using SVM and Radial

Basis Function (RBF) as the recognition methods (Kaur, Singh, and Roy, 2018). Kumar

et al., executed derived features based on bi-spectral analysis for quantification of emo-

tions using a valence-arousal emotion model to get a way of gaining phase information by

detecting phase relationships between frequency components and characterization of the

non-Gaussian information from EEG signals (Kumar, Khaund, and Hazarika, 2016). Lan

et al., proposed a novel real-time subject-dependent algorithm using Stability Intra-class

Correlation Coefficient (ICC) with the most stable features that give a better accuracy
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than other available algorithms when it is crucial to have only one training session (Lan

et al., 2016). Lahane and Sangaiah, presented a new approach to emotion recognition

based on EEG and classification method using Artificial Neural Networks (ANN) with

features analysis based on Kernel Density Estimation (KDE) (Lahane and Sangaiah,

2015). Petrovica et al., presented an analysis of emotion recognition techniques used on

existing systems to enhance ongoing research on the improvement of tutoring adaptation

(Petrovica, Anohina-Naumeca, and Ekenel, 2017). Reis et al., developed an application

that stores several physiological signals based on HR, ECG, SpO2 and GSR, which it were

acquired while the volunteers watched advertisements about smoking campaigns (Reis,

Arriaga, and Postolache, 2015).

Roza and Postolache, executed experiments based on flight simulator to developed

a multimodal sensing architecture to recognize emotions using three different techniques

for biosignal acquisitions (Roza et al., 2019; Roza and Postolache, 2018). Roza and Pos-

tolache, also developed a multimodal sensing system to identify emotions using different

acquisition techniques, based on image presentation methodology (Roza and Postolache,

2017). Roza et al., developed an emotion recognition system based on cross-correlation

and the Flowsense database (Roza and Postolache, 2016). Shin et al., proposed a real-time

user interface with emotion recognition that depends on the need for skill development

to support a change in the interface paradigm to one that is more human centered (Shin,

Shin, and Shin, 2017). Yin et al., developed a solution to recognize emotions through

physiological sensing using a Multiple-fusion-layer based on Ensemble classifier of Stacked

Autoencoder (MESAE) (Yin et al., 2017b). Yin et al., proposed an ensemble deep learn-

ing framework by integrating multiple stacked auto-encoder with parsimonious structure

to reduce the model complexity and improve the recognition accuracy using physiological

feature abstractions (Yin et al., 2017a).

2.0.4. Techniques Comparisons

Figure 2.4, shows some main publications referred in this work, published between 2015

and 2019, inside of the context of emotion recognition using facial, speech and physiolog-

ical sensing technologies.
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Figure 2.4. Comparison between the number of selected publications
(2015 to 2019).

Tables 2.1 to 2.3, show a more detailed information of each research, previously pre-

sented in this work.

Table 2.1: Some techniques regarding to face emotion recog-

nition since 2015.

Reference Source Techniques Major Contribution

Jain et al. Facial CNN, RNN � Development an DNN architecture

combining CNN and RNN to better rec-

ognize emotion patterns within facial

images.

Barros et al. Facial CNN � Development of a neuro-

computational model that learns to

attend to emotional expressions and to

modulate emotion recognition.

Kayaa, Gürpınarb,

and Salah

Facial CNN, ELM,

PLS

� Description of a multimodal approach

for video-based emotion recognition in

the wild.

Lopes et al. Facial CNN � Simple methodology to identify emo-

tions using images of faces as references.

Martinez Facial AUs � Development of a model based on face

expression recognition to predict emo-

tion, valence, arousal and specific com-

bination of facial muscle movements.
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Patwardhan Facial,

Speech

SVM � Development of a multimodal system

to detect emotions from audio and video

data.

Tarnowski et al. Facial ANN, KNN � Development of a system to identify

emotion based on facial expressions.

Matlovic et al. Facial,

Biosignal

SVM � Use of two approaches to identify emo-

tions based on emotions detection using

facial expressions recognition and EEG

signals.

Mayya, Pai, and Pai Facial Deep CNN � Development of a novel method for

automatically recognizing facial expres-

sions using Deep Convolutional Neural

Network.

Krithika and G.G. Facial Viola jones,

LBP, Ada

Boost, ANN

� Development of a system that can

identify and monitor emotions of the

student in an e-learning environment

and provide a real-time feedback mech-

anism to enhance the e-learning aids.

De, Saha, and Pal Facial ED, Eigen-

faces

� Development of a human facial ex-

pression and emotion recognition sys-

tem modeled using eigenface approach

and Hue-Saturation-Value (HSV) color

model.

Mao et al. Facial SVM � Development of a real-time emotion

recognition approach based on both 2D

and 3D facial expression features.

Khalfallah and Slama Facial > 70 Small

classifiers

� Web-based tutoring system to allows

students to access and perform experi-

ments on real laboratory equipment via

Internet.

Goran and Negoescu Facial,

Speech

Memorization

level (ML)

� Measure the acquisition level and the

efficiency in the memorization of several

lessons presented in the school.

Subhashinia and

Niveditha

Facial BC � Detection of employee’s emotion for

amelioration of organizations.

Table 2.2: Some techniques regarding to speech based on

emotion recognition since 2015.

Reference Source Techniques Major Contribution

Ozseven Speech SVM, ANN,

k-NN

� Proposed a new statistical feature se-

lection method based on the changes in

emotions on acoustic features.
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Szaszák, Tundik, and

Gerazov

Speech HMM,

WCAD

� Developed a prosodic stress detection

system for fixed stress languages.

Xue, Hamada, and

Akagi

Speech Fujisaki F0

model, target

prediction

model

� Proposes an inverse three-layered

model with acoustic features as output

at the top layer, semantic primitives at

the middle layer and emotion dimension

as input at the bottom layer.

Abdelwahab and

Busso

Speech SVM � Development of a solution to address

the low performance of speech emotion

classification.

Bertero and Fung Speech CNN � Development of a real-time Convolu-

tional Neural Network model for speech

emotion detection.

Chenchah and Lachiri Speech HMM � Analysis of an assessment of emotion

error rate using MFCC and PLP, and a

new type of speech features.

Fayek, Lech, and

Cavedon

Speech Deep ANN � Development of a speech emotion

recognition system to explore feed-

forward and recurrent neural networks.

Mannepalli, Sastry,

and Suman

Speech Adaptive

Fractional

DBN

� Development of an adaptive fractional

deep belief networks to recognize differ-

ent emotion from speech.

Motamed, Setayeshi,

and Rabiee

Speech ANN, ANFIS � Development of a model based on the

limbic system in order to obtain a desir-

able learning model for speech emotion

recognition.

Yogesh et al. Speech ELM � Development of a speech emo-

tion/stress recognition system using

spectral features.

Yogesh et al. Speech ELM Kernel,

KNN, PNN,

GRNN

� Presents a new set of features and fea-

ture enhancement techniques to support

the emotion and stress recognition.

Wen et al. Speech Random DBN � Development of an new approach of

random deep belief networks method for

speech emotion recognition.

Bahreini, Nadolski,

and Westera

Speech SVM � Shows a valid use of computer micro-

phone data for real-time and adequate

interpretation of vocal intonations.

Brester et al. Speech SVM, ANN,

Logit

� Design of a parallel multicriteria

heuristic procedure based on an island

model.
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Shukla, Dandapat,

and Prasanna

Speech HMM � Development of a novel subspace pro-

jection approach for analysis of speech

signal.

Trigeorgis et al. Speech CNN, LSTM � Solution to the problem of ”context-

aware” emotional relevant feature ex-

traction.

Zha et al. Speech MKL � Application of Multiple Kernel Learn-

ing (MKL) to recognize the spontaneous

speech emotion.

Alonso et al. Speech SVM � Development of a system to recognize

emotion from speech using different lan-

guages like German, English and Polish.

Cao, Verma, and

Nenkova

Speech SVM � Introduced a novel ranking models for

emotion recognition.

Davletcharova et al. Speech NB, RBF,

Ada boost,

Lazy IB1

� Study aimed at exploring dependen-

cies the nature of utterance have with

the human emotional state.

Deb and Dandapat Speech HMM � Evaluation of the performance of

breathiness features for classification of

speech under stress.

Lanjewar, Mathurkar,

and Patel

Speech GMM, KNN � Development of system to detect emo-

tions from speech.

Muthusamy, Polat,

and Yaacob

Speech GMM � Improvement of emotion recognition

task from speech using Gaussian Mix-

ture Model and Extreme Learning Ma-

chine.

Muthusamy, Polat,

and Yaacob

Speech ELM � Development of a particle swarm opti-

mization model to enhance the emotion

speech recognition.

Shahin and Ba-Hutair Speech HMM � Enhancement of talking condition

recognition in stressful and emotional

talking environments.

Sun, Wen, and Wang Speech SVM � Shows that the Hu WSF can be com-

puted from local regions of a spectro-

gram using Hu moments.

Wang et al. Speech SVM � Development of a new Fourier pa-

rameter model for speaker-independent

speech emotion recognition.
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Table 2.3: Some techniques regarding to biosignal based on

emotion recognition since 2015.

Reference Source Techniques Major Contribution

Kaur, Singh, and Roy Biosignal SVM, RBF � Performed an analyze about the im-

pact of positive and negative emotions

using electroencephalogram.

Roza and Postolache Biosignal ANN � Developed of a multimodal architec-

ture to acquire and recognize emotions

based on flight simulation tasks.

Capuano et al. Biosignal Friedman Test

(FT)

� Verification whether work on exposure

and emotional identification influences

the decreased level of anxiety and de-

pression.

Goshvarpour, Abbasi,

and Goshvarpour

Biosignal PNN � Developed a study to examine the ef-

fectiveness of Matching Pursuit (MP) al-

gorithm in emotion recognition.

He, Yao, and Ye Biosignal SVM � Development of an emotion recogni-

tion system based on ECG and respira-

tion (RSP) signals using wearable sen-

sors.

Shin, Shin, and Shin Biosignal ANN, SVM,

BN

� Provides services to meet the need to

recognize emotions when using contents.

Yin et al. Biosignal MESAE � Presentation of a classifier to reduce

the model complexity and improve the

accuracy for emotion recognition.

Yin et al. Biosignal MESAE � Development of a solution to iden-

tify emotions using physiological sensing

based on MESAE.

Roza and Postolache Biosignal ANN, SVM � Development of a multimodal system

to identify emotions by the use of several

techniques of biosignals acquisition.

Petrovica, Anohina-

Naumeca, and Ekenel

Biosignal ANN, NB,

Logit, LR,

SVM, KNN,

DT

Analysis of the emotion recognition

techniques used in existing systems.

Alhouseini et al. Biosignal ANN � Considers two physiological signals

and shows the analysis of its emotional

properties.

Kumar, Khaund, and

Hazarika

Biosignal ANN, SVM,

RBF

� Execution of bispectral analysis to of-

fers a way to obtain other important in-

formation from the analyzed biosignal.
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Lan et al. Biosignal ICC � Proposed and tested a novel real-time

subject-dependent algorithm with stable

features to have only one training session

for the user.

Roza and Postolache Biosignal SCC � Emotion classification using biosignals

from Flowsense dataset.

Bozhkov et al. Biosignal ANN, Logit,

LDA, KNN,

NB, SVM,

DT

� Development of an unified system for

efficient discrimination of positive and

negative emotions.

Cruz et al. Biosignal Multiclass

LDA

� Development of an automatic recog-

nizer of the facial expression based on

EOG to to give support to emotion

recognition.

Lahane and Sangaiah Biosignal ANN � Development of a new approach to

emotion recognition based on EEG.

Reis, Arriaga, and

Postolache

Biosignal Questionn.,

ANOVA

� Application to store several physiolog-

ical signals.

2.0.5. Recognition Techniques Comparisons

By observing the techniques used in these researches to recognize emotional patterns,

some of them were applied on more than one perspectives e.g., ANN, SVM, KNN, CNN,

HMM, ELM, PNN, RBF, NB, Ada boost, ML and Logit, as shown in Figure 2.5.

Figure 2.5. Venn diagram over the most common techniques used to rec-
ognize emotions based on face, speech and biosignal (2015 to 2019).

Recognition techniques based on the neural networks class were majority in emotion

recognition context, e.g, RNN, CNN, ANN, RBF, PNN and GRNN. The second more

used was SVM, as shown in Figure 2.6.
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Figure 2.6. Recognition techniques found on emotion-related researches
(2015 to 2019).

The present state of the art was fundamental to define the best recognition technique

to be used in this work and which tools or sensing techniques to apply.
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CHAPTER 3

Multimodal Sensing System and Data Acquisition

Multimodal sensing approach is not a new architecture or new method to support a recog-

nition system, but it is a more robust and powerful approach to be applied in situations

in which a low amount of channel (inputs) are not sufficient to reach a good recognition

accuracy along the time. It is based on several channels that come mainly from different

sources of data, resulting on related outputs. It is sometimes challenging for researchers

due the time analysis and multi sampling rate synchronization. For some researches con-

texts like, emotion recognition based on biosignals for instance, it is not recommended to

use only one type of biosignal e.g. heart rate variability, to accurately detect emotions,

because it can reflects emotions only in strong or intense emotional situations (Choi et al.,

2017). According to some studies, when an extended number of biosignals are considered,

better results can be reached.

These multisensing approaches can also be found in another applications as for in-

stance: on dynamic system and nanostructures (Adhikari and Khodaparast, 2021); on

aviation context, using flight simulations (Roza and Postolache, 2019; Roza et al., 2019;

Roza and Postolache, 2018); temperature measurement on chemistry (Chi et al., 2019);

using summarizing functional of complementary visual descriptors, for video modeling

(Kayaa, Gürpınarb, and Salah, 2017); on identification of cognitive states of aircraft pi-

lots, while they are using flight simulators (Harrivel and Pope, 2017); and to exam of

the usefulness of psychophysiological measurements in a bio-cooperative feedback loop to

adjusts the difficulty of an upper extremity rehabilitation task (Novak et al., 2011).

The complexity of the present research requires the use of a multimodal sensing system

to give support to the emotion recognition process in a general perspective. In this

work, the aviation context was used to execute the experiments and validate the research

results. A set of acquisition and recognition techniques were used. The chosen biosignal

acquisition techniques were based on: Electroencephalography (EEG); Heart Rate (HR)

through PPG sensor and Galvanic Skin Response (GSR). It were also considered the

data acquisition based on face recordings and questionnaires, which this last acted as a

personal emotion report, directly answered by each volunteer. After the data acquisition

and storage, the further steps were data preprocessing, processing, features extraction

and emotion recognition.

The experimental context is based on aviation but the designed methodology, used

techniques and reached results, can also be applied on other researches contexts e.g.smartcity,

biophilia, automobilism or even, administrative works. Applying it on smartcity context,

an emotion regulation strategy can be used to improve the tourism in city’s places (Roza
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and Postolache, 2016); on biophilia context, it can be powerful to relate emotions with

green places, using different strategies to improve the development of green places and

also collaborating with some smartcity concepts; if considering the automobilism, it can

be extremely useful to monitor the drivers’ emotional state along a travel or delivery task

(Benoit et al., 2006); finally, when considering the administrative works, it researches and

multimodal sensing system can be useful to analyze not only emotions but also the well

being, life quality, stresses levels at work and satisfaction or happiness levels along the

work period (Mishra et al., 2011). In the aviation context, this research brings a contri-

bution, ensuring an emotion regulation and/or monitoring of each pilot to give support

in the avoidance of aviation accidents caused by human failures (Roza et al., 2019), for

instance.

Figure 3.1, shows a set of contexts that can be applied inside of the present work

methodology of data acquisition, analysis and recognition.

Figure 3.1. Diagram with some examples of application based on the
developed multimodal system proposed in this work.

Between 2016 and 2018, a couple of other experiments were developed inside of the

scope of physiological signals (biosignals), signal processing and emotion recognition,

which it were important to give support to the final multimodal system presented here.

3.1. Multimodal Architecture Description

Each multimodal sensing system can presents different execution procedure. In this

present work, several steps were considered since the environment setup until the final

emotion recognition. All experiments were executed in late afternoon and night due to

be a calm and noiseless time in the laboratory. The experiment’s supervisor closed all

communication with the volunteer during the simulated flight. Figure 3.2, presents the

general steps of execution.

The environment setup was designed to keep the repeatability and minimum error

propagation along the experiment. It includes: environment illumination, keeping similar

light intensities for all volunteers in experiment; noise control, to avoid noises as much

as possible during the experiments; simulation screen configuration (i.e. bright, contrast,
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Figure 3.2. Execution steps of the proposed multimodal sensing system.

resolution, etc) and size were the same for all experiments. The volunteer comfort is

other important behaviour to be considered in the present multimodal experiment due

the number of sensors on the volunteer’s body. Furthermore, good chairs, properly table

with ideal high, among other factors. The volunteers’ feedback about the their own

comfort, before the experiment begin was also considered.

The next steps is based on electrodes procedures such as, electrodes setup and cleaning.

This work also considers an auxiliary channel of data acquisition based on questionnaires,

represented in the diagram with the label channel X. It is useful to understand, based on

volunteers’ feedback, the emotional state of each one before, during and after the flight

experiment.
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The volunteers’ face recordings were used to represent the emotions references (tar-

get) along the experiments. These references leaded the emotion recognition process,

outputting emotion intensities to be used on the training phase.

This work used two different software to execute the physiological data acquisition:

Neuroelectrics Instrument Controller (NIC) software for EEG, and the EmoSense - Real

Time (ES-RT) software to acquire HR from PPG, and GSR data. The software synchro-

nization was mainly based on sampling rate and accelerometer parameters.

Environment setup, skin cleaning and data synchronization are important behaviours

that must be executed to avoid bad raw biosignal acquisition on multisensing context.

All these previous behaviours can not worth enough, if no baseline technique be applied

just before the data acquisition. Without this baseline, the beginning of the experiment

can brings a high level of data uncertainties and a couple of data artifacts due to several

reasons, e.g. distractions (visual mainly), loss of attention, abrupt body movements and

so on. In this work, the baseline was based on the eyes-closed data acquisition with 30

to 60 seconds of duration. It is useful to normalize the physiological parameters before

the experiment begins. Just after the baseline time ends, the system begins to recording

the facial expression, HR from PPG, GSR and EEG data. All these data are acquired

at same time. The questionnaires’ answers were recorded before, during and after each

experiment. With exception of questionnaires, all those acquired data are raw and need a

such couple of the preprocessing before to go forward. It was based on outliers detection

and removal, normalization, abrupt data correction, data smoothing and trend corrections

(detrend).

The preprocessing represents a complex phase of this work from where it is possible

to extract good data features and emotion recognition. In the processing phase, some

mistakes from previous phases can also be fixed, as such as the data optimization. Time

and frequency analysis, filtering, data resampling, peak detection, among other things can

be executed. With all these data treatment and processing, it is much simpler to extract

features since these features were already well defined according to input data. Once the

feature extraction has done, it is possible to execute the emotion recognition.

In the emotion recognition process, the data shape must be well defined and orga-

nized in a such way to produce coherent results. Since was chosen a supervised learning

technique to recognize emotions, the set of emotions intensities and classes must to be

minimally coherent to produce good training results and then, good new data recognition

on test and validation.

3.2. Proof of Concept (PoC) of the Experiment

A Proof of Concept (PoC) is an execution of a certain methodology or idea, in order

to demonstrate its feasibility, complexity level and coherence. It can also represents a

prototype to verify if some concept or theory has practical potential. It is usually simpler

than a final concept, system or architecture. Although it be simpler, its outputs can

determine if the proposed methodology or idea should go further or not.
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This work executed two different PoCs, on which the idea of the proposed multimodal

sensing system was tested. Each PoC included at most three flight simulations (for each

volunteer) and several emotional events analysis. Previous studies shown that there is a

direct and critical relation between the risk work and emotional events (Breakwell, 2014)

and the results of the PoCs were important to show emotional stimuli along the simulated

flights.

Figure 3.3, shows two different approaches of the PoCs proposed in this work, based

on the multimodal architecture presented above. On the first PoC (right setup), the sim-

ulation was executed with two volunteers as flight pilots and one experiment supervisor.

The HR, EEG, SpO2 and GSR, were considered in this first PoC. Three people were

involved on: the volunteer acting like a pilot, that was responsible by joystick commands

(using the left or right hand) and some keyboard commands as landing gear up and down;

the second volunteer acting like co-pilot, that was responsible by the ”80 knots” speed

call-out, flaps controls and to inform to the first volunteer about the flight tasks checklists

along the simulation (i.e. alert of before flight, takeoff, navigation, approach, landing

and after flight); and the supervisor, that only inform the beginning and the end of a

flight, keeping in silence with the volunteers along the flight. Additionally, in the first

approach, were also considered the face recording, three points HR electrodes (left and

right wrists and one ankle), flight plan/checklist, headset (to avoid noise from external

environment) and questionnaires. The experiment execution wasn’t based on execution

checklist, which sometimes the execution sequence was impaired several times due that.

No data processing and emotion recognition were executed in this first approach. Only

the aircraft Extra 300S was used.

Figure 3.3. Setups of the PoCs. First PoC approach using pilot and co-
pilots (right); second PoC using only a pilot and supervisor as co-pilot (left).

Several improvements of the first PoC, were applied in the second PoC (left setup)

and in the main experiment, such as: HR sensor was changed from wrists (with high

motion artifacts) to earlobe, using a single earclip based on Photoplethysmogram (PPG)
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1; Pulse Oximetry (SpO2)2 wasn’t used on the second PoC nor in the main experiment

either because it presented constant values along the experiments, close to 99%; only one

volunteer was considered during this PoC, reducing the complexity of the execution; the

supervisor kept the previous functions and also absorbed the co-pilot tasks from the prior

PoC; processing and basic emotion recognition were executed based on HR and GSR

only. The hand with GSR electrodes was kept moveless along the experiment. Along the

execution of both PoCs, presented a lot of motion artifacts mainly, due to mainly the not

well defined execution checklist with precise tasks to do by the supervisor. A execution

checklist was only used on the main experiment. The aircrafts Extra 300S and Cessna

172SP were used respectively to, training flight and main flight.

The PoCs execution and its outputs shown that is possible to apply the proposed mul-

timodal sensing system architecture to support the emotion recognition along simulated

flight experiments. The first data processing and statistical analysis revealed different

emotional states along each flight. Figure 3.4, shows two different executions of the sec-

ond PoC.

Figure 3.4. Flight simulation experiment during the second PoC using
previous setup, a small environment and basic volunteer screen.

3.3. Training Flight - Cognition versus Emotion

The training flight prepares the volunteers to the main flight experiment. It was simpler

then the main experiment, including some basic flight procedures to help the volunteer

to be more familiar with the simulation behaviours and controls. The training was based

on: the flight maneuvers, GPS use, airplane controls in the air, takeoff, climb, navigation

1Photoplethysmogram (PPG) is an optically obtained plethysmogram used to detect several skin phe-
nomena.
2Pulse Oximetry (SpO2) is a technique to measures the arterial blood oxygen saturation and pulse rate.
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(cruise route), descent, approach, final approach and landing. Other maneuvers such as,

pitch, roll and flight in route (stabilized flight). Speed and altitudes controls were up to

the volunteer (i.e. free flight).

The Microsoft Flight Simulator - Steam Edition (FSX-SE) 3 was used during all flight

experiments. The default airplane was the Extra 300S–Patty Wagstaff was used in the

training, as shown in Figure 3.5.

Figure 3.5. Airplane Extra 300S used during the training.

The training was used to observe and attenuate the cognition effects on the volunteers

in flight.

Several studies show the close relationship between cognition and emotion (Perlovsky,

2020; Ekman, 1999). According to Forgas, in general, the affect is another aspect that can

influence the kind of information, processing strategies that people adopt; in the same

way the affect can also reduces or even eliminates such common judgmental mistakes

(as the fundamental attribution error) by triggering more harmonious and externally

oriented thinking (Forgas, 2008). On the same context, Berle and Moulds, said that

prevailing cognitive-behavioural models of mental disorders give passing regarding to the

possibility that the relationship between cognition and emotions may be bidirectional or

that emotional states may influence cognitive content and processes (Berle and Moulds,

2013).

Breakwell, said that in hazard situations, the cognition process can be affected by

emotional situations switching drastically a normal to tragic situation (Breakwell, 2014).

For this reason, the training flight proposed in this work was used as an important resource

to make the volunteer more self confidence with the flight procedures and commands,

reducing the cognition effects on emotional events and vice versa (strategy based on

cognitive reappraisal) (Dixon et al., 2020). In another words, the training flight was an

useful tool for emotion regulation strategy in order to change naturally their emotion

levels while they try to flight regularly (McRae, 2016).

3.3.1. Cognitive Reappraisal and Acceptance

Cognitive reappraisal and acceptance are two emotion regulation strategies. Both are

associated with beneficial psychological health outcomes over time (Troy et al., 2018)

3FSX-SE download link: https://store.steampowered.com/app/FSX-SE.
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by the deliberate control of attention to minimize excessive emotional reactivity (Dixon

et al., 2020).

Cognitive reappraisal, is a primary form of cognitive change, using cognitive skills (e.g.

challenging interpretations, perspective-taking, reframing the meaning of situations) and

linguistic processes to reframe or reinterpret the meaning of a stimulus or situation in order

to up- or down-regulate the emotions (Goldin, Jazaieri, and Gross, 2014). It Reappraisal

can modify emotional reactions to stressful, anxiety-provoking situations and can lead

to psychological flexibility and emotional well-being (Gross and Thompson, 2007). Troi

et al., also shown several studies that are consistent in highlighting the positive effects

of reappraisal on long-term outcomes that relate to psychological health and well-being

(Troy et al., 2018).

Acceptance, is a component of mindfulness practice, which it has demonstrated effi-

cacy in reducing social anxiety severity. Unlike reappraisal, which it focuses on changing

the content of one’s thoughts and feelings, acceptance involves changing how one relates

to his or her thoughts and feelings (Troy et al., 2018). Acceptance also involves an active

willingness to fully experience thoughts, emotions and sensations in an open and nonjudg-

mental manner as they change from moment to moment, without attempting to change

or avoid them (Dixon et al., 2020).

3.4. Main Flight Experiment

This work was based on a set of flight simulations to understand and analyze the biosignals

and the resulted emotional responses of the volunteers during the simulated flights. These

volunteers acted like pilots in flight which they were trained to execute some simulated

flights. They are not real aircraft pilots. The motivations and contributions regarding

to context of these experiments, are explained in details in Section 1.1–Main Motivation

and Practical Contribution.

To execute these flights, the Microsoft Flight Simulator–Steam Edition (FSX-SE)

(Steam and Microsoft, 2006) was used, adding some auxiliary add-ons based on turbu-

lence and terrain, to produce more realism during the flight Steam and Microsoft, 2006.

The environment setup from the main experiment, was the result of two initial proof of

concepts (POCs) (Section 3.2). Several improvements from those PoCs were applied and

are shown in the final setup (Figure 3.6).
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Figure 3.6. Setup used on the main experiment.

Several improvements were applied in the final setup: a large screen to improve the

immersive experience during the simulation, maintaining an average distance of 1.70 to

1.90 meters of the volunteer; a computer to run the flight simulator and to record facial

emotions; the volunteer must use only the joystick during the experimental flight and

only one hand to control the aircraft; the GSR electrodes were placed on the free hand

i.e., without movements to avoid motion artifacts; a microcontroller was used to acquire

the HR data from the HR device (e.g. Arduino board); the supervisor used two different

softwares, one to receive HR and GSR data from Bluetooth communication, and another

to receive the Bluetooth data from EEG device; also a video camera was used to record

the volunteers’ body gestures.

During the experiment, the volunteers (acting like pilots in command) had no contact

with the supervisor. The supervisor only communicated with the volunteers before and

after each simulation. Was also recommended to the volunteers, to avoid to talk and to

move the hand having the GSR electrodes, because it can produce additional noises and

motion artifacts.

Figure 3.7, shows the real environment used in the main simulation. The position

of desk table, small camera and the screen, were kept the same during all experiments.

Different from the solution presented on PoCs, which the supervisor had a replicated

screen to see the volunteers actions, in the main experiment, the supervisor watched in

real time the simulated flights, as shown in Figure 3.7-right.
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Figure 3.7. Experiment environment. Volunteer side (left); supervisor
side (right).

Additional volunteer (acting like a co-pilot), wasn’t considered in the main experi-

ment due to some reasons: difficulties to find more people (pilot and co-pilot) for each

experiment; time to train both volunteers for different tasks along the experiment; each

volunteer should have double time of experiment because generally, the volunteer (co-

pilot) also wished to simulate as a pilot. Other improvement is the use of a single HR

electrode which presented less motion artefact along the experiment; the double back

pat on volunteer’s back (executed by the supervisor during all PoCs to give instructions

and to get instantaneous volunteer feedback about the his feelings) was removed because

the volunteers in experiment, reported that it took too much loss of attention to answer

this requested questions during the flights; the headset was removed from the volunteer

(pilot) because during the experiment the supervisor executes some instructions by call-

outs. Other additional input data such as the volunteer’s voice, wasn’t considered on

main experiment.

Considering the practical context and the complexity of the proposed experiment, i.e.

aviation based on flight simulations and multimodal sensing, two different experiments

were executed: a flight training (presented before) and executed before the main flight;

and the main flight experiment presented in this section. Moreover, to avoid mistakes

of experiment execution, an execution checklist was developed to aim the supervisor

to correctly accomplish the several steps regarding to the proposed multimodal sensing

system.

Table 3.1, presents the main resources applied for each case i.e., first and second PoC

and main experiment. It shows the improvements of each PoC until the main experiment.
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Table 3.1. Resources applied on each PoC and in the main experiment.

Resource PoC 1 PoC 2 Main Experiment
(Biosignal) HR GSR EEG Face HR GSR EEG Face HR GSR EEG Face

Acquisition × × × × × × × × × × × ×
Preprocessing × × × × × × × × × × × ×
Processing × × − × × × − × × × × ×
Recognition − − − − × × − × × × × ×
Resource PoC 1 PoC 2 Main Experiment

Camera (Face) × × ×
Head Shaking × × ×
Questionnaire × × ×
Flight Plan/Route × × ×
Flight Checklist × × ×
Training Flight × × ×
Eyes-Closed Baseline × × ×
Headset × × −
Double ”Back Pat” × × −
Aircraft Extra 300S × × −
Aircraft Cessna 172SP − × ×
GSR Hand (Fixed) − − ×
Execution Checklist − − ×
Supervisor Call-outs − − ×
Large Screen − − ×
Immersive View − − ×
Camera (Body) − − ×
HR Earclip − × ×
HR 3xElectrodes × − −
Co-Pilot (New Volunteer) × − −
SpO2 (fingerclip) × − −
Voice Recorder × × −

3.4.1. Computers Configuration

Three different computers were used in this work for different purposes. The acquisi-

tion and the EmoSense software development were executed by the computer having the

configuration: Hewlett Packard (HP), processor with 2.2 GHz Intel Core i7 (7th Gen),

memory with 16 GB having 1600 MHz DDR3 and Intel HD Graphics board 6000 having

1,536 MB.

The raw data preprocessing, processing, feature extraction and emotion recognition

were executed in a computer having the characteristics: MacBook Air, processor with 2.2

GHz Intel Core i7, memory with 8 GB having 1600 MHz DDR3 and Intel HD Graphics

board 6000 having 1,536 MB. The flight simulator and the face recordings were executed

in a computer having: ASUS, processor with 3.2 GHz Intel Core i7 (8th Gen), memory

16 GB having Intel HD Graphics board 6000 having 1,536 MB.

3.4.2. Execution Checklist - Listing the Steps of the Experiment

Execution checklists were designed to the supervisor and it were fundamental to give

support to the to all steps necessary to execute correctly the experiment. It presents
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a couple of sequential and direct actions since the environment setup until the end of

experiment.

Were developed there different execution checklists, inspired on the real aviation pro-

cedure checklists (Figure 3.8): Before Execution Checklist (BEC), Just Before Execution

Checklist (JBEC) and Execution Checklist (EC).

Figure 3.8. Experiment checklists executed by the supervisor.
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3.4.3. Execution of the Simulated Flight

This work analyzed emotions of 8 volunteers (N=8) of flight simulator, during the exe-

cution of 7 different tasks while they fly based on basic concepts of Visual Flight Rules

(VFR) through the air traffic rules and procedures applicable to air traffic in Lisbon

FIR and Santa Maria Oceanic FIR, conform with Annex 2 and 11 to the Convention on

International Civil Aviation (ICAO, 2005).

All experiments and training were executed under Visual Meteorological Condition

(VMC) and minimum navigation altitude of 1,800ft (feet MSL). For each volunteer, a

maximum of 3 flights were executed. The used airplane for this main experiment was the

default aircraft model Cessna 172SP Skyhawk, as shown in Figure 3.9.

Figure 3.9. Airplane Cessna 172SP used during the main experiment.

3.4.4. Flight Plan - Route of the Simulation

The flight route used in this experiment have almost 8.4nm (Nautical Miles) of dis-

tance from Lisbon International Airport (ICAO LPPT/374ft/THD ELEV 378ft MSL)

to Alverca (ICAO LPAR/11ft/THD ELEV 15ft MSL), intercepting the waypoints WP1

(HDG 063◦), WP2 (HDG 036◦) and WP3 (HDG 039◦). Takeoff was planned to departure

from runway 03 (HDG 026◦) and landing on runway 04 (HDG 039◦), as shown in Figure

3.10.

Figure 3.10. Flight route (red line) of the experiment (Lisbon to Alverca).

The supervisor explained each task of the simulated flight to the volunteers; also

shown the ideal air speed (for takeoff, climb, approaches and landing), flight direction

(flight head) and altitudes. Other complex tasks such as, the air charts, fuel mixtures,
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VOR/ILS navigation, flaps set up, real checklists, Automatic Terminal Information Ser-

vice (ATIS) reports, technical communications or another technical airplane operation

were not considered. If any complex action was required in flight, the supervisor exe-

cuted.

3.4.5. Tasks of the Experiment

Since this work tries to aim some problems of the real aviation, it considered to use main

real flight phases such as: takeoff (Task 1), climb (Task 2), navigation/cruise route (Task

3), descent (Task 4), initial approach (Task 5), final approach (Task 6) and landing (Task

7), as shown in Figure 3.11.

Figure 3.11. Lateral view of the proposed flight task chart, route and tasks.

It were also recommended by the supervisor to keep a maximum flight altitude in

route of 2,300 feet and an average final approach altitude of 550 feet to avoid accidents

during the landing task. If it is not possible to maintain 550 feet at final approach, the

volunteer was advised to abort the landing task, climb the aircraft, turn to the left side

of Alverca Airport (i.e. runway 04) and initiate the final approach again.

Each volunteer had a maximum time of 10 minutes to execute these tasks, otherwise

the supervisor stops the simulation and stores the simulation data as valid to analysis.

Some volunteers did not completed all the tasks due some accidents along the simulated

flight.

3.4.6. Volunteers and Flight Checklists

The experiment considers two different volunteers: the first pilot or pilot in command

(PIC), and the co-pilot or second in command (SIC). Each one using a set of well defined

tasks along the simulated flight. In the main experiment, the co-pilot actions (executed

by a second volunteer in the first PoC) were replaced to be executed by the supervisor.

The pilot and co-pilot tasks are guided by two different checklists. These checklists

informed to both what to do during each step of the flight, as presented in Table 3.2. The

different colors on it, inform to the aircrew the importance of each procedure in flight:

green color, means not critical procedure; purple means, not critical but mandatory;
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and red color means, that this procedure is critical, mandatory and must be executed

immediately to avoid accident.

Table 3.2. Pilot and co-pilot checklists used during the main flight simulations.

Tasks Pilot Checklist Co–Pilot Checklist

Procedure Value Procedure Value

T1
Throttle Full – –
Wait For 80KIAS Alert 80KIAS ”Call-out”

T2

Climb 550ft Alert Climb
Roll Right for 10s Alert Roll Time
Climb 1,800ft Alert Climb
Intercept WP1 Alert Intercept

T3

Throttle 70% Alert Throttle
Check Route Check Route
Intercept WP2 Alert Intercept
Throttle 10% Alert Throttle
Wait 5s Alert Wait

T4
Descent 900ft Alert Descent
Intercept WP3 Alert Intercept

T5

Descent 550ft Alert Descent
Throttle 40-65KIAS Flaps Set Full
Pitch 15◦ – –
Descent 250ft Alert Descent

T6 Descent 15ft Alert Descent

T7
Touch – – –
Throttle 0KIAS Flaps Set 0◦

Full Stop – – –

The tasks of the co-pilot were executed by the experiment supervisor. The checklists

as such as the route, are based on a real flight procedure. However, the flight scenario,

physics of the environment and flight model, not presented a full realism due the beginner

level of the involved volunteers.

3.4.7. Head Shaking Indicator - Beginning and End of Experiment

The head shaking indicator was the strategy used to synchronize the real-time EEG

sensing acquisition with the other data having different sampling rate. The head shaking

methodology was inspired by standard procedures of real military pilots, in which they

quickly shake their heads to indicate the beginning or the synchronization of some flight

procedures, for instance, synchronized takeoff and maneuvers (Figure 3.12).
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Figure 3.12. EEG’s accelerometer output of the double head shaking movement.

The EEG and GSR devices used in this work have also embedded accelerometers,

which they were used to capture the head shaking (placed on the head back) of the

volunteers during the flight. The head shaking represents a signal like a wave mark used

in the further data split process. It was used in four different moments of the experiment:

double head shaking to indicate the beginning of the eyes-closed baseline; double head

shaking to indicate the end of this baseline; double head shaking to indicate the beginning

of the flight (i.e., takeoff); and double head shaking to indicate the end of the flight

experiment.

3.4.8. Physiological Sensing

The proposed multimodal sensing system, considered three physiological sensing: cardiac

system based on Heart Rate (HR), Galvanic Skin Response (GSR) and Electroencephalog-

raphy (EEG). To acquire these sensing, 11 Ag/AgCl dry electrodes and one earclip were

used: 8 electrodes placed on the scalp (EEG), 1 placed on the earlobe (EEG reference),

1 placed on earlobe (HR) and two on the hand of the volunteer (GSR).

The GSR signal is based on Electrodermal Activity (EDA) and refers to the electrical

resistance between two sensors, when a very weak current occurs passed between them. It

is typically acquired from the hands or fingers (Goshvarpour, Abbasi, and Goshvarpour,

2017). In this work, it was acquired by the Shimmer3-GSR+ unit, which can measure

activity, emotional engagement and psychological arousal in lab scenarios and in remote

capture scenarios that are set outside of the lab. Was recommended that these electrodes

kept immobile during the experiment to avoid an additional motion artifacts in GSR data.

Emotional and cognitive responses, can also affect the brain functioning, producing

several stimuli. The usage of flight simulation shows to be a powerful tool to produce

these brain stimulations in different flight moments.
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The brain activities were acquired by the device Neuroelectrics Enobio-N8, which

it had 8 channels, Bluetooth communication and a sampling rate of 500 samples per

second. Some studies claim that it is difficult to find the specific region of scalp where the

brain activity is sufficiently high to detect emotional states (Murugappan, Nagarajan, and

Yaacob, 2011; Min, Chung, and Min, 2005); however, if one intendeds to detect emotional

responses, it is recommended to use the prefrontal cortex or frontal lobe (located near

the front of the head) because it be more involved with cognition and decision making of

emotional responses (Umeda and Satoshi, 2013; Rosso et al., 2004).

The 10–20 system or International 10–20 system was the method used to describe and

apply the location of scalp electrodes. This way, to better detect emotion, alertness situa-

tions and cognition artifacts of the scalp, the electrodes were placed on that recommended

areas (Kucikienė and Praninskienė, 2018; Umeda and Satoshi, 2013; Rosso et al., 2004),

some of which were also used by Harrivel and Pope (Wang et al., 2020; Harrivel and Pope,

2017) in other simulated flight experiments: Fp1 (channel 1), F3 (channel 2), C3 (channel

3), T7 (channel 4), Fp2 (channel 5), F4 (channel 6), C4 (channel 7) and T8 (channel 8).

The EEG reference electrode (EEGR) was placed on the volunteers’ earlobes (Othman

et al., 2013; Murugappan, Nagarajan, and Yaacob, 2011). Furthermore, according to Min

et al. (2005), most of the meaningful information about emotional changes are found in

the frequency below 30Hz (Min, Chung, and Min, 2005). It frequency aimed our choice

to use the beta rhythms (or band) in this experiment (Othman et al., 2013; Murugappan,

Nagarajan, and Yaacob, 2011).

Figure 3.13, shows the positions of each electrode, used during the experiment. Note

the usage of electrodes on frontal cortex to acquire EEG data, due its close relation to

the emotional events.

Figure 3.13. Electrodes placement. EEG and HR, placed on the scalp
and ear (left); and GSR, placed on the indicator and middle fingers (right).
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3.4.8.1. The Beta Rhythms The beta rhythms (beta band) are expressed by distinct peaks

on the spectrograms and may be found in various locations of the cortex in normal condi-

tions. According to Kropotov (Kropotov, 2009), the beta band is more often found in the

frontal or central areas when compared to posterior regions of the brain cortex, showing

a frequency around 13 Hz. It is conventionally divided into the following sub-bands: low

beta (from 13 to 20 Hz), high beta (from 21 to 30 Hz) and gamma activity (from 31 Hz

and higher). He also says that there is a special beta frequency activity at 40 Hz. For this

reason, the present work considered the beta band analysis from 12 to 30 Hz and 40 Hz.

Unfortunately, from analyzing only 40 Hz, it is hard to conclude relevant results; thus, it

was decided to also consider a small part of gamma band, i.e., 31 to 40 Hz (Kropotov,

2009), to produce continuous plots from 12 to 40 Hz.

The most prominent hypotheses suggest that the beta band indicates ongoing senso-

rimotor integration (Khanna and Carmena, 2017), being more related to awareness and

concentration contexts. In the beta state, our brain easily does the analysis and prepa-

ration of the information and generates solutions and new ideas. Furthermore, it is very

beneficial for work productivity, studying for exams or other activities that require high

concentration and alertness, as is reported in (Khanna and Carmena, 2017; Woaswi et al.,

2016).

At least two distinct beta rhythms can be found: the beta rhythms located over

the sensorimotor strip (primary motor cortex)–the Rolandic beta rhythms, and the beta

rhythms located more frontally-–frontal beta rhythms (Kropotov, 2009; Ritter, Moos-

mann, and Villringer, 2009).

In this work, the Rolandic or pericentral beta rhythms were also considered. The

selected beta rhythm is modulated during various motor and cognitive tasks (Harrivel

and Pope, 2017; Wang et al., 2020), being observed as a spontaneous activity during

eyes-open and eyes-closed conditions in healthy subjects over the areas C3, Cz and C4.

The close relation of the prefrontal cortex and beta rhythm, with the emotion artifacts

and the cognitive tasks, makes these brain outputs an important data to be used in this

work as well (Umeda and Satoshi, 2013; Rosso et al., 2004).

3.4.8.2. Acquisition Software To store in real time, all raw data acquired by each device,

two software were considered in the experiment: the Enobio-N8, and the Emosense (ES-

RT). This last, was entirely developed in this work on Python 3.5. The first software was

used to acquire EEG data, and second one to acquire HR and GSR data.

Figure 3.14, shows both real time software used on acquisition and storage of all data

of the main experiment.
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Figure 3.14. Emosense RT software, to acquire HR and GSR data (top)
and Enobio-N8 to acquire EEG data (bottom).

Figure 3.15, shows an example of EEG 8–channels raw data, acquired and stored by

the Enobio-N8 software.

There, are possible to see the raw data with several motion artifacts, eyes movements

artifacts and other additional noises. Some of these noises and artifacts were removed

using several techniques presented in details further.
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Figure 3.15. EEG raw (noisy) 8 channels dataset referent to CR1 experiment.

3.4.8.3. Acquisition Devices The multimodal biosignal acquisition was based on Heart

Rate (HR), Galvanic Skin Response (GSR) and Electroencephalography (EEG). The emo-

tion monitoring system includes a set of smart sensors such as: two shimmer3-GSR+, one

Medlab-Pearl100, and one Enobio-N8, as presented in Table 3.3.
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Table 3.3. Devices and its application in the main experiment.

Device Electrodes Accelerometer Application Where?
Shimmer3-GSR+ 2 Dry − GSR BT data Hand (fingers)
MedLab-Pearl100 1 PPG/Earclip − HR data Earlobe

Enobio-N8 Headcap 8 Dry + 1 REF − EEG BT data Head (scalp)
Shimmer3-GSR+ − Applied Head shaking Head (back)
Enobio-N8 Acc − Applied Head shaking Head (back)

A total of two Shimmer3-GSR+ units were the devices used to acquire the GSR data

and to act as an auxiliary head shaking indicator, using its embedded accelerometer. It in-

cludes: 1 channel GSR (Analog); the measurement range: 10k and 4.7MΩ (.2µS - 100µS);

frequency range: DC-15.9Hz; input protection RF/EMI filtering, current limiting; auxil-

iary input: 2 channel analog/I2C; digital input: via 3.5mm; 24MHz MSP430 CPU with

a precision clock subsystem; 10 DoF inertial sensing via accelerometer integrated, gyro-

scope, magnetometer and altimeter; low power consumption, light weight and small form

factor; also perform the analog to digital conversion and readily connects via Bluetooth

or local storage via micro SD card. Furthermore, it is also a highly configurable which

can be used in a variety of data capture scenarios (Shimmer3, 2017).

Figure 3.16, shows the devices applied in this work to acquire all physiological data

and head movements.

Figure 3.16. Acquisition devices: Enobio-N8 (left); Shimmer GSR
(middle-left); Shimmer for ECG/HR (middle-right) and MedLab P100
(right).

The HR data was acquired by the Medlab-Pearl100 device. It is considered an excellent

artefact suppression device due to PEARL-technology and includes: a compact, portable

and attractive design; crisp, easily readable TFT colour display; reliably measures SpO2;

pulse rate, and pulse strength; integrated 100h trend memory; integrated context sensitive

help system; intuitive, multi-language user interface; works on mains and from integrated

battery; full alarm system with adjustable alarm limits; usable from neonates to adults

(Medlab, 2017).

To acquire the EEG data, the Enobio-N8 Toolkit was used. It is a wearable toolkit

with a wireless electrophysiology sensor system for the recording of EEG. Using the Neu-

roelectrics headcap toolkit (having several dry and wet electrodes), the Enobio-N8 is

ideal for out-of-the-lab applications. It comes integrated with an intuitive, powerful user
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interface for easy configuration, recording and visualization of 24 bit EEG data at 500

sampling rate, including spectrogram and 3D visualization in real time of spectral fea-

tures. It is ready for research or clinical use. In addition to EEG, triaxial accelerometer

data is automatically collected. You can also use a microSD card to save data offline in

Holter mode; and as like as Shimmer device, it can use Bluetooth to transmit real time

data too (Quesada Tabares et al., 2017).

3.4.9. Facial Emotion Sensing

During the experiment, the face of the volunteers and the flights actions along the exper-

iments, were recorded and its outputs were processed after the experiment. Two software

were used to record different data: the OBS-Studio, to record the flight and volunteer’s

face at the same time in a synchronized manner; and the Face Reader software, used to

recognize the emotions based on the face recording (Figure 3.17).

Figure 3.17. Face Reader software used to detect emotions from face.

Figure 3.18, shows different face expressions from 3 females and 5 males volunteers

along of some proposed simulated flights. The Face Reader software, considers 7 emo-

tions: neutral, happy, sad, angry, surprised, scared and disgust. Although, the neutral

and disgust emotions were omitted from analysis due to the low importance in these

experiments.

3.4.10. Emotion Questionnaires

Questionnaires are another important tools used to acquire emotional data before and

after all experiments. Several studies also use questionnaires to give support to the vol-

unteers’ feedback, based on what they are feeling in such moment (Roza and Postolache,

2017; Xu et al., 2017; Reis, Arriaga, and Postolache, 2015).

To comply these requirements, a standard questionnaire was adopted, having 22 emo-

tions descriptors and its measurements based on the standard study presented by Jones

et al., which they used it for sport context, being easily adapted to the present work

(Jones et al., 2005). These questionnaires responses represent a subjective data that can

be used to try to match with the detected facial emotion at the end of experiment. Each
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Figure 3.18. Face recording of some volunteers during experiment.

volunteer must to execute at most three flights, having to answer one questionnaire for

each different moment, as defined below:

• Before the first flight (QB1);

• After first (A1) flight/Before second (B2) flight (QA1B2);

• After second (A2) flight/Before third (B3) flight (QA2B3);

• After third flight (QA3).

Figure 3.19, presents the emotion questionnaire filled by each volunteer during the

phases of the main experiment. A set of four questionnaires were considered, having 22

different emotions description each one, which it were rated between 0 (not at all) to 4

(extremely) in different moments of the experiment (flight sequence).

The field Participant Code, represents the individual volunteer code for each exper-

iment; Flight Phase, represents the flight moment of questionnaire: Before, if the flight

sequence is 1 (before first flight); During if the flight sequence is more than 1 and less

or equal to 3; After, if already executed the last flight of experiment; and Sequence,

represents the flight repetition order, because each volunteer can flight more than one

time.
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Figure 3.19. Questionnaire with 22 emotions, used before and after the experiment.

3.4.10.1. Analyzing the Questionnaires Responses All emotions presented on proposed

questionnaires, were conceptually resumed to five emotions classes as described by Jones

et al. (Jones et al., 2005): anxiety, dejection, excitement, anger and happiness. These

resumed emotions were obtained from the previous 22 emotions, as shown below.

• Anxiety: uneasy (E01), tense (E06), nervous (E11), apprehensive (E16), anxious

(E21);
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• Dejection: upset (E02), sad (E07), unhappy (E12), disappointed (E17), dejected

(E22);

• Excitement: exhilarated (E03), excited (E08), enthusiastic (E13), energetic (E18);

• Anger: irritated (E04), furious (E09), annoyed (E14), angry (E19);

• Happiness: pleased (E05), joyful (E10), cheerful (E15), happy (E20).

The results of these questionnaires, are shown in Figure 3.20. It is possible to note that

during the experiment, since first questionnaire (QB1) to the last questionnaire (QA3), the

volunteers confirmed to feel several emotions more characterized as, anxiety, excitement

and happiness, which they kept having high intensities along the experiments. The anger

and dejection, were other resumed emotions that the volunteers said to feel too, but in

less intensities.

Figure 3.20. Emotions selected on questionnaires and the resumed emotions.

When the volunteers chose to flight more than once, it was possible to see a small anxi-

ety attenuation along the flights, probably characterized by the learning process (tasks and

flight controls) experienced by the volunteers. The intensities of dejection increased along

the flights, which disappointed (E17) presented the higher values, because it reflected the

amount of air crashes (accidents) along the simulated flights (see Section 3.4.12). The in-

tensities of anger also increased along the experiment, due probably by the same reason of

dejection. These both emotions were not strongly characterized in this work but between

them, the resumed emotion dejection was more notable, due the situation of frustration

after the occurrences of accidents.
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3.4.11. Flight Analysis

The practical results of 21 flights are presented in Table 3.4. In 21 flights executed,

62% of them presented general accidents; all flight tasks were accomplished in 38% of

the flights i.e., landing successfully; 19% crashed during the climb task, including 14.2%

due to stall occurrences and 4.8% due to direct collision occurrences; 9% crashed at final

approach task; and 33.3% crashed at landing. The landing tasks were classified as abrupt

landing (A-Landing), less smooth landing (LS-Landing) and smooth landing (S-Landing).

Regarding the volunteers’ gender, 52.3% (11 out of 21) of the flights were executed by

male volunteers and 47.7% by female volunteers. The latter reported having no experience

with flight simulation and rarely had contact with electronic games. It is likely that these

reasons were why the landing tasks were successfully concluded only by male volunteers.

Table 3.4. Dataset description according to the flight experiment tasks.

Dataset
Simulation/Flight Tasks

Result Gender
Task 1 T2 T3 T4 T5 T6 T7

DS:RC1 × × × × × × − Crash (collision) Male
DS:RC2 × × × × × × − Crash (collision) Male
DS:RC3 × × × × × × × A Landing Male
DS:GC1 × × × × × × × S-Landing Male
DS:GC3 × × × × × × × S-Landing Male
DS:LS1 × × × × × − − Crash (collision) Male
DS:LS2 × × × × × × × LS-Landing Male
DS:VC1 × × × × × × × S-Landing Male
DS:VC2 × × × × × × × S-Landing Male
DS:CR1 × × × × × × − Crash (collision) Female
DS:CR3 × − − − − − − Crash (stall) Female
DS:CLX × − − − − − − Crash (collision) Female
DS:CL3 × × × × × × − Crash (collision) Female

Dataset
** Invalid Flight Datasets **

Result Gender
Task 1 T2 T3 T4 T5 T6 T7

DS:CL1 × × × × × × − Crash (collision) Female
DS:CL2 × − − − − − − Crash (stall) Female
DS:CR2 × × × × × − − Crash (collision) Female
DS:JO1 × × × × × × × LS-Landing Male
DS:GC2 × × × × × × × S-Landing Male
DS:RN1 × × × × × × − Crash (collision) Female
DS:RN2 × − − − − − − Crash (stall) Female
DS:RN3 × × × × × × − Crash (collision) Female

It is also important to consider that of the eight volunteers, one volunteer (male),

reported to be an advanced user on flight simulation, i.e., 12.5% of them; four other vol-

unteers (male) were considered to have a mid-level in flight simulation but an experienced

level in electronic games, i.e., 50.0% of them. The remaining three volunteers (female)

were reported to be beginner level on all these approaches. The volunteers were between

21 and 40 years old.
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Figure 3.21 shows a comparison between the accidents or crashes occurrences dur-

ing the simulated flights experiment (Naccid=13) and the accident report of the Boeing

Aerospace Company (statistics from 1959 to 2016) (Boeing, 2017).

Figure 3.21. Distribution of fatal accidents by civil aviation (Boeing re-
port) and general accidents (proposed experiment) (adapted from Boeing,
2017).

The percentage of accidents in the present experiment is based on a total of 13 ac-

cidents over 21 flights. The landing task presented the higher accident rate, having 7

occurrences out of 13, i.e., 53.84%. Final approach presented 2 occurrences of accidents

out of 13, i.e., 15.38%. On the climb task, it were 4 out of 13, i.e., 30.76%. It is also

possible to see that the present experiment shown a similar proportional occurrence if

compared with real data reported by the Boeing Aerospace Company (Boeing, 2023;

Boeing, 2017).

3.4.12. Dataset Description

In this work, a total of 21 multisensing datasets were acquired, which it came from 21

simulated flights obtained of 8 volunteers (Nvol=8), where each volunteer executed at

most 3 flights. Between these flight datasets, 13 of them were valid to be analyzed and

8 were invalid due to several reasons such as: bad electrode connections, error in BT

communication, wrong video frame rate and so on.

These datasets include, the emotion questionnaires, face recordings, HR, GSR and

EEG data. The dataset names are a sequence of two letters and one number, to indicate
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the volunteer’s name and the flight sequence of such volunteer, respectively (Roza and

Postolache, 2018; Roza et al., 2019; Roza and Postolache, 2019).

3.4.12.1. Dataset Resampling The dataset synchronization was applied over all multisens-

ing datasets. Originally, the obtained raw datasets presented different sampling rates and

it was considered to equalize it before the analysis: 22,237 samples of the face dataset (5

S/s–samples per second or Hz), 44,237 samples of each HR and GSR dataset (sampling

rate of 10 Hz) and 2,157,087 × 8–channels (or 17,256,696 total samples) of the EEG

dataset (sampling rate of 500 Hz), presenting a total of 17,367,407 multisensing samples

to be processed and analyzed.

To optimize these raw datasets and then to save processing time and complexity,

they were reduced to a common sampling rate of 10 Hz, presenting a final length of

44,237 samples for each data channel, i.e., 44,237 reduced samples for Face, HR and

GSR and 44,237 × 8–channels for EEG. It represents a total multisensing sample of

44,237 × 11-channels (Face, HR, GSR and EEG), or a total of 486,607 reduced samples,

that represents a total reduction of 97.19% samples to be processed. These sampling rate

changes presented some loss of information being mostly corrected by the data processing.

Table 3.5, presents the raw datasets description with its individual number of samples,

time and sampling rates between 5 and 500 Hz.

Table 3.5. Raw valid dataset description according to number of samples
and time.

Dataset Face (5Hz) HR (10Hz) GSR (10Hz) EEG (500Hz) ×8Ch
(Raw) Samples Samples Samples Samples Time (s) T (min)

DS:RC1 1,877 3,671 3,671 190,000 373.80 6.23
DS:RC2 1,880 4,247 4,247 188,510 375.00 6.25
DS:RC3 1,784 3,981 3,981 178,498 355.80 5.93
DS:GC1 1,881 4,081 4,081 188,600 375.60 6.26
DS:GC3 1,842 4,255 4,255 184,600 366.60 6.11
DS:LS1 2,271 5,558 5,558 220,000 453.00 7.55
DS:LS2 2,043 4,096 4,096 198,500 405.60 6.76
DS:VC1 1,790 2,611 2,611 179,500 357.00 5.95
DS:VC2 1,831 2,042 2,042 183,400 366.00 6.10
DS:CR1 1,946 3,998 3,998 95,500 387.60 6.46
DS:CR3 165 457 457 16,879 31.80 0.53
DS:CLX 237 518 518 18,000 45.60 0.76
DS:CL3 2,690 4,722 4,722 215,100 537.60 8.96

Total: 22,237 44,237 44,237 2,157,087 4,431 73.85

Table 3.6, presents in details each reduced dataset already smoothed and resampled to

have 10S/s. The emotions surprised and scared presented the higher values of occurrences

along the flight datasets (or simulated flights) varying between 26.12% and 72.0%, and

between 19.98% and 38.34% respectively.

These emotion classes are the outputs of the Face Reader software, which it some-

times matched wrongly some emotions, mismatching the surprised emotion as angry, for
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Table 3.6. Reduced datasets according to amount of samples, emotions
and time.

Dataset Higher Emotions/Classes Percentages Samples T(s)

DS:RC1
Happy 816 (22.22%) Sad 341 (9.28%) Angry 457 (12.44%)

3,671 373.80
Surprised 999 (27.21%) Scared 1,058 (28.82%)

DS:RC2
Happy 1,023 (24.08%) Sad 477 (11.23%) Angry 457 (10.76%)

4,247 375.00
Surprised 1,179 (27.76%) Scared 1,111 (26.15%)

DS:RC3
Happy 907 (22.78%) Sad 466 (11.70%) Angry 457 (11.47%)

3,981 355.80
Surprised 1,040 (26.12%) Scared 1,111 (27.90%)

DS:GC1
Happy 907 (22.22%) Sad 466 (11.41%) Angry 457 (11.19%)

4,081 375.60
Surprised 1140 (27.93%) Scared 1,111 (27.22%)

DS:GC3
Happy 1,031 (24.23%) Sad 477 (11.21%) Angry 457 (10.74%)

4,255 366.60
Surprised 1,179 (27.70%) Scared 1,111 (26.11%)

DS:LS1
Happy 1,364 (24.54%) Sad 1,113 (20.02%) Angry 491 (8.83%)

5,558 453.00
Surprised 1,479 (26.61%) Scared 1,111 (19.98%)

DS:LS2
Happy 907 (22.14%) Sad 466 (11.37%) Angry 457 (11.15%)

4,096 405.60
Surprised 1,155 (28.19%) Scared 1,111 (27.12%)

DS:VC1
Happy 751 (28.76%) Sad 108 (4.13%) Angry 0 (0.00%)

2,611 357.00
Surprised 796 (30.48%) Scared 956 (36.61%)

DS:VC2
Happy 355 (17.38%) Sad 108 (5.28%) Angry 0 (0.00%)

2,042 366.00
Surprised 796 (38.34%) Scared 783 (38.34%)

DS:CR1
Happy 907 (22.68%) Sad 466 (11.65%) Angry 457 (11.43%)

3,998 387.60
Surprised 1,057 (26.43%) Scared 1,111 (27.78%)

DS:CR3
Happy 0 (0.00%) Sad 0 (0.00 %) Angry 0 (0.00%)

457 31.80
Surprised 312 (68.27%) Scared 145 (31.72%)

DS:CLX
Happy 0 (0.00%) Sad 0 (0.00%) Angry 0 (0.00%)

518 45.60
Surprised 373 (72.00%) Scared 145 (27.99%)

DS:CL3
Happy 1364 (28.88%) Sad 517 (10.94%) Angry 491 (10.39%)

4,722 537.60
Surprised 1,239 (26.23%) Scared 1,111 (23.52%)

Dataset ** Invalid Flight Datasets **

DS:CL1 Head shaking marker executed incorrectly.
DS:CL2 No video emotion recognition executed.
DS:CR2 No GSR data acquired. GSR electrodes/BT not connected correctly.
DS:JO1 No EEG data acquired. EEG BT module not connected correctly.
DS:GC2 No GSR data acquired. GSR electrodes/BT not connected correctly.
DS:RN1 Wrong/too low video FPS to face recording analysis.
DS:RN2 Wrong/too low video FPS to face recording analysis.
DS:RN3 Wrong/too low video FPS to face recording analysis.

instance. Despite these mismatches, the recognition process gone further and kept its

training also in these probably wrong detected emotion classes.

Figures 3.22 and 3.23, show 12 datasets (out of 13), correlating it based on HR and

GSR inputs data executed before the preprocessing. These raw correlations aren’t based

on extracted features, because at this point, no features and processing were executed

yet. This certainly justify the high cluster overlapping. The emotion classes of each flight

dataset are also presented in a bar plot, as shown in Figure 3.24.
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Figure 3.22. Raw datasets correlation, based on HR and GSR input data.
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Figure 3.23. Raw datasets correlation, based on HR and GSR input data.
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Figure 3.24. Classes of emotions detected by Face Reader software for
each flight dataset.
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CHAPTER 4

Data Preprocessing

Preprocessing is the first treatment over the acquired datasets; such procedure is ex-

tremely important to prepare the data to the next steps of analysis e.g., processing,

feature extraction and emotion recognition.

In resume, the preprocessing stage prepares the datasets in a way that makes the

applied analysis more efficient. It also reformats the raw data into a format that can be

manipulated by any programming language (Hafen et al., 2014). It can include: normal-

ization, smoothing, outliers removal, detrends, abrupt signal correction, baseline correc-

tions and others particular preprocessing. Preprocessing is also used to give support to

the data meaning along the recognition process, avoiding that wrong information can be

used as regular input.

This section, presents some preprocessing techniques and some results achieved over

all acquired data, i.e. Face, GSR, HR and EEG; also it presents two new approaches:

one to remove abrupt signal changes and another to detrend signals, which this last were

mainly applied on EEG data.

4.1. Gravity Force-Fit Method (GFFM) - First Detrend

This innovative and iterative method called Gravity Force-Fit Method (GFFM), was

created in this work to execute smooth, correct abrupt data changes, detrend and correct

fluctuations in some raw data along the time. It was mainly applied to execute the first

detrend over the EEG raw dataset. Since GSR and HR data presents a natural trends

that can not be changed, no detrend was applied for them, otherwise it will produces

mistakes on its analysis and feature extraction.

The GFFM methodology is based on a reference line, representing the ground reference

where the “gravity forces” (gt/b) pushes the data to fit to such reference. The gt/b, is a

function that can acts in two independent data segments along the y-axis called, the top-

space and the bottom-space. The top-space segment includes all data values above the

reference line, and the bottom-space includes all data values that are below the reference

line. Such gravity function can also be shared between both segments.

The reference line, can be computed on static or dynamic mode. If the reference line

is on static mode, it must to be computed only once for all data values; otherwise, if is

using on dynamic mode, the reference line must to be computed again for each iteration

until some stop condition. Regarding to the number of reference lines to be used along the

time, it can be: single i.e., only one reference line for both space segments and iteration;

or segmented i.e., more than one reference line along all data. In the segmented method,
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each reference line have top-space and bottom-space. Regarding to the segment line, it

can be computed based on e.g., min-max function, mean, median, among others functions.

Figure 4.1, shows the reference line modes and how its function can be selected based on

the dataset in use.

Figure 4.1. Reference line function and modes along any dataset preprocessing.

Figure 4.2, shows schematically many possible types of gravity force functions, static

or dynamic reference line; also how GFFM can be used to correct abrupt signal changes.

Figure 4.2. GFFM on abrupt signal correction. Gravity force functions
in shared mode (top); gravity force application (middle); final data (bot-
tom).

The coefficient gt, represents the gravity force coefficient applied on the top-space,

pushing down the signal to fit the reference line; gb, represents the gravity force applied on
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the bottom-space pushing up the signal to fit the reference line. The type of gravity force

values can also be based on several functions e.g., constant function, linear, quadratic,

exponential, logarithmic, among others as shown in Figure 4.3.

Figure 4.3. Gravity force functions and modes along any dataset preprocessing.

The reference line functions are different from gravity force functions. Without the

reference line, the gravity force can’t be applied because no ground reference exists.

It is recommended that the gravity force for each segment, must to be defined between

[0, 1], to fit the data to the reference line, as described in Algorithm 1.

Algorithm 1 GFFM core algorithm using static and single reference line.

len data← len(data)

bias← 10e− 10

if rf mode =: “static′′ then

ref line← 0

if rf range =: “minmax′′ then

ref line← (max(data)−min(data))/2

else

ref line← mean(data)

end if

end if

[gt, gb]← get gravity vec(data, ref line, g func)

i← 0

while i > len data do

if data[i] < ref line then

new data[i]← data[i] + (ref line ∗ gb[i] + bias)

else

new data[i]← data[i]− (ref line ∗ gt[i] + bias)

end if

end while

i← i+ 1

To validate the proposed GFFM, several random trended data were applied having different

number of samples, comparing GFFM results with the traditional detrend method. Different

GFFM configurations were used in this validation, and also several gravity force coefficients,

reference line modes and gravity force functions. The results shown that GFFM indeed detrended
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the signal in an iterative manner, which the data were smoothly detrend when gt and gb were

less then 1. Otherwise, to totally fit the data to reference line, gt and gb must to be 1.

Some differences can be seen among GFFM and traditional detrend method. While the

traditional method uses a trend line as reference, the GFFM uses an idea of ground line as

reference to apply “forces” to fit the data, as shown in the trended random data (Figures 4.4 to

4.7).

Figure 4.4. GFFM test using a dataset with 150 samples. Reference line
on static mode based on median, and gravity force function as independent
mode, linear and coefficients gt=1.0 and gb=0.7.

Figure 4.5. GFFM test using a dataset with 150 samples. Reference line
on static mode based on mean, and gravity force function as shared mode,
linear and coefficients gt=0.8 and gb=1.0.

64



Figure 4.6. GFFM test using a dataset with 1000 samples. Reference line
on static mode based on mean, and gravity force function as shared mode,
linear and coefficients gt=0.9 and gb=1.0.

Figure 4.7. GFFM test using a dataset with 2000 samples. Reference
line on static mode based on min-max, and gravity force function as shared
mode, linear and coefficients gt=0.9 and gb=1.0.

High gravity force means that more data will fit to reference line. If the data presents a

linear trend and the applied gravity force gt is smaller than gb for instance, the data in bottom-

space will be more fitted to reference line and vice-versa. This method presents advantages and

disadvantages. Regarding to the advantages of the GFFM, we can consider:

• Smooth and controlled detrends;

• Independent vertical spaces of detrend (top or bottom);

• Same detrend methods can be applied in any trend type, i.e. linear and polynomial;

• Detrend result looks more realistic keeping a controlled data fluctuations;

• Detrend results are kept in an average place of the raw data amplitude (not zero

reference).
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Regarding to the disadvantages of the GFFM, we can consider:

• Gravity forces values close to maximum, may damage some parts of the resulted data;

• For data with low trends, GFFM can smoothly damage some parts of the resulted data;

• Not always a better detrend is based on gt = gb, sometimes it should be tested before.

4.2. Abrupt Change Correction Method (ACCM)

The present method was initially developed to correct some abrupt changes in the data over

time on the GSR and HR data. Noises and abrupt changes along the time, badly affect whole

processing sequence. To correct it, a new approach called Abrupt Change Correction Method

(ACCM) was developed in this work.

The ACCM algorithm uses a threshold between 0 and 1. For normalized data, the best

threshold was 0.2. It means that, if the difference between consecutive data values is higher

than 0.2, probably we are facing an abrupt data variation and it should be corrected. These

problems were corrected keeping the correct data content along the time, using the Algorithm

2.

Algorithm 2 ACCM core algorithm.

data← norm(data)

len data← len(data)

d← diff(data[1:], data[:−1])

threshold← 0.2

mag ← abs(d) >= threshold

edges← nonzero(mag)

len edges← len(edges)

k ← 0

while k > len edges do

d edges← edges[k]

j ← d edges

while j < len data do

if d[d edges− 1] >= threshold then

data[j]← data[j]− d[d edges− 1]

end if

if d[d edges− 1] <= −threshold then

data[j]← data[j] + abs(d[d edges− 1])

end if

j ← j + 1

end while

k ← k + 1

end while
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The abrupt changes on GSR data, were mainly caused by motion artifacts and by the

sensor default configuration, where it decreased abruptly the GSR data values after it reach the

maximum y-axis. On HR data, it were cause by the earclip disconnections along the experiment.

On EEG data, it were caused by motion artifacts (Table 4.1).

Table 4.1: Corrections of abrupt data changes using ACCM,

over the experiment datasets RC1 to CL3.

Dataset RC1 RC2 RC3 GC1 GC3 LS2 VC1 CR1 CLX CL3

HR × × × × × × × × × ×
GSR × × − − × − × − − ×
EEG − × × − − − − × × −

** Corrections applied on Datasets **

ACCM >10 4 >10 >10 >10 > 10 7 10 >10 >10

4.2.1. Abrupt Change Correction for GSR Data

Figures 4.8 to 4.11, show the data abrupt changes over the GSR datasets. These datasets were

previously normalized and corrected along the time (in seconds).

Figure 4.8. GSR dataset correction referent to the flight dataset CL3.
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Figure 4.9. GSR dataset correction referent to the flight dataset RC1 and RC3.
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Figure 4.10. GSR dataset correction referent to the flight datasets GC1
and LS2.
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Figure 4.11. GSR dataset correction referent to the flight datasets VC1
and CLX.
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4.2.2. Abrupt Change Correction for HR Data

Some corrections were also applied on HR dataset along the experiments, as shown in Figures

4.12 and 4.13. The HR abrupt changes were caused by the ear-clip disconnection. When the

ear-clip disconnected, the experiment’s supervisor put it back in place, immediately.

Figure 4.12. HR dataset correction referent to the flight datasets CL3 and VC1.
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Figure 4.13. HR dataset correction referent to the flight datasets RC1 and GC3.
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4.3. Outliers Detection and Correction

Other best practice to process the data before the emotion recognition is to identify the data

outliers, which it can interfere on the final result.

An outlier is a value whose value is markedly different from the other values in the dataset

(Figure 4.14). To partially solve this problem, there are a couple of methods used to detect

possible outliers. Once detected the outliers, it can be removed or normalized according to the

dataset values. In this work, the outliers detection method was also used to remove or normalize

some signal spikes that arose from the processing phase.

Figure 4.14. Outliers detected in some dataset.

The Z-Score and modified Z-Score are some methods that can be used to detect outliers.

Table 4.2, presents the detected and removed outliers for all datasets. These methods were

applied during the preprocessing and processing.

Table 4.2: Outliers detection and removal using Z-Score and

modified Z-Score.

Outlier Method ACCM Normalization Detected Corrected

Z-Score − − 947(2.05%) 0%

Z-Score − Applied 947(2.05%) 0%

Z-Score Applied − 947(2.05%) 553(1.20%)

Z-Score Applied Applied 947(2.05%) 553(1.20%)

Modified Z-Score − − 3256(7.06%) 0%

Modified Z-Score − Applied 3256(7.06%) 0%

Modified Z-Score Applied − 3256(7.06%) 777(1.69%)

Modified Z-Score Applied Applied 3256(7.06%) 777(1.69%)

According to previous table, ACCM is also useful to remove outliers as consequence from

the abrupt change data corrections along the dataset. It is also possible to see that the modified

Z-Score detected different number of outliers. Both methods were tested and the best result was

applied.
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4.3.1. Z-Score

This method is used to detect outliers on a dataset. It presents low sensibility to detect outliers

on small datasets. To compute the Z-score on each observation inside any dataset, the Equation

4.1 is used:

Z(n) =
y(n)− ȳ
std(y)

(4.1)

The ȳ and std(y) denote the sample mean and sample standard deviation, respectively. In

another words, the data is computed in units of how many standard deviations it is from the

mean. This method considers to use a threshold greater or lower than 3.0 to indicate potential

outliers. It was also considered a constant values called batch, to define the number of previous

samples to consider in the case of outlier correction or removal process (Algorithm 3).

Algorithm 3 Z-Score core algorithm detection and correction.

len data← len(data)

batch← 10

i← 0

while i < len data do

z[i]← (data[i]−mean(data))/std(data)

if z[i] < −3.0 ∨ z[i] > 3.0 then

outlier ← TRUE

if i > batch then

z[i]← median(data[(i− batch) : i])

else

z[i]← median(data[0 : i])

end if

else

outlier ← FALSE

end if

i← i+ 1

end while

4.3.2. Modified Z-Score

The modified Z-Score is an improvement of Z-Score based on the mean of absolute deviation and

a constant. Compared with the Z-Score, the modified Z-Score is much more sensible to detect

outliers on small datasets (Equation 4.2).

MZ(n) =
0.6745× (y(n)− ỹ)

MAD
(4.2)

The Median Absolute Deviation (MAD) is defined by Equation 4.3. It is recommended to

use a threshold greater or lower than 3.5 to better detect potential outliers. The ỹ and |y|, define

the median of the data and the absolute value of y, respectively.

MAD = median(|y(n)− ỹ|) (4.3)
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The outliers were corrected based also on modified Z-Score (Algorithm 4). Like in Z-Score

method, the batch size constant was also considered to correct the outliers.

Algorithm 4 Modified Z-Score core algorithm detection and correction.

len data← len(data)

MAD ← abs(data[:]−median(data))

const← 0.6745

batch← 10

i← 0

while i < len data do

mz[i]← const ∗ (data[i]−median(data))/MAD

if mz[i] < −3.5 ∨mz[i] > 3.5 then

outlier ← TRUE

if i > batch then

mz[i]← median(data[(i− batch) : i])

else

mz[i]← median(data[0 : i])

end if

else

outlier ← FALSE

end if

i← i+ 1

end while

4.4. Data Normalization

The acquired data were normalized between 0 and 1. Normalization means to scale the data

in identical level or power level. Equation 6.12, presents the normalization used in this work,

which n represents each index from input vector.

y(n) =
y(n)−min(y)

max(y)−min(y)
(4.4)

4.5. Face Dataset - Smoothing Abrupt Oscillations

The dataset produced by the Face Reader software, was used as the dataset reference i.e., the

target or desired output on the emotion recognition process. It presented a lot of abrupt and non

natural variation of emotion intensities along the time, bringing also several mismatches e.g.,

sometimes recognizing scared emotions as disgusting or surprise. Some of these mismatches, were

the major reason of errors on the developed emotion recognition. To minimize these effects, the

modified Z-Score was used together with a third-order smooth filtering, varying the window

length between 120 and 151 samples.
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Figure 4.15, shows the application of modified Z-Score and Savitzky-Golay filter over the

raw facial emotion dataset, also shows the emotion discretization between 1 and 5: 1-happy,

2-sad, 3-angry, 4-surprised and 5-scared.

Figure 4.15. Raw face emotion dataset with smoothing and resampling.

The smoothing method applied on the facial emotion dataset, was based on Savitzky-Golay

filter, to eliminate possible noises in the data by smoothing them using the least-squares poly-

nomials (Savitzky and Golay, 1964).

The emotion discretization along the each sample (Figure 4.15-bottom), was based on Algo-

rithm 5, where it defines the higher emotion intensity (or predominant instantaneous emotion)

among all five different emotions by time; it can also be faced like the answer for the question,

“which emotion presents the higher intensity now?”. This discretization is useful to predict the

major (higher) emotion intensities along each sample time, returning a single output between 1

and 5.
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Algorithm 5 Emotion discretization between 1 (happy) and 5 (scared).

len face← len(face data)

num emotions← 5

emotion classes← []

i← 0

while i < len face do

emo tmp← [face data[i, 0 : num emotions]]

max emotion index← get index(max(emo tmp))

emotion classes[i]← max emotion index

i← i+ 1

end while

4.6. Preprocessing Output

At the end of the preprocessing steps presented before (i.e. abrupt changes corrections, normal-

ization, smoothing and outliers detections) the data are ready to be processed and to extract

its features. The data correlation will be improved after the data further processing.

Figure 4.16, shows a direct data correlation N×N before and after the preprocessing steps

in a portion of the raw HR and GSR datasets (N=10,000 in a total of 44,237 samples).

Figure 4.16. A set of raw HR and GSR data with N=10e+3 samples)
preprocessing result. Raw dataset before preprocessing (left); raw dataset
after (right).

All 5 colors in the Figure 4.16-right, represent the 5 emotions based on facial emotion

recognition software. This also shows that after the preprocessing, it is possible to organize the
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dataset in such a way that it is already easy to visualize several clusters based on facial emotions

even they are overlapping clusters.

In this chapter were presented all raw data preprocessing under the facial, HR, GSR and

EEG datasets, that it is important to be used in the next steps of this work.
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CHAPTER 5

Data Processing

The dataset processing transforms the raw data into a data format that can be manipulated

by any programming language, being possible to achieve good analysis accuracy (Hafen et al.,

2014). In the present work, it includes: abrupt changes correction, outliers removal, signal

detrend, signal analysis in time and frequency, peaks processing and analysis, data splitting,

bandpass and lowpass filtering, as shown in Figure 5.1.

Figure 5.1. Detailed stages from recorded data until feature extraction.

5.1. Drift Removal

The second signal detrend applied to all input data x(n), is also called as drift removal. This

process is extremely important to improve the quality of data that will be used to perform
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emotion recognition. Researches try to reduce the effect of these drifts along the time, through

the use of different methods and applications as for instance, to compare the efficiency of some

drift removal methods based on ECG (Lenis et al., 2017) or to measure human gait with wearable

sensors (Takeda et al., 2014).

In this work, the small recursive filter dc-blocker was applied to execute the second drift

removal. It is an efficient tool because conserves the main characteristics of each peak and

remove the dc-component 1 of a signal circulating in a delay-line loop (Julius, 2008). This

recursive filter is specified by the difference equation below,

y(x) = x(n)− x(n− 1) +Ry(n− 1), (5.1)

where R represents a parameter that normally vary between 0.9 and 1. The digital filters are

often implemented by converting the transfer function to a linear constant-coefficient difference

equation through the Z-transform, as presented by Equation 5.2.

H(z) =
1− z−1

1−Rz−1
(5.2)

Figure 5.2, shows a raw EEG signal before and after the application of the dc-blocker, keeping

all peaks characteristics and relative amplitudes.

Figure 5.2. Result of the drift removal from a raw EEG dataset having t
= 9.78 min.

5.2. Auto Regressive Exogenous - Motion Artefact Removal

The Auto Regressive Exogenous (ARX) method was used to estimate the accelerometer artifacts,

inside a of several raw data (artefact estimation). It is part of the motion artefact removal

acquired along the experiments and was applied mainly on EEG datasets (Siddiquee et al.,

2018).

To estimate the accelerometer values along the time, we define the true data (i.e. clean,

without noise) as s(n), which it was corrupted by the motion artifacts w(n); using these two

parameters, the corrupted data for each data point n, can be defined by,

1The dc component, also called average value, represents a constant voltage that shifts the signal up
or down along the y-axis, e.g., considering the signal x(t) = A + Bsin(2π), the term A represents the
dc-component.
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x(n) = s(n) + w(n). (5.3)

The data coming from each device, are represented by x(n), where it includes the true data

and the artifacts. It is not possible to extract clearly the artefact to remove it although, it can

be estimated. The artefact estimation can be represented by ŵ(k), as presented below.

ŵ(k) = (

NA∑
i=1

aix(k − i)) + (

NB∑
j=0

bTj u(k − j)) (5.4)

The 1xL model vector coefficients a and b can be defined by, a = [a1, a2, . . . , aNA] and b =

[b1, b2, . . . , bNB] for 1xL input model vector u = [u(k), u(k−1), . . . , u(k−NB)] representing the

3D-accelerometer values u[k] = [Ax(k), Ay(k), Az(k)]. Thus, expanding the previous Equation,

we will have,

ŵ(k) = a1(k − 1) + . . .+ aNAx(k −NA) + bT0 u(k) + bT1 u(k − 1) + . . .+ bTNBu(k −NB). (5.5)

Equations 5.6 to 5.7, can be used to find the models coefficients, where e(n) represents the

instantaneous error between the model and the system input, and J(a, b) represents the Jacobian

matrix applied to the model coefficients.

e(k) = x(k)− ŵ(k) (5.6)

J(a, b) =

N∑
k=1

(x(k)− ŵ(k)) (5.7)

Once determined the 1xL vector a1, a2, . . . , aNA and the Lx1 vector bT0 , b
T
1 , . . . , b

T
NB, the

artefact estimation can be found ŵ(n), the true data ŝ(n) can also be estimated as defined

below.

ŝ(n) = x(n)− ŵ(n) (5.8)

The Signal to Noise Ratio (SNR) defined by Equation 5.9, was used to control the best

model estimation, where: σ2
x, σ2

eAft
and σ2

eBef
represent respectively, the variance of the data

with motion artefact input (x(n)), the variance of the data after (ŝ(n)) and before (ŵ(n)) the

artefact removal (Siddiquee et al., 2018).

∆SNR = 10 log10(
σ2
x

σ2
eAft

)− 10 log10(
σ2
x

σ2
eBef

) (5.9)

5.3. Filtering - Bandpass and Lowpass Combination

The filtering was applied to consider only the β-band on these experiments, regarding to EEG

data. The classical IIR digital filters Butterworth, were used in this work.

The frequency range between 12 to 40Hz was considered using a bandpass Butterworth filter

(BPF) to guaranteer a minimum β-band noises; furthermore, a lowpass Butterworth filter filter

(LPF), having cutoff frequency of 40Hz, was also applied, to improve the prior filtering effect

not increasing its order (Figure 5.3).
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The filtering also removed the highest electrooculogram (EOG) artifacts. These EOG arti-

facts are one of the main noises over the EEG data and must be avoided. It were caused by

the eyes globe movements along the experiments, since that the EOG frequencies are mainly

between 0.5 to 12Hz.

Figure 5.3. Filtering output over EEG data regarding to β-band.

5.3.1. Spectrogram View

Spectrograms can be used to visualize the change of a nonstationary frequency of a data over

time. The spectrogram enable us to see the frequency energies or magnitudes along the time,

based on consecutive Fourier transforms over different datasets and EEG channels, as shown in

Figure 5.4.

Since the beta band (Umeda and Satoshi, 2013) is more related to cognition processes, it

is possible to visualize the flight moments where it demanded more cognitive resource of each

volunteer. These moments are takeoff (Task 1) and landing (Task 7), where it were indeed

critical for all volunteers. The spectrogram shown that in general, the EEG amplitudes of all

datasets along the Task 3, were less if compared with the amplitudes referent to takeoff and

landing.

Figure 5.5, shows an example of EEG 8-channels after the filtering and processing. At this

point, eyes motion artefact and other movement artifacts were removed. To compare the results

from these processing, the Chapter 2 presents the same CR1 dataset in raw, without processing.

Still in these processed EEG, it is possible to see the high data oscillation, mainly during the

takeoff (Task 1), final approach (Task 6) and landing (Task 7).
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Figure 5.4. Some dataset spectrograms, showing the flight parts with high amplitude.

5.4. Discrete Fourier Transform Analysis

The Discrete Fourier Transform (DFT) plays a central role in this work, since most of the

processing is based on that. It is also used to visualize the effect of the filtering process. The

DFT transforms the data of the space of time, to space of frequency, defined by direct transform

as defined in Equation 5.10. In another words, it is represented as linear combinations of bounded

exponential through the Fourier transform (Oppenheim and Verghese, 2015). The application

of the DFT to spectral analysis will be shown further.

x[n] =
N−1∑
k=0

X[k]ej(2π/N)kn (5.10)
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Figure 5.5. Processed EEG (8 channels) dataset referent to CR1 experiment.
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CHAPTER 6

Feature Extraction

Feature extraction, is the last step before the emotion recognition and it can be applied over

time and frequency contexts. It is very important in the pattern identification, classification,

modeling and general automatic recognition. Feature extraction is also fundamental to minimize

the loss of important information embedded in some data and to optimize a dataset bringing a

more clear information to recognize any pattern or cluster (Al-Fahoum and A Al-Fraihat, 2014).

The considered feature extraction methods are adapted to the processed data, according to the

physiological data, e.g. HR, GSR and EEG.

Figure 6.1, shows how the feature extraction works for each dataset along the time. For

each part of a data (∆s) along the time, several features were extracted e.g., mean, standard

deviation and so on. The features that were extracted of the emotions output dataset (happy,

sad, angry, surprise and scared), were related with the same time interval of the features that

are extracted of the biosignal dataset (HR, GSR and EEG1-8).

Figure 6.1. Feature extraction and sampling demonstration using the fea-
ture µ for all detected emotions from the face.

A fixed number of samples are selected by time and the features are extracted from it. The

number of samples to select i.e., the window length to extract features, is up to the problem

and data in case. For instance, for HR data, it is recommended a time window of at least five

seconds of samples and so on.
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6.1. Features Description

A total of 15 different features were extracted. Each feature was chosen according to each dataset

characteristics as presented in Table 6.1, which it describes all extracted features as such as the

correspondent datasets. Features based on wavelets were also applied over EEG dataset.

Table 6.1. Extracted features for HR, GSR, EEG and Face datasets.

Extracted Feature Applied to

Features Description Dataset

FEAT MN � Mean of a sample. HR, GSR, EEG, Face

FEAT MD � Middle value of a sample (median). HR, GSR, EEG, Face

FEAT STD � Standard deviation (σ) of a sample. HR, GSR, EEG

FEAT VAR � Variance (σ2) of a sample. HR, GSR, EEG

FEAT ENT � Measure the samples’ entropy i.e., irregularities. HR, GSR, EEG

FEAT RNG � Absolute range (max−min) value of a sample. HR, GSR, EEG

FEAT RMS � Root mean squared of a sample. HR, GSR, EEG

FEAT PEK � Measure the amount of peaks into a sample. GSR

FEAT WAC � Mean of the wavelet (Symlets) approximation coeff. EEG

FEAT WDC � Mean of the wavelet (Symlets) detailed coeff. EEG

FEAT SD1 � Short-term HR variability. HR

FEAT SD2 � Long-term HR variability. HR

FEAT SCT � Vector norm from the Poincaré plot centroid. HR

FEAT SAR � Ellipse area based on SD1 and SD2. HR

Regarding to GSR datasets, it was important to understand its data profile and behaviour

to properly relate it to the number of peaks (peak frequency) along the time/events; for this

reason, one feature that relates peaks by time, was applied. Other peculiarities are also found

over the HR datasets as for instance, the HR variabilities during several emotional events along

time. This HR dynamic fluctuation, were mainly represented by three features. Furthermore,

other statistical features were also applied over all datasets, considering several sample lengths.

Despite the extracted features, not all of them were used at same time, due it can provoke

recognition ambiguities and regression problems. To solve that, some techniques were applied

to select the best features, by correlating or removing them from some datasets.

6.1.1. Mean Features (FEAT MN)

The mean value was applied over the HR, GSR, EEG and face datasets. It is represented by

the sample vector x = [x1, x2, . . . , xn] as defined below, which the x̄ is the mean value of the

sample.

x̄ =
1

N

N∑
n=1

xi = (
x1 + x2 + ...+ xn

N
) (6.1)

6.1.2. Median Features - Correcting Mean’s Discrepancies (FEAT MD)

The arithmetic feature median, is sometimes also applied as a feature from HR and GSR data

instead of the mean. It because, the median works better when the dataset presents some high
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spikes, which it cause wrong increase of the data mean value. In this case, the median (x̃) is

more realistic, taking the middle value of this data already ordered (Devore, 2000).

Equation 6.2 must to be used if the sampled data have an odd number of items, or Equation

6.3, otherwise. In both cases of median x̃, the data vector x must be first sorted in ascending

or descending order.

x̃odd = x(
n+ 1

2
)item (6.2)

x̃even =
x(n

2
) + x(n

2
+1)

2
item (6.3)

6.1.3. Standard Deviation and Variance Features (FEAT STD, FEAT VAR)

The standard deviation and variance, were also applied over the HR, GSR and EEG datasets.

It are represented by, σ and σ2 respectively, as defined by Equations below.

σ =

√√√√√√
N∑
n=1

(x(n)− x̄)2

N
, σ2 =

N∑
n=1

(x(n)− x̄)2

N

(6.4)

6.1.4. Continuous Entropy Features (FEAT ENT)

The continuous entropy or differential entropy, is another feature used in this work. It is a

concept in data theory to represents the measurement of the average rate of a random variable;

it is also understood as a method to measure the quality or classes1 diversity of such dataset.

On continuous probability distributions, it is based on the expansion from Shannon entropy

concept, defined by Equation 6.5,

h(X) = −
∫ N(S)

0
f(x)logf(x)dx, (6.5)

where X represents a random variable, defined by a probability density function of a subset S.

The discrete approximation of h(X), can be defined as below.

h(X) = −∆x

N(S)∑
0

f(x)logf(x) (6.6)

6.1.5. Wavelets Features (FEAT WAC, FEAT WDC)

The wavelet analysis plays an important role as part of the feature extraction methods. It al-

lows us to analyze time and frequency contents of signals simultaneously and with high data

resolution. When it is applied over a continuous data, it is called of Continuous Wavelet Trans-

form (CWT), and over a discrete data is Discrete Wavelet Transform (DWT) (Mallat, 2009).

It lies on the concept of mother wavelet (MWT), which it is a function used to decompose and

describe the analyzed data. The Symlets (‘sym7´) was the MWT used, due its high similarities

and compatibilities with the EEG data in all scalp regions (Equation 6.7) (Al-Qazzaz et al.,

2015).

1In data mining or artificial intelligence, the class represents the type of an instance from a dataset or
the target into the classification problem.
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CWT (a, b) =

∫ +∞

−∞
x(t)ψ∗a,b(t)dt, (6.7)

where x(t) represents the unprocessed signal, a is the dilation, and b is the translation factor.

Furthermore, as shown previously, the CWT method includes a complex conjugate term denoted

by ψ∗a,b, where ψ(t) is the mother wavelet (Al-Fahoum and A Al-Fraihat, 2014) (Equation 6.8).

ψa,b(t) =
1√
|a|
ψ(
t− b
a

). (6.8)

Figure 6.2, shows the practical approach of wavelets, which it works basically, fixing a

function called mother wavelet, decomposing the signal x(t), into a shifted and scaled versions

of this function, allowing to precisely distinguish local characteristics of the signals.

Figure 6.2. Wavelet shifts along of a sine wave with different frequencies,
where ai 6= aj and bi 6= bj.

6.1.6. Peaks Counting Features (FEAT PEK)

Peaks detections and counting were applyed over the GSR dataset. It is a important features

to characterize the GSR data. Before detect the peaks position, the data was normalized and

detrended, to equalize the peaks amplitude along the time. After that, the peaks detection

was applied. Once the peak positions were detected, the final procedure was apply it over the

original GSR data.

The result of this method, is shown in Figure 6.3 below, which refers to 3,600 samples from

dataset RC1, after the detrend and normalization (top plot), returning to original shape (bottom

plot).
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Figure 6.3. Peaks detections and counting over 3600 samples (DS-RC1).

It detection was based on topographic prominence method, which it is an useful concept to

maintain a good peak choice, discarding the noisy peaks. In addition, it refers to the minimum

point height, necessary to descend to get from the peak to any other higher surface.

6.1.7. Poincaré Plots Features (FEAT SD1, FEAT SD2, FEAT SCT, FEAT SAR)

The Poincaré plots of RR intervals is one of the methods used in Heart Rate Variability (HRV)

analysis. It returns a useful visual map (or cloud), which is capable to summarize the dynamics

of an entire RR time series regarding to actual and next one values. It is also a quantitative

method to give information over the long- and short-term HRV (Golinska, 2013; Piskorski and

Guzik, 2007).

This method is represented by Poincaré descriptors, SD1 and SD2, which are used to

quantify geometrically the produced cloud. It is given in terms of the variance of each RRi and

RRi+1 pairs. The i refers to the ith RR value, as shown in Figure 6.4.

Figure 6.4. Poincaré plot demonstration over the flight dataset RC2.

Mathematically, let the HRV be defined by the vector RR = [RR1, RR2, . . . , RRn+1] and

the position-correlated vectors x and y, as defined below (Tayel and AlSaba, 2015; Piskorski

and Guzik, 2007),

x = [x1, x2, . . . , xn] ≡ [RR1, RR2, . . . , RRn], (6.9)
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y = [y2, x3, . . . , yn+1] ≡ [RR2, RR3, . . . , RRn+1]. (6.10)

For a regular Poincaré plot, the centroid vector Cxy = [xc, yc] of its cloud representation, is

define by,

xc =
1

n

n∑
i=1

xi, yc =
1

n

n∑
i=1

yi. (6.11)

To compute the numerical representation of the centroid, the vector norm is applied using

the Equation 6.12.

||Cxy|| =
√
x2
c + y2

c (6.12)

To compute the descriptors (short-term variability) SD1 and SD2 of a standard Poincaré

plot, the distances d1 and d2 of any ith RR from the centroid interceptors l1 and l2 respectively

are defined as,

d1i =
|(xi − xc)− (yi − yc)|√

2
, d2i =

|(xi − xc) + (yi − yc)|√
2

. (6.13)

Considering those prior algebraic definitions for a standard cloud, it is possible to compute

the SD1 and SD2.

SD1c =

√√√√ 1

n

n∑
i=1

d2
1i, SD2c =

√√√√ 1

n

n∑
i=1

d2
2i (6.14)

The area covered by the resulted ellipse, was also used as a feature for HR dataset, and it

can be determined as below.

SA = π.SD1.SD2 (6.15)

The results over the Poincaré plots for all datasets (raw and processed datasets) used in this

work, are shown in Figures 6.5 to 6.8.

Figure 6.5. Poincaré plot for raw dataset and processed dataset (CL3).
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Figure 6.6. Poincaré plots for raw datasets and processed datasets (RC1
to GC1).
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Figure 6.7. Poincaré plots for raw datasets and processed datasets (GC3
to VC1).
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Figure 6.8. Poincaré plots for raw datasets and processed datasets (VC2
to CLX).

6.1.8. Sample Absolute Interval Range Features (FEAT RNG)

The range of a sample was also used as a feature. It is defined as the absolute difference between

the values referent to the last f(t) and the first position f(t−∆t) of a sample in time, as shown

in Equation 6.16, which ∆t represents the interval length to displace the interval from the actual

position t.
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R(t) = |f(t)− f(t−∆t)| (6.16)

6.2. Singular Value Decomposition - Features Selection

Since the features were extracted, some of them can be useless in the recognition process due

its low representativity. To select the best set of them, the features must to have its dimension-

ality reduced. Thus, the Singular Value Decomposition (SVD) was used, executing a matrix

decomposition or matrix factorization of the input matrix (extracted features). It is based on

eigenvalues, applied to a bidimensional m× n matrix A.

Mathematically, this method factorizes a matrix into a product of matrices, as shown in

Equation 6.17.

A = UDV ∗, (6.17)

where D is a nonnegative diagonal matrix, having the singular values of A; U and V are matrices

that satisfy the condition U∗U = I and V ∗V = I. The resultant matrix of this decomposition,

is the new input matrix applied into the recognition process.

6.3. Features Columns Centering

After apply a matrix decomposition, a mean centering or also called column/block centering

was computed. It is important to normalize the input vector for each data, in the same space

of reference to have zero expectation by each measurement i.e., must be centered as shown in

Figure 6.9.

Figure 6.9. Columns centering over feature vectors, before (left) and after (right).

Equation 6.18 below, shows how to apply it for each data column, which CA represents the

centered columns and µA represents the mean of each column vectors or columns from dataset

A.

CA(n) =
N∑
n=1

(A(n)− µA) (6.18)
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6.4. Features Correlation

Several statistical parameters are used to analyze the extracted features such as: point estima-

tion, probability density function and Pearson Correlation Coefficient (PCC).

To not interfere negatively on the final result, some features were not used. In this work, the

features means and medians were strongly correlated, motivating us to use only one of them, as

shown in Figure 6.10.

Figure 6.10. Scatter plot for some extracted features.

6.4.1. Pearson Correlation Coefficient - Evaluating the Features Correlations

The selection of the best features, is the process of select relevant features or remove the worst

one. The best features improve and the worst degenerate the model accuracies.

In this work, the feature selection was based on correlation coefficient measurement, which

it is an important method for feature analysis in machine learning models. It measures how

strongly one variable or feature, depends over another variable and basically, it is defined in

numerical range between -1 to +1. Variables which are uncorrelated with the analyzed objective,

probably it should interfere negatively on the final model or result. In addition, if two variables
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are strongly correlated to each other (i.e. very close to [-1;-0.9]/[+0.9;+1]), is recommended

to eliminate one of these variables because seems to be same. A good correlation can merge

between [-0.7;-0.5]/[+0.5;+0.7].

There are three types of features correlations: positive correlation, negative correlation and

no correlation (null correlation).

The most used correlation coefficient method, is the statistical method called Pearson Cor-

relation Coefficient (PCC), also called as R-correlation, and it is defined by Equation 6.19.

R =

N∑
n=1

(y(n)− ȳ)(ŷ(n)− ȳ)√√√√ N∑
n=1

(y(n)− ȳ)2
N∑
n=1

(ŷ(n)− ȳ)2

(6.19)

Simplifying this, we can find the Equation below.

R =

√√√√√√√√√√
N∑
n=1

(ŷ(n)− ȳ)2

N∑
n=1

(y(n)− ȳ)2

(6.20)

There are also methods called, determination coefficient, which it is mainly used as regression

metrics method e.g., the square of PCC (R2).

The prior sections shown the extracted features used to recognize emotions. It were features

based on statistics, peaks detection, RR dispersion and wavelets. In general, the features ex-

traction stage isn’t sufficient to aim totaly the next stage of an emotion recognition. Thus, all

of them needed to be analyzed before going forward, since some of them can have low repre-

sentativity on the recognition process. For this reason, SVD and other normalization were also

applied.
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CHAPTER 7

Emotion Recognition

Emotion recognition is the process of identifying human emotions through the attribution of

emotional states based on the observation of visual and auditory nonverbal cues. It include

facial, vocal, postural, and gestural cues displayed by a sender, that is, a person displaying an

emotional reaction (Bänziger, 2014).

The proposed emotion recognition was based on Artificial Neural Networks (ANN) and

Deep Learning techniques (DL). It were implemented with Python3 Toolkits (standard and

data processing libraries), PyBrain, Keras and TensorFlow. This last, having also execution

support of the Graphics Processing Unit (GPU).

7.1. Artificial Neural Network

The ANN is a supervised technique, inspired by the human’s brain behaviours, which it can

process several instruction in short periods of time, taking fast decisions and reactions. Its

topology architecture can be designed according to the problem to be solved being based on

the number of layers and neurons. A low number of neurons is recommended to solve simpler

problems. However, if the problem complexity increases, another number of neurons must to

be analysed as needed. Mathematically, each single neuron, represents a single function over

several parameters of activation and thresholds (or biases).

The use of ANN and DL to accurately recognize emotions, was based on a couple of re-

searches, which it were analyzed to find out which techniques are more used nowadays on this

context (see the most used techniques presented in Chapter 1). These analysis shown that the

techniques based on neural networks e.g., ANN, CNN, RNN, DNN, are powerful tools due its

high capacity to solve complex tasks, being massively used on modern controls, dynamic sys-

tems, data mining, automatic bio-patterns identification (e.g. fingerprints or face recognition)

and robotics. It is possible to cite also the high capacity of the ANN, to produce complex and

parallel solutions over the field of extracted features. Each ANN layer, can presents different

and parallel outputs. It is also possible to use ANN combined with another techniques such as,

K-Means or SVM, for instance.

7.1.1. McCulloch-Pitts Neuron Model

The McCulloch-Pitts neuron model, was proposed in 1943 by the neuroscientist Warren Mu-

Culloch and the logician Walter Pitts. They designed the artificial neurons (perceptrons) as a

structure based on: inputs, activation functions, weights, thresholds and outputs. In this model,

the neurons are connected by weights and biases, to control the network output. A single percep-

tron network is called single-layer perceptron, which it represents a single boundary line having

low capacity of classification or regression i.e., very low dimensionality. If the network presents

more than a single neuron layer, it is called Multi-Layer Perceptron (MLP), which it can solve
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complex problems of regression and classification. Figure 7.1, shows the structure of a single

neuron model proposed by McCulloch-Pitts.

Figure 7.1. Perceptron model.

Several activation functions can be used to compute the neuron output, such as: identity,

binary step, logistic (also called sigmoid, sigmoidal or soft step), tangentoid, Inverse Square

Root Unit (ISRU), Rectified Linear Unit (ReLU), softmax, among others. In this work, three

of them were considered: sigmoidal, softmax and ReLU.

7.1.2. ANN Development and Modeling

Since the ANN is a supervised method, the training must to be considered. The data training

represents one fraction of the dataset and it is defined in Equation 7.1, where τ represents

the training-set, x(n) the input-set (or input signal features), d(n) the desired output in each

iteration n, and Ni that represents the number of instances of the training-set (Haykin, 2011).

τ = {x(n), d(n)} |Ni
n=1 (7.1)

The induced local field (for forward computation), was used and can be computed by Equa-

tion 7.2, which xi goes from input neurons i; wji, and wb represent the weights connections from

the neuron j to i, and bji is the bias applied for each neuron, by iteration n.

vj(n) =

N∑
i=1

wji(n)xi(n) + bjiwb, j ≥ 1 (7.2)

For each hidden layer, two different activation functions were considered: the sigmoidal and

ReLU. The sigmoidal activation function ϕ(·) is defined by Equation 7.3, where a determines

the threshold of the function. The sigmoid function returns values between 0 and 1.

ϕj(vj(n))sig =
1

1 + e−avj(n)
, a ≥ 1 (7.3)

Another activation function applied in this work, is the ReLU or rectified linear unit. It is

defined by Equation 7.4, which it returns values between 0 and +∞.

ϕj(vj(n))ReLU =

0 if x < 0

x if x ≥ 0
(7.4)
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Regarding to output layer, also two different activation functions were considered: ReLU

and the softmax, which it last one is defined by Equation 7.5. It represents the prediction

probability for each emotion, over all output neurons having values between 0 and 1.

P (y = j|X)(n) =
evj(n)

No∑
k=1

evk(n)

. (7.5)

The P (y|X) is mainly applied in case of classification problem i.e., which the outputs return

independent probabilities limited by the number of output classes in case. Otherwise, when

using the ϕj(vj(n)), the ANN output can be represented by any amount of neurons, which it

must to return independent values (not probabilities), being useful when we are working with

regression analysis. Since this work lies over the ANN and regression problems, the ϕj(vj(n))

was used.

The error signal or instantaneous error produced by each neuron j forms the output layer,

defined by Equation 7.6,

εj(n) = dj(n)− yk(n), (7.6)

where dj(n) represents the jth element of d(n) and yk(n) the kth instantaneous output. Fur-

thermore, the yk(n) and the instantaneous error energy (ξ) of each neuron j (Equation 7.7),

are both considered to reach the best network accuracy along the training epochs (iterations)

(Marsland, 2015; Haykin, 2011).

ξj(n) =
1

2
ε2
j (n) (7.7)

The local gradient applied to each neuron k from the output layer, is described by Equation

7.8.

δk(n) = εk(n)yk(n)(1− yk(n)) (7.8)

The ANN weights adjustments (for backward computation) applied to each output neuron,

are defined by delta-rule (Equation 7.9) (Haykin, 2011),

∆wkj(n) = α∆wkj(n− 1) + ηδk(n)yk(n), (7.9)

where the momentum α ([0;1]) is used to avoid learning instabilities while it increases the learning

rate η ([0;1]), to decrease the mean error; both variables are adjusted during the training phase.

7.1.3. Learning Rate Analysis

The learning rate is a fundamental variable to optimize the learning process in the recognition

process. One way to find the best learning rate for such problem, is to relate the learning rate

with the recognition loss or error.

For a too low learning rate, the loss function doesn’t improve enough; when it is too high,

the loss function i.e. the recognition begins to diverge. In the optimal learning rate range, the

loss is controlled and the recognition accuracy is the most reliable, as shown in Figure 7.2-left.

Figure 7.2-right, shows the log of the percentage of correct matches, when it intends to consider
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one emotion class for each ANN output i.e., when the higher value of each neuron is taken, as

the majority emotion in case (emotion classes).

Figure 7.2. Learning rate η(n) analysis by test errors ε(n) for each iter-
ation n from RC1 to CL3 (left); learning rate by correct matches (right).

The best learning rate selection used in the present work, was based on a stochastic or

empirical mode, and dynamic mode.

On stochastic or empirical mode, the learning rate selection is made using a range of learning

rates, testing one by one. In this case, this selection shown that the optimal learning rate range

was between 10−5 and 10−4. In this mode, the higher learning rate of this interval ( eta = 10−4)

was chosen for the recognition process.

In dynamic mode the deep learning method was used. In this case, the “Adam” optimization

(Kingma and Ba, 2015) can be used. It is an optimization algorithm used to update network

weights iteratively based on training data; it is another option instead of the classical stochastic

gradient descent method.

7.1.4. Finding an Optimal Hidden Neurons

The layers placed between the input and output layers, are called hidden layers where the hidden

neurons are present. A common challenger about the hidden layers, is to find an optimal number

of hidden neurons inside them.

The number of the best hidden neurons to use, is found empirically according to the dataset

and model to be reached. According to Hastie et al., typically the number of hidden neurons

is somewhere in the range of 5 to 100, with the number changing according to the data inputs

and training iteration (Hastie, Tibshirani, and Friedman, 2016); otherwise, the produced model

might not have enough adaptability to figure out the nonlinearities of the input datasets. To

compute the optimal number of hidden neurons avoid overfitting along the training (Equation

7.10).

Nh =
Ns

ρ(Ni +No)
, (7.10)

where Nh, defines the number of neurons inside the hidden layers; Ns, defines the number of

samples from the training dataset; ρ, defines an arbitrary scaling factor usually between 2 and

10, to indicate how general the model should be prevent overfitting; and Ni and No, define
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respectively the number of input and output neurons. Another common approach to compute

the optimal number of hidden neurons, is defined by Equation 7.11.

Nh =
√
NiNo (7.11)

Other ways to compute the number of hidden neurons are also present by Huang and Hsu

(Huang and Hsu, 2012; Tieding, Xijiang, and Shijian, 2010; Yeh, 2003).

7.1.5. Finding an Optimal Train Iterations

The increase the number of training iteration, does not mean that it increases the recognition

learning along a new data as well, even if there are descend errors along the training.

Analyzing the descend errors from the train and test (validation), it is possible to detect

the moment to stop training, as shown in Figure 7.3. There, it is possible to note the point of

divergence between the train and test errors, where it must be used as the stop condition of

the training, even if the training descend errors continue to decrease. It because the produced

model can fit very well to the training dataset, but very bad at predicting new datasets. This

unwanted situation is called overfitting.

Figure 7.3. Descend errors and divergence descend close to 1,100 iterations.

7.2. Cross Validation - Testing Recognition Models

The emotion recognition tests, were executed based on the methodology of Leave-One-Out Cross

Validation (LOOCV) (Baron and Stańczyk, 2021) because it shown to be a good methodology

on the proposed multimodal system. It is based on leaving one flight dataset out (k), while

it trains the ANN using the other flight datasets (N-1 ). In a practical emotion recognition, it

uses the emotion datasets of the other volunteers to detect the emotions of one single volunteer

(Figure 7.4).
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Figure 7.4. Cross validation applied to test the models. It trains using
volunteers datasets, to detect emotions of one single volunteer k.

7.3. Realtime Outliers Removal - RTOR

In realtime regression problems, sometimes the neurons output outliars values that are very far

of the optimal value; such wrong values are critical to compute correctly the evaluation metrics

in realtime e.g., absolute mean errors. To correct this problem, the Realtime Outliers Removal

(RTOR) method was developed in this work. The RTOR adds another layer after the ANN

output, creating a batch of the outputs values y1→n to find local outliars. If it is detected, the

final output will be normalized according to outliers removal methods, as shown in Figure 7.5.

Figure 7.5. ANN using RTOR methodology over the output neurons y1→n.

Figure 7.6, shows how it works and how its methodology is useful to produce better regression

models, according to the ANN outputs. The new outputs y∗1→n, are based on the batch length,

which it represents the number of samples to be treated in realtime.
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Figure 7.6. RTOR being applied on a neuron output. Note the corrected
output y∗k (blue) and the raw output yk having outliers (green).

7.4. Evaluation Metrics for Emotion Output - Regression Models

Before present metrics to evaluate the emotion recognition outputs, it is extremely important

to know that this work does not considers one single emotion as final output, but intensities

of five emotions by time, outputted from each independent output neurons. It because, as was

said in the introduction of this work, the human body can’t feel one single emotion by time,

but several of them, having different intensities and valence. For this reason, the presented

evaluation metrics, work over all regression outputs, which it was measured separately.

Each output neuron was designed as a regression function (emotion intensities). These

outputted emotions intensities are measured to define the quality of it, according to the ideal or

target outputs from the training. Thus, below are presented several methods used to quantify

the emotion recognition over the outputs.

7.4.1. Mean Absolute Relative Difference (MARD)

The measurement of the recognition’s accuracy from each output neuron, was also based on

the Mean Absolute Relative Difference (MARD). It corresponds to a direct comparison between

paired measurements of a given neuron prediction and the target value.

Mathematically, it is computed as the mean value of the absolute relative difference (ARD)

between the prediction outputs (ŷ(n)) and the target, as defined in Equations below (Kirchsteiger

et al., 2015).

ARD(n) = 100%
|ŷ(n)− y(n)|

y(n)
(7.12)

MARD =
1

N

N∑
n=1

ARD(n) (7.13)

7.4.2. R-Squared Value (R2)

The R2, is a statistical measure of coefficient determination (different of the coefficient correla-

tion from prior chapter). It defines how well a regression line prediction, estimates the actual
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regression output. In another words, it represents the proportion of the variance for an output

values, that is explained by a linear model.

To calculate it, some variables must to be considered: the actual values y(n), compute the

mean of those values (ȳ) and look at the distance from the actual values to the mean (D[y→ȳ]);

draw a regression line, and we come up to estimated values ŷ(n) i.e., points from this line;

compute the distance from estimated values to the mean (D[ŷ→ȳ]); and compare these distances

values i.e, D[y→ȳ] with D[ŷ→ȳ], as defined by Equation 7.14 (Fukuyama and Goto, 2016).

R2 = 1−

N∑
n=1

(ŷ(n)− ȳ)2

N∑
n=1

(y(n)− ȳ)2

(7.14)

It is measured between 0 to 1. When the model does not explains any of the variation in the

response variable around its mean, it returns 0; otherwise, in a total fit situation, if the model

represents all of the variation in the response variable around its mean, it returns 1. For larger

R2, a better regression model is obtained.

7.4.3. Root Mean Squared Error (RMSE)

The Root Mean Squared Error (RMSE) or also called, Root Mean Squared Deviation (RMSD),

computes the error distance between the estimated values ŷ(n) and the actual values y(n) and

can range between 0 and ∞, as defined below.

RMSE =

√√√√√√
N∑
n=1

(ŷ(n)− y(n))2

N
(7.15)

7.4.4. Mean Absolute Error (MAE)

The Mean Absolute Error (MAE), represents the average of the absolute difference between the

predicted values and the observed value (output or prediction). In another words, it is a linear

representation, which all the single differences are weighted equally in the average, as shown in

Equation 7.16. Like RMSE, it also can range between 0 and ∞:

MAE =
1

N

N∑
n=1

|y(n)− ŷ(n)| (7.16)

This chapter presented how the emotion recognition were defined and executed in this work.

ANN architecture, numbers of hidden neurons and layers were some of the information presented.

In addition, several methods to analyze the obtained output models were also explained, such

as outliars removal in realtime, test or validation methods i.e. LOOCV, and evaluation metrics

for emotion outputs.
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CHAPTER 8

Result on β-Band Analysis from Simulated Flight Experiments

Considering the simulation experiment and the acquired EEG data of the volunteers, the β-

band analysis was carried out based on: spectrogram analysis and statistical analysis of the

brain activities, according to each proposed flight task.

8.1. β-Band Spectrogram Analysis

The developed software and spectral analysis were based on Python libraries. The spectrograms

were executed by the scipy.signal.spectrogram. Figure 8.1, shows the EEG spectrogram referent

to the flight dataset RC1, which each vertical line delimits the tasks from 1 up to 7. It was

acquired of the volunteer’s frontal left lobe (channel Fp1). Figure 8.1-a, shows the data already

filtered (between 12 to 40Hz) correspondent to beta band (Kropotov, 2009). The raw EEG

dataset (already detrended), is shown in Figure 8.1-b, where it is possible to observe a full band

data before the filtering.

To try to relate the volunteer brain activities according to each flight tasks, the EEG spec-

trogram was considered over the β-band, presenting different magnitudes, according to each

flight task. Observing the Figure 8.1-(d,e), it is possible to observe a lower magnitudes during

task 3 (cruise flight), that mainly corresponds to the frequency interval between 12 and 30Hz,

which it may also indicates a relaxation of the beta brain activity, thus also the volunteer, due

the low complexity of the present task.

According to some safety reports, on a real aviation context (Boeing, 2017; ICAO, 2017),

the safest flight phase, having the lowest number of accidents, occurs exactly in the flight phase

equivalent to task 3. It shows that, the proposed experiments were able to produce similar phys-

iological responses of a real pilot in flight. The considered spectral results can be useful to better

understand why in some flight phases higher probability to occur accidents is presented. These

physiological responses felt by each volunteers of these experiments, were naturally produced

i.e., the experiment supervisor did not interfere on these reactions, not even he said that tasks

are the most risky.
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Figure 8.1. Spectrogram of the flight dataset RC1-frontal left lobe (Fp1).
(a) Processed 12-40Hz data; (b) Raw data spectrogram; (c) Spectrogram
of the processed 12-40Hz data; (d) Processed data on delimited Y-axis; (e)
Grayscale spectrogram with tasks delimitation.

These higher spectra magnitudes are result of a natural complexity of some flight tasks e.g.

takeoff and landing, which they require more attention and precise use of flight commands. This

can explain why the beta band magnitudes increased when the landing get closer, for instance.

By observing the temporal brain area (channel T8) of the same volunteer (flight RC1), it

was also possible to see the brain responses during the flight (Figure 8.2). It is interesting to

analyze the feelings of the volunteers (e.g. by using questionnaires), just after starts a cruise

flight (task 3), which it come after a more intense situation (high brain activity) due problems

during the climb task, to a more stabilized flight; at the same way, when the volunteer felt to

be close to start to descent the aircraft (task 4), the brain activity (from frontal lobe Fp1 and

temporal lobe T8) shown to increase again, reflecting that the volunteer starts to be alert (or

even stressed) to execute the next task.
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Figure 8.2. Spectrogram of the flight dataset RC1 - temporal right lobe (T8).

The volunteer of the flight RC1, reported feeling a little insecure, to execute the tasks climb,

approaches and landing (tasks 2, 5, 6, and 7) correctly. Surely for this reason in this flight, the

volunteer’s brain presented high magnitude and oscillation during those tasks, resulting in an

accident on the last task i.e., landing.

A different way to represent the prior spectrogram (bottom plot), is shown in Figure 8.3.

It represents the mean values of all magnitudes (on each frequency) computed by time. This

representation shows the brain magnitudes along the time for each flight, of the temporal left

and right lobes over positions T7 and T8.

Figure 8.3. Mean values of spectrogram magnitudes of the flight dataset
RC1 - temporal left and right lobes (T7 and T8).

By observing the temporal left lobe (channel T7), the brain signal begins high on takeoff

(task 1), decreasing a little along the climb (task 2), being lower during the cruise flight (task

3); the signal starts to get high magnitudes again, when the volunteer prepared to descent (task

4), what obviously must demand more attention and alertness until the landing (task 7). Even

though the volunteer of the flight RC1, was a mid-level volunteer on flight simulator, he reported

to feel a little insecure on some tasks of the current flight. The opposite activity of T7 and T8,

observed during the task 1, happened probably because the influence of other positions from the

107



brain, or due the volunteers move only one hand along the experiment reflecting these action on

the other side.

Another situation of low brain activity during some flight tasks, can be found in the recorded

data of the flight CR1 (frontal left lobe - F3) (Figure 8.4).

Figure 8.4. Spectrogram of the flight dataset CR1-frontal left lobe (F3).
(a) Processed 12-40Hz data; (b) Spectrogram of the processed 12-40Hz
data; (c) Grayscale spectrogram with tasks delimitation; (d) Mean values
of spectrogram energies.

It shows clearly the lower levels of magnitude (mainly between 12 and 30Hz) just after takeoff

(task 1) and during the cruise flight (task 3). The highest brain magnitudes were produced

during the critical flight situations i.e., takeoff, approach and landing. In fact, different patterns

of magnitudes were acquired on the same tasks of both flights, RC1 and CR1. The probable

reason for such differences, are explained in Subsection 8.1.2.

8.1.1. Situations of Imminent Accident or Loss of Control

When the volunteers felt totally not confident about executing the tasks and/or in a situa-

tion close to an accident occurring, it was possible to see a high brain activities, as shown in

Figure 8.5, with plots of the short flight experiment CR3, in which the volunteer lots the control

of the airplane during the beginning of the climb (task 2), going off of the runway (runway
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excursion) and not reaching the ideal velocity for takeoff. For that reason, the airplane did not

reached an ideal altitude and vertical speed, colliding with the ground a few seconds later.

Figure 8.5. Spectrogram of the flight dataset CR3-temporal left lobe

(T7). (a) Processed 12-40Hz data; (b) Spectrogram of the processed 12-

40Hz data; (c) Grayscale spectrogram with tasks delimitation; (d) Mean

values of spectrogram energies.

Regarding to the temporal left lobe (channel T7), the spectrogram of this flight clearly shows

the brain activity just after the volunteer lost the aircraft controls and before the collision, with

some trees over the airport area. For almost 8 s, the volunteer thought to get the airplane’s

controls again; probably for this reason, we can see a short period of lower brain magnitudes at

the middle of the spectrogram (Figure 8.5b-d). Unfortunately, the accident occurred just few

seconds after.

The same patterns of brain activities were also identified in other volunteers data; however,

such a brain response depends on how the volunteer reacts when facing some flight phases. These

experiments show that, when the volunteers have more experience with virtual simulation or

even aviation , their brain activities presented a more similar pattern of amplitudes during most

of the flight. This is important information for carrying out further research.
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Analyzing the recorded video of the flight CR3 to detail the accident events, it was possible

to see that the volunteer pushed the joystick back (i.e., takeoff command) at 40 knots (20.57 m/s

or 74.08 km/h), instead of the recommended takeoff velocity of 80 knots (flight experiment’s

checklist). After that, the aircraft started to climb slowly for almost 8 seconds (period of lower

brain activity–false sensation of the correct fight procedure) and suddenly experienced a stall

situation, colliding with the ground at 21 seconds. Then, the aircraft dragged on the ground,

until it collided with some obstacles at 32 seconds (this was the second scared moment reported

by the volunteer).

8.1.2. Volunteer’s Expertise and Brain Activity

All spectrogram analysis were used to show the brain behaviour along the tasks. It were based

on volunteers that stated they were healthy. Using spectrogram analysis, it is possible to give

support to know, how calm were the volunteers when facing some flight situations or moments,

or also how was the volunteer’s biological reactions throughout the flight.

The spectrogram analysis obtained from the acquired data, shown a direct relation between

the volunteers’ expertise (or their confidence on flight simulation) and the observed amplitude

and oscillation of their brain activity during the flight. The experiment also shown that a more

experienced and confident volunteers in the proposed flight tasks, had presented in general, dif-

ferent patterns of brain activities compared to volunteers having less expertise or less familiarity

with fight simulations and/or electronic games. The volunteers informed their levels of expertise

on the proposed experiment.

Figure 8.6, shows the mean values of spectrogram magnitudes of the frontal left lobe (F3)

for two different volunteers: one volunteer feeling insecure to execute the proposed flight tasks,

and the other volunteer feeling more confident to execute the same tasks.

Figure 8.6. Mean values of spectrogram magnitudes of the flight dataset
CR1 and LS2 - frontal left lobe (F3).

The brain activities of the less experienced volunteer (top plot), changed more intensely

during the more calm flight phases, reaching mean values close to 4.5×103 units; it also presented

a parabolic-shaped signal mainly between task 2 and 5, showing that the volunteer started to
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feel calmer along the climb until start the descent procedure. Regarding to the more experienced

and confident volunteer, it is possible to see that the brain activities, presented less intensities

and less variability of magnitude along the tasks; it also reached an average amplitude close to

1.42 × 103 units i.e., 68% less, compared to the first volunteer. Such patterns were repeated

along the most flights and volunteers.

The normalized mean values of the brain activities according to the volunteers’ expertise,

are shown in Figures 8.7-8.9, which the red line represents the beginner-level volunteers (i.e.

datasets CR1, CR3, CLX and CLX), the blue line the mid-level volunteers (i.e. datasets RC1,

RC2, RC3, GC1, GC3, LS1 and LS2) and the green line the mid-level and experienced-level

volunteer (VC1 and VC2); it because this last datasets represents only one volunteer, which it

weren’t enough to reliably analyze alone. It shows clearly that a more experienced volunteers

present in general, lower variations and amplitudes of the brain activities along the time; in the

flight tasks which they have more complexity and risk to execute (i.e., task 1 and tasks 4-7),

the beginner-level volunteers shown to be unsafe and thus reflecting in a high amplitudes of the

β-band as it can be seen in Figure 8.7-Fp1, for instance.

Figure 8.7. Normalized mean values of the brain activities for all datasets
and the volunteers’ expertise (left lobe).

In addition, these figures also shown that for all electrode positions, the beginner volunteers

present the highest amplitudes in risky tasks and lowest amplitudes in task 3 (cruise flight),

where they felt more relaxed after conclude the risky task takeoff. The same situation didn’t

happen with the more experienced volunteers which they shown to be more confident along most

of the flight tasks as shown in Figure 8.8-Fp2 and 8.8-T8, for instance.

In every plots, the mean values of brain activities for both type of volunteers (mid-level and

experienced-level), presents less oscillation between the tasks and lower amplitudes in critical
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Figure 8.8. Normalized mean values of the brain activities for all datasets
and the volunteers’ expertise (right lobe).

flight phases such as, takeoff, approach and landing for instance. Another way to see that, is

through the Figure 8.9, where in the takeoff, descend, approach and landing, the beginner volun-

teers presented higher amplitudes of brain activities compared to a more experienced volunteers

on flight simulations.

Figure 8.9. Normalized mean values of brain activities for all datasets
over each task according to volunteers’ expertise.

These last three figures reinforce the other figures and shown that indeed, a brain of a less

experienced volunteers produces a more stabilized pattern of signal, being sometimes easy to

identify an unsafe volunteer looking only for the data shape along the time and proposed tasks.
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8.2. β-Band Analysis for Flight Tasks

A quantification of the brain responses for each flight task is described in this section, based on

some statistical features.

The brain activities were analyzed according to each flight task: takeoff, climb, cruise flight

(route), descent, approach, final approach and landing. It were measured based on some sta-

tistical features such as: mean value, standard deviation and variance. These information were

useful to show the relation between the brain activities and those flight phases.

In less than 20% of the dataset, it is possible to observe that the signal of one lobe (e.g.

left lobe), seems to have an opposite activities compared to the signal from the right lobe. One

probably reasons observed for that, are based on: the brain signals coming from one lobe or

position, interfering over the signal of other lobe; or due to the volunteers movements along the

experiments, which they used the right hand to control the airplane, while the left hand kept

immovable along each flight. Such observed motion artefacts on the beta band mainly over the

motor cortex, are presented by Khanna and Carmena (Khanna and Carmena, 2017), Chung et

al. (Chung et al., 2016; Chung et al., 2018).

Figure 8.10-left, shows the mean value µ0 of the brain magnitude for each flight task, re-

garding to the frontal left lobe (channel Fp1). The parameter σ2[µ0] of the Figure 8.10-right,

represents the variance of the mean value spectrogram µ0. It is important to show how the mean

value spectrum µ0 vary along the time.

Figure 8.10. Mean values of brain magnitudes by tasks, of the flight
dataset CR1 - frontal left lobe (Fp1), considering a total of 13 volunteers’
datasets.

Table 8.1, presents the normalized mean values and standard deviation for dataset CR1.

There, it is possible to see that the volunteer seemed to feel more calm or confident during the

task 3; the initial approach (task 5) and final approach (task 6), presented the higher intensities.

The variance values of the brain amplitudes over the considered spectrum (12-40Hz) flight

CR1, are shown in Figure 8.11. High variances between the frequencies in the same time (vertical

axis), means that the spectrum magnitude of each frequency are highly different. Otherwise, it

means that the brain magnitude in the same time, presented more similar intensities for each

frequency. It is useful to measure which tasks presented more magnitude variances by frequencies

axis, along the time.
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Figure 8.11. Mean of magnitudes by tasks, of the flight dataset CR1 -
frontal left lobe (Fp1).

Tables 8.2-8.13, present the mean values, standard deviations and variances of all flight

datasets.
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Table 8.1. µ0, σ0 and σ2
0 of β-band, 31-39Hz and 40Hz of the flight dataset

CR1 (beginner level volunteer).

Electrode Simulator/Flight Tasks - Flight DS:CR1 [Normalized µ0 ± σ0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.65±0.22 0.48±0.18 0.29±0.15 0.41±0.15 0.88±0.12 0.69±0.07 0.54±0.10
EEG-F3 0.51±0.13 0.52±0.23 0.18±0.12 0.72±0.19 0.85±0.05 0.72±0.14 0.68±0.03
EEG-C3 0.53±0.12 0.35±0.22 0.42±0.21 0.72±0.09 0.71±0.07 0.71±0.11 0.93±0.06
EEG-T7 0.48±0.17 0.26±0.11 0.24±0.17 0.62±0.25 0.36±0.11 0.53±0.15 0.82±0.07
EEG-Fp2 0.48±0.08 0.42±0.26 0.25±0.13 0.52±0.27 0.85±0.10 0.58±0.14 0.49±0.12
EEG-F4 0.54±0.07 0.30±0.17 0.50±0.20 0.76±0.06 0.81±0.15 0.61±0.15 0.84±0.03
EEG-C4 0.45±0.23 0.51±0.21 0.49±0.28 0.72±0.09 0.47±0.05 0.66±0.17 0.68±0.06
EEG-T8 0.43±0.17 0.34±0.14 0.48±0.23 0.77±0.11 0.61±0.03 0.50±0.08 0.56±0.14
Electrode Simulator/Flight Tasks - Flight DS:CR1 [Normalized σ2

0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.05 0.03 0.02 0.02 0.01 0.00 0.01
EEG-F3 0.02 0.05 0.01 0.03 0.00 0.02 0.00
EEG-C3 0.01 0.05 0.05 0.01 0.01 0.01 0.00
EEG-T7 0.03 0.01 0.03 0.06 0.01 0.02 0.01
EEG-Fp2 0.01 0.07 0.02 0.08 0.01 0.02 0.01
EEG-F4 0.01 0.03 0.04 0.00 0.02 0.02 0.00
EEG-C4 0.05 0.04 0.08 0.01 0.00 0.03 0.00
EEG-T8 0.03 0.02 0.05 0.01 0.00 0.01 0.02

Table 8.2. µ0, σ0 and σ2
0 of β-band, 31-39Hz and 40Hz of the flight dataset

RC1 (mid-level volunteer).

Electrode Simulator/Flight Tasks - Flight DS:RC1 [Normalized µ0 ± σ0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.46±0.21 0.55±0.22 0.28±0.13 0.61±0.19 0.55±0.13 0.36±0.04 0.51±0.06
EEG-F3 0.69±0.22 0.40±0.19 0.39±0.14 0.51±0.13 0.46±0.06 0.25±0.07 0.55±0.12
EEG-C3 0.60±0.15 0.49±0.17 0.32±0.11 0.33±0.15 0.11±0.07 0.37±0.16 0.69±0.21
EEG-T7 0.85±0.10 0.37±0.16 0.36±0.18 0.59±0.26 0.56±0.08 0.43±0.08 0.69±0.10
EEG-Fp2 0.36±0.32 0.60±0.23 0.49±0.22 0.68±0.16 0.65±0.07 0.65±0.08 0.59±0.06
EEG-F4 0.51±0.09 0.64±0.15 0.46±0.32 0.50±0.18 0.73±0.12 0.33±0.08 0.73±0.16
EEG-C4 0.77±0.15 0.60±0.17 0.26±0.12 0.53±0.25 0.37±0.19 0.42±0.19 0.93±0.05
EEG-T8 0.45±0.12 0.70±0.14 0.36±0.16 0.44±0.25 0.43±0.12 0.36±0.07 0.53±0.08
Electrode Simulator/Flight Tasks - Flight DS:RC1 [Normalized σ2

0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.05 0.05 0.02 0.04 0.02 0.00 0.00
EEG-F3 0.05 0.03 0.02 0.02 0.00 0.01 0.02
EEG-C3 0.02 0.03 0.01 0.02 0.00 0.03 0.04
EEG-T7 0.01 0.02 0.03 0.07 0.01 0.01 0.01
EEG-Fp2 0.10 0.05 0.05 0.02 0.01 0.01 0.00
EEG-F4 0.01 0.02 0.10 0.03 0.01 0.01 0.03
EEG-C4 0.02 0.03 0.02 0.06 0.03 0.04 0.00
EEG-T8 0.01 0.02 0.03 0.06 0.01 0.00 0.01
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Table 8.3. µ0, σ0 and σ2
0 of β-band, 31-39Hz and 40Hz of the flight dataset

RC2 (mid-level volunteer).

Electrode Simulator/Flight Tasks - Flight DS:RC2 [Normalized µ0 ± σ0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.50±0.07 0.45±0.18 0.44±0.15 0.34±0.18 0.56±0.13 0.82±0.13 0.48±0.11
EEG-F3 0.46±0.20 0.63±0.28 0.65±0.20 0.38±0.18 0.37±0.09 0.67±0.16 0.47±0.08
EEG-C3 0.35±0.23 0.55±0.22 0.59±0.27 0.55±0.31 0.21±0.10 0.71±0.10 0.67±0.05
EEG-T7 0.52±0.13 0.52±0.22 0.42±0.18 0.33±0.21 0.63±0.10 0.70±0.18 0.45±0.05
EEG-Fp2 0.48±0.17 0.66±0.15 0.53±0.16 0.40±0.26 0.65±0.15 0.54±0.06 0.48±0.05
EEG-F4 0.47±0.06 0.55±0.18 0.28±0.11 0.47±0.22 0.31±0.08 0.61±0.07 0.56±0.09
EEG-C4 0.27±0.17 0.43±0.16 0.47±0.23 0.27±0.16 0.24±0.12 0.57±0.13 0.42±0.05
EEG-T8 0.23±0.02 0.54±0.13 0.37±0.15 0.48±0.32 0.32±0.05 0.59±0.18 0.74±0.09
Electrode Simulator/Flight Tasks - Flight DS:RC2 [Normalized σ2

0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.00 0.03 0.02 0.03 0.02 0.02 0.01
EEG-F3 0.04 0.08 0.04 0.03 0.01 0.03 0.01
EEG-C3 0.05 0.05 0.07 0.10 0.01 0.01 0.00
EEG-T7 0.02 0.05 0.03 0.04 0.01 0.03 0.00
EEG-Fp2 0.03 0.02 0.02 0.07 0.02 0.00 0.00
EEG-F4 0.00 0.03 0.01 0.05 0.01 0.01 0.01
EEG-C4 0.03 0.02 0.05 0.03 0.01 0.02 0.00
EEG-T8 0.00 0.02 0.02 0.11 0.00 0.03 0.01

Table 8.4. µ0, σ0 and σ2
0 of β-band, 31-39Hz and 40Hz of the flight dataset

RC3 (mid-level volunteer).

Electrode Simulator/Flight Tasks - Flight DS:RC3 [Normalized µ0 ± σ0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.27±0.20 0.31±0.09 0.39±0.11 0.10±0.09 0.23±0.17 0.66±0.08 0.86±0.09
EEG-F3 0.20±0.15 0.26±0.11 0.51±0.23 0.22±0.15 0.53±0.10 0.52±0.06 0.61±0.10
EEG-C3 0.41±0.15 0.84±0.11 0.49±0.29 0.06±0.07 0.24±0.06 0.39±0.01 0.38±0.22
EEG-T7 0.36±0.04 0.33±0.13 0.54±0.20 0.09±0.04 0.19±0.05 0.26±0.02 0.66±0.17
EEG-Fp2 0.31±0.13 0.51±0.15 0.33±0.16 0.91±0.05 0.56±0.21 0.40±0.06 0.51±0.06
EEG-F4 0.20±0.10 0.65±0.26 0.43±0.22 0.14±0.08 0.30±0.10 0.52±0.03 0.75±0.12
EEG-C4 0.33±0.15 0.36±0.06 0.49±0.21 0.05±0.05 0.58±0.16 0.91±0.10 0.78±0.12
EEG-T8 0.42±0.10 0.56±0.16 0.64±0.20 0.14±0.13 0.31±0.19 0.82±0.08 0.82±0.04
Electrode Simulator/Flight Tasks - Flight DS:RC3 [Normalized σ2

0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.04 0.01 0.01 0.01 0.03 0.01 0.01
EEG-F3 0.02 0.01 0.05 0.02 0.01 0.00 0.01
EEG-C3 0.02 0.01 0.08 0.01 0.00 0.00 0.05
EEG-T7 0.00 0.02 0.04 0.00 0.00 0.00 0.03
EEG-Fp2 0.02 0.02 0.03 0.00 0.04 0.00 0.00
EEG-F4 0.01 0.07 0.05 0.01 0.01 0.00 0.01
EEG-C4 0.02 0.00 0.04 0.00 0.02 0.01 0.01
EEG-T8 0.01 0.02 0.04 0.02 0.04 0.01 0.00
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Table 8.5. µ0, σ0 and σ2
0 of β-band, 31-39Hz and 40Hz of the flight dataset

GC1 (mid-level volunteer).

Electrode Simulator/Flight Tasks - Flight DS:GC1 [Normalized µ0 ± σ0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.61±0.16 0.62±0.18 0.48±0.28 0.46±0.15 0.68±0.27 0.32±0.12 0.31±0.10
EEG-F3 0.65±0.15 0.68±0.24 0.43±0.28 0.43±0.15 0.40±0.13 0.22±0.13 0.13±0.10
EEG-C3 0.74±0.12 0.52±0.23 0.52±0.27 0.40±0.24 0.44±0.06 0.37±0.12 0.11±0.10
EEG-T7 0.83±0.15 0.61±0.22 0.50±0.28 0.43±0.13 0.49±0.11 0.33±0.14 0.33±0.11
EEG-Fp2 0.71±0.19 0.71±0.14 0.30±0.18 0.53±0.11 0.60±0.05 0.47±0.14 0.26±0.09
EEG-F4 0.74±0.08 0.66±0.11 0.29±0.19 0.52±0.21 0.65±0.10 0.50±0.16 0.22±0.08
EEG-C4 0.80±0.13 0.50±0.11 0.26±0.10 0.22±0.14 0.38±0.07 0.23±0.09 0.29±0.11
EEG-T8 0.80±0.14 0.63±0.19 0.48±0.23 0.42±0.10 0.49±0.11 0.31±0.09 0.31±0.09
Electrode Simulator/Flight Tasks - Flight DS:GC1 [Normalized σ2

0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.02 0.03 0.08 0.02 0.07 0.01 0.01
EEG-F3 0.02 0.06 0.08 0.02 0.02 0.02 0.01
EEG-C3 0.01 0.06 0.07 0.06 0.00 0.01 0.01
EEG-T7 0.02 0.05 0.08 0.02 0.01 0.02 0.01
EEG-Fp2 0.04 0.02 0.03 0.01 0.00 0.02 0.01
EEG-F4 0.01 0.01 0.04 0.05 0.01 0.03 0.01
EEG-C4 0.02 0.01 0.01 0.02 0.01 0.01 0.01
EEG-T8 0.02 0.04 0.05 0.01 0.01 0.01 0.01

Table 8.6. µ0, σ0 and σ2
0 of β-band, 31-39Hz and 40Hz of the flight dataset

GC3 (mid-level volunteer).

Electrode Simulator/Flight Tasks - Flight DS:GC3 [Normalized µ0 ± σ0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.59±0.11 0.42±0.16 0.59±0.19 0.42±0.23 0.68±0.26 0.68±0.11 0.59±0.07
EEG-F3 0.64±0.11 0.45±0.23 0.61±0.15 0.45±0.19 0.71±0.17 0.59±0.12 0.51±0.08
EEG-C3 0.30±0.05 0.29±0.09 0.38±0.10 0.30±0.13 0.61±0.27 0.61±0.30 0.20±0.11
EEG-T7 0.68±0.10 0.46±0.27 0.59±0.20 0.47±0.21 0.73±0.17 0.49±0.10 0.46±0.08
EEG-Fp2 0.74±0.22 0.48±0.23 0.59±0.25 0.49±0.19 0.43±0.12 0.48±0.07 0.28±0.20
EEG-F4 0.74±0.14 0.41±0.26 0.53±0.18 0.54±0.20 0.54±0.06 0.66±0.10 0.30±0.11
EEG-C4 0.60±0.10 0.44±0.18 0.48±0.12 0.49±0.26 0.72±0.13 0.58±0.13 0.49±0.14
EEG-T8 0.42±0.08 0.45±0.24 0.58±0.10 0.51±0.15 0.70±0.14 0.46±0.07 0.39±0.11
Electrode Simulator/Flight Tasks - Flight DS:GC3 [Normalized σ2

0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.01 0.03 0.04 0.05 0.07 0.01 0.01
EEG-F3 0.01 0.05 0.02 0.03 0.03 0.01 0.01
EEG-C3 0.00 0.01 0.01 0.02 0.07 0.09 0.01
EEG-T7 0.01 0.07 0.04 0.04 0.03 0.01 0.01
EEG-Fp2 0.05 0.05 0.06 0.04 0.01 0.00 0.04
EEG-F4 0.02 0.07 0.03 0.04 0.00 0.01 0.01
EEG-C4 0.01 0.03 0.02 0.07 0.02 0.02 0.02
EEG-T8 0.01 0.06 0.01 0.02 0.02 0.00 0.01
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Table 8.7. µ0, σ0 and σ2
0 of β-band, 31-39Hz and 40Hz of the flight dataset

LS1 (mid-level volunteer).

Electrode Simulator/Flight Tasks - Flight DS:LS1 [Normalized µ0 ± σ0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.43±0.08 0.61±0.19 0.51±0.18 0.63±0.22 0.40±0.23 0.66±0.02 −
EEG-F3 0.39±0.06 0.52±0.25 0.32±0.12 0.42±0.09 0.39±0.09 0.29±0.03 −
EEG-C3 0.48±0.17 0.55±0.21 0.55±0.16 0.71±0.17 0.46±0.12 0.43±0.01 −
EEG-T7 0.48±0.15 0.61±0.23 0.54±0.22 0.74±0.13 0.57±0.15 0.47±0.04 −
EEG-Fp2 0.42±0.09 0.63±0.21 0.45±0.13 0.51±0.07 0.25±0.14 0.31±0.01 −
EEG-F4 0.33±0.11 0.58±0.27 0.37±0.17 0.49±0.12 0.32±0.09 0.34±0.01 −
EEG-C4 0.35±0.14 0.52±0.23 0.46±0.16 0.50±0.13 0.34±0.14 0.48±0.02 −
EEG-T8 0.31±0.13 0.51±0.23 0.40±0.22 0.29±0.10 0.26±0.11 0.31±0.02 −
Electrode Simulator/Flight Tasks - Flight DS:LS1 [Normalized σ2

0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.01 0.04 0.03 0.05 0.05 0.00 −
EEG-F3 0.00 0.06 0.02 0.01 0.01 0.00 −
EEG-C3 0.03 0.04 0.03 0.03 0.01 0.00 −
EEG-T7 0.02 0.05 0.05 0.02 0.02 0.00 −
EEG-Fp2 0.01 0.04 0.02 0.01 0.02 0.00 −
EEG-F4 0.01 0.07 0.03 0.02 0.01 0.00 −
EEG-C4 0.02 0.05 0.03 0.02 0.02 0.00 −
EEG-T8 0.02 0.05 0.05 0.01 0.01 0.00 −

Table 8.8. µ0, σ0 and σ2
0 of β-band, 31-39Hz and 40Hz of the flight dataset

LS2 (mid-level volunteer).

Electrode Simulator/Flight Tasks - Flight DS:LS2 [Normalized µ0 ± σ0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.45±0.22 0.75±0.16 0.45±0.23 0.53±0.22 0.50±0.09 0.35±0.13 0.44±0.10
EEG-F3 0.63±0.12 0.64±0.20 0.58±0.15 0.65±0.18 0.51±0.07 0.31±0.15 0.23±0.09
EEG-C3 0.32±0.12 0.48±0.11 0.48±0.22 0.42±0.16 0.38±0.06 0.22±0.08 0.05±0.03
EEG-T7 0.44±0.07 0.47±0.18 0.39±0.27 0.53±0.28 0.64±0.14 0.40±0.15 0.38±0.09
EEG-Fp2 0.51±0.17 0.76±0.16 0.46±0.26 0.56±0.20 0.34±0.08 0.29±0.10 0.33±0.06
EEG-F4 0.50±0.07 0.74±0.11 0.50±0.16 0.53±0.19 0.38±0.09 0.36±0.15 0.29±0.07
EEG-C4 0.39±0.10 0.58±0.13 0.51±0.19 0.54±0.20 0.40±0.08 0.42±0.11 0.11±0.08
EEG-T8 0.26±0.13 0.59±0.23 0.39±0.18 0.37±0.11 0.23±0.08 0.45±0.17 0.52±0.13
Electrode Simulator/Flight Tasks - Flight DS:LS2 [Normalized σ2

0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.05 0.02 0.05 0.05 0.01 0.02 0.01
EEG-F3 0.01 0.04 0.02 0.03 0.00 0.02 0.01
EEG-C3 0.02 0.01 0.05 0.03 0.00 0.01 0.00
EEG-T7 0.00 0.03 0.07 0.08 0.02 0.02 0.01
EEG-Fp2 0.03 0.02 0.07 0.04 0.01 0.01 0.00
EEG-F4 0.00 0.01 0.03 0.04 0.01 0.02 0.01
EEG-C4 0.01 0.02 0.04 0.04 0.01 0.01 0.01
EEG-T8 0.02 0.05 0.03 0.01 0.01 0.03 0.02
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Table 8.9. µ0, σ0 and σ2
0 of β-band, 31-39Hz and 40Hz of the flight dataset

VC1 (experienced level volunteer).

Electrode Simulator/Flight Tasks - Flight DS:VC1 [Normalized µ0 ± σ0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.55±0.14 0.22±0.11 0.45±0.06 0.52±0.21 0.85±0.03 0.88±0.11 0.48±0.09
EEG-F3 0.77±0.14 0.31±0.13 0.42±0.09 0.42±0.30 0.92±0.07 0.67±0.18 0.31±0.11
EEG-C3 0.47±0.04 0.06±0.11 0.14±0.14 0.85±0.07 0.78±0.08 0.19±0.17 0.29±0.13
EEG-T7 0.59±0.09 0.17±0.11 0.38±0.14 0.36±0.30 0.84±0.04 0.85±0.13 0.47±0.13
EEG-Fp2 0.49±0.12 0.21±0.09 0.35±0.13 0.38±0.21 0.72±0.09 0.88±0.07 0.43±0.15
EEG-F4 0.62±0.06 0.38±0.17 0.48±0.20 0.49±0.31 0.89±0.10 0.61±0.22 0.45±0.15
EEG-C4 0.45±0.21 0.48±0.31 0.43±0.18 0.40±0.12 0.74±0.12 0.58±0.21 0.54±0.15
EEG-T8 0.34±0.02 0.29±0.13 0.41±0.07 0.45±0.23 0.69±0.03 0.80±0.10 0.59±0.14
Electrode Simulator/Flight Tasks - Flight DS:VC1 [Normalized σ2

0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.02 0.01 0.00 0.05 0.00 0.01 0.01
EEG-F3 0.02 0.02 0.01 0.09 0.00 0.03 0.01
EEG-C3 0.00 0.01 0.02 0.01 0.01 0.03 0.02
EEG-T7 0.01 0.01 0.02 0.09 0.00 0.02 0.02
EEG-Fp2 0.01 0.01 0.02 0.04 0.01 0.00 0.02
EEG-F4 0.00 0.03 0.04 0.10 0.01 0.05 0.02
EEG-C4 0.04 0.10 0.03 0.02 0.02 0.04 0.02
EEG-T8 0.00 0.02 0.01 0.05 0.00 0.01 0.02

Table 8.10. µ0, σ0 and σ2
0 of β-band, 31-39Hz and 40Hz of the flight

dataset VC2 (experienced level volunteer).

Electrode Simulator/Flight Tasks - Flight DS:VC2 [Normalized µ0 ± σ0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.19±0.08 0.66±0.25 0.52±0.20 0.55±0.14 0.26±0.05 0.24±0.06 0.17±0.08
EEG-F3 0.55±0.03 0.64±0.19 0.61±0.22 0.81±0.14 0.61±0.04 0.45±0.13 0.10±0.06
EEG-C3 0.74±0.05 0.87±0.07 0.84±0.09 0.45±0.13 0.47±0.21 0.74±0.03 0.27±0.22
EEG-T7 0.33±0.08 0.53±0.12 0.62±0.26 0.54±0.13 0.09±0.07 0.07±0.04 0.15±0.07
EEG-Fp2 0.28±0.02 0.69±0.24 0.43±0.17 0.49±0.21 0.21±0.05 0.23±0.04 0.14±0.05
EEG-F4 0.23±0.02 0.45±0.17 0.62±0.23 0.67±0.09 0.49±0.02 0.34±0.07 0.09±0.05
EEG-C4 0.35±0.07 0.32±0.11 0.43±0.18 0.77±0.06 0.82±0.11 0.46±0.16 0.06±0.05
EEG-T8 0.21±0.03 0.67±0.21 0.49±0.15 0.59±0.18 0.47±0.11 0.51±0.08 0.16±0.12
Electrode Simulator/Flight Tasks - Flight DS:VC2 [Normalized σ2

0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.01 0.06 0.04 0.02 0.00 0.00 0.01
EEG-F3 0.00 0.04 0.05 0.02 0.00 0.02 0.00
EEG-C3 0.00 0.01 0.01 0.02 0.04 0.00 0.05
EEG-T7 0.01 0.02 0.07 0.02 0.00 0.00 0.00
EEG-Fp2 0.00 0.06 0.03 0.04 0.00 0.00 0.00
EEG-F4 0.00 0.03 0.05 0.01 0.00 0.00 0.00
EEG-C4 0.00 0.01 0.03 0.00 0.01 0.03 0.00
EEG-T8 0.00 0.05 0.02 0.03 0.01 0.01 0.01
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Table 8.11. µ0, σ0 and σ2
0 of β-band, 31-39Hz and 40Hz of the flight

dataset CR3 (beginner level volunteer).

Electrode Simulator/Flight Tasks - Flight DS:CR3 [Normalized µ0 ± σ0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.49±0.14 0.51±0.28 − − − − −
EEG-F3 0.28±0.17 0.54±0.36 − − − − −
EEG-C3 0.70±0.26 0.31±0.24 − − − − −
EEG-T7 0.41±0.11 0.38±0.32 − − − − −
EEG-Fp2 0.56±0.34 0.27±0.25 − − − − −
EEG-F4 0.56±0.18 0.54±0.24 − − − − −
EEG-C4 0.58±0.35 0.31±0.27 − − − − −
EEG-T8 0.62±0.28 0.39±0.23 − − − − −
Electrode Simulator/Flight Tasks - Flight DS:CR3 [Normalized σ2

0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.02 0.08 − − − − −
EEG-F3 0.03 0.13 − − − − −
EEG-C3 0.07 0.06 − − − − −
EEG-T7 0.01 0.10 − − − − −
EEG-Fp2 0.12 0.06 − − − − −
EEG-F4 0.03 0.06 − − − − −
EEG-T8 0.08 0.05 − − − − −

Table 8.12. µ0, σ0 and σ2
0 of β-band, 31-39Hz and 40Hz of the flight

dataset CLX (beginner level volunteer).

Electrode Simulator/Flight Tasks - Flight DS:CLX [Normalized µ0 ± σ0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.62±0.22 0.76±0.09 − − − − −
EEG-F3 0.55±0.21 0.66±0.32 − − − − −
EEG-C3 0.58±0.26 0.27±0.24 − − − − −
EEG-T7 0.61±0.29 0.48±0.23 − − − − −
EEG-Fp2 0.70±0.25 0.54±0.17 − − − − −
EEG-F4 0.43±0.29 0.73±0.26 − − − − −
EEG-C4 0.74±0.24 0.72±0.11 − − − − −
EEG-T8 0.68±0.28 0.72±0.21 − − − − −
Electrode Simulator/Flight Tasks - Flight DS:CLX [Normalized σ2

0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.05 0.01 − − − − −
EEG-F3 0.04 0.10 − − − − −
EEG-C3 0.07 0.06 − − − − −
EEG-T7 0.08 0.05 − − − − −
EEG-Fp2 0.06 0.03 − − − − −
EEG-F4 0.08 0.07 − − − − −
EEG-C4 0.06 0.01 − − − − −
EEG-T8 0.08 0.04 − − − − −
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Table 8.13. µ0, σ0 and σ2
0 of β-band, 31-39Hz and 40Hz of the flight

dataset CL3 (beginner level volunteer).

Electrode Simulator/Flight Tasks - Flight DS:CL3 [Normalized µ0 ± σ0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.59±0.05 0.51±0.20 0.56±0.23 0.59±0.20 0.48±0.08 0.51±0.06 0.49±0.06
EEG-F3 0.54±0.10 0.46±0.22 0.23±0.10 0.49±0.17 0.59±0.06 0.81±0.11 0.79±0.13
EEG-C3 0.31±0.24 0.69±0.18 0.20±0.10 0.55±0.19 0.78±0.16 0.73±0.15 0.67±0.20
EEG-T7 0.88±0.08 0.54±0.25 0.32±0.16 0.41±0.15 0.32±0.11 0.49±0.10 0.25±0.06
EEG-Fp2 0.53±0.09 0.40±0.21 0.45±0.27 0.65±0.10 0.64±0.23 0.75±0.10 0.49±0.26
EEG-F4 0.80±0.10 0.56±0.21 0.45±0.16 0.68±0.09 0.47±0.09 0.49±0.16 0.66±0.09
EEG-C4 0.78±0.12 0.42±0.19 0.30±0.09 0.39±0.10 0.39±0.09 0.46±0.13 0.53±0.08
EEG-T8 0.77±0.18 0.39±0.25 0.27±0.12 0.28±0.15 0.36±0.11 0.64±0.17 0.58±0.15
Electrode Simulator/Flight Tasks - Flight DS:CL3 [Normalized σ2

0]

Channel Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7

EEG-Fp1 0.00 0.04 0.05 0.04 0.01 0.00 0.00
EEG-F3 0.01 0.05 0.01 0.03 0.00 0.01 0.02
EEG-C3 0.06 0.03 0.01 0.04 0.03 0.02 0.04
EEG-T7 0.01 0.06 0.03 0.02 0.01 0.01 0.00
EEG-Fp2 0.01 0.04 0.07 0.01 0.05 0.01 0.07
EEG-F4 0.01 0.04 0.03 0.01 0.01 0.03 0.01
EEG-C4 0.01 0.04 0.01 0.01 0.01 0.02 0.01
EEG-T8 0.03 0.06 0.01 0.02 0.01 0.03 0.02
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CHAPTER 9

Result Analysis on Emotion Recognition

This work presented a multimodal solution to recognize emotions from several physiological

inputs, based on the bio-reactions of volunteers and flight simulation tasks. It is proposed as

one way to contribute on emotion studies over the aviation context i.e., inside of the scope of

aviation accidents caused by human failures.

The achieved results shown to be able to recognize emotions felt by each volunteer acting like

pilots along the simulated flights, using the datasets of other volunteers, as reference. Several

tests were executed in this work to try to find the better recognition results for each volunteer i.e.,

the best model possible to recognize these emotions. In datamining context, the test represents

a portion of the used dataset, used to validate the produced model. The cross-validation was

the method used to aim the emotions recognition process for each volunteer dataset obtained

during each flight experiment.

The emotion recognition tasks were initially based on two different tests: tests without

use of feature extraction (i.e. raw data applied directly over the ANN inputs, with some few

treatment or preprocessing), and tests with the processed data based on feature extraction.

Other aspects were also considered: different ANN architectures, number of training iteration,

number of inputs and hidden neurons, and different flight datasets.

In every tests of emotion recognition, the cross validation was applied to support the emotion

recognition felt by one volunteer in a single flight, according to the emotions already detected

from another flights. In another words, in a total of 13 flights, the training was based on 12

flight datasets (N − 1 flights) to try to recognize the emotions of one single flight. The dataset

having intensities of facial emotions (5 different emotions), was the reference or target of the

ANN training.

The facial emotion reader software, presented several mistakes, detecting wrongly several

emotions which some of them were not possible to be avoided; the consequence of these wrong

matches was some errors under the regression models, outputted from each output neuron.

9.1. What Has Been Done So Far

The preprocessing was the first data treatment executed over the raw datasets. It was based on

signal detrend, abrupt signal corrections, normalization, outliers removals, resampling (sampling

rate equalization) and so on (Figure 9.1).
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Figure 9.1. Preprocessing executed before the processing, feature extrac-
tion and tests.

Then, a data processing was executed, which it included a deeper analysis over the acquired

datasets. It was based on drift removal (second detrend), frequency analysis, abrupt peaks

detections, additional normalization and outlier removal, filtering and so on (Figure 9.2).

Figure 9.2. Processing executed before the feature extraction.

The feature extractions used on emotion recognition process, were executed over the pro-

cessed datasets. Several features were considered such as: poincaré plots, statistical features,

frequency-based features (e.g. wavelets), entropy, peaks detection among others. Some of these

features were applied for one single type of biosignal as for instance, the peaks positions and

wavelets, applied only over GSR and EEG datasets respectively.
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This work based its emotion recognition process over the extracted features. Then, the ANN

and deep learning techniques were used to recognize emotions of each volunteer applying these

features on to input neurons, 2 hidden layers and 5 output neurons (each neuron outputting a

regression model i.e, one emotion intensity). Realtime outliers removal was also applied in this

process. The errors from the emotion recognition process were analyzed and computed based

on RMSE and MAE.

9.2. Description of the Recognition Tests

The main procedures applied on preprocessing, processing and feature extraction are shown in

the tests sequence below. It were based on the features selection and data treatment. At least

the data normalization and abrupt data correction were used, for the most of the tests.

In these tests (Table 9.1), all features were considered for each biosignal i.e., 11 features of

HR, 7 features of GSR and 72 features of EEG (9× 8Ch). The best and worst features were

applied on these recognition inputs.

Table 9.1. Description of each execution test according to preprocessing,
processing and feature extraction.

Preprocessing Processing, Feature Extraction and Recognition Biosignals
Tests Detrend Outliers FE∗ SVD CC∗ ϕj(vj(n)) Optimization HR GSR EEG

Test 1 − − − − − sigmoid ’sgd’ × × ×
Test 2 − − − − − sigmoid ’adam’ × × ×
Test 3 × × × − × ReLU ’adam’ × × ×
Test 4 × × × − × sigmoid ’sgd’ × × ×
Test 5 × × × − × sigmoid ’adam’ × × ×
Test 6 × × × − × ReLU ’sgd’ × × ×
Test 7 × × × − × ReLU ’adam’ − × ×
Test 8 × × × − × sigmoid ’sgd’ − × ×
Test 9 × × × − × sigmoid ’adam’ − × ×
Test 10 × × × − × ReLU ’sgd’ − × ×
Test 11 × × × − × ReLU ’adam’ × − ×
Test 12 × × × − × sigmoid ’sgd’ × − ×
Test 13 × × × − × sigmoid ’adam’ × − ×
Test 14 × × × − × ReLU ’sgd’ × − ×
Test 15 × × × − × ReLU ’adam’ × × −
Test 16 × × × − × sigmoid ’sgd’ × × −
Test 17 × × × − × sigmoid ’adam’ × × −
Test 18 × × × − × ReLU ’sgd’ × × −

CC∗: Column Centering - Data centering for each biosignal.
FE∗: Feature Extraction - Selected all features for each biosignal.

In the next tests, was considered the features selection based on SVD (i.e. the features are

selected in order of its importance). It were 6 features of HR, 4 features of GSR and 40 (5×8

Channels) features of EEG, as shown in Table 9.2.
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Table 9.2. Description of each execution test according to preprocessing,
processing and feature selection.

Preprocessing Processing, Feature Extraction and Recognition Biosignals
Tests Detrend Outliers FE SVD CC ϕj(vj(n)) Optimization HR GSR EEG

Test 19 × × × × × ReLU ’adam’ × × ×
Test 20 × × × × × sigmoid ’sgd’ × × ×
Test 21 × × × × × sigmoid ’adam’ × × ×
Test 22 × × × × × ReLU ’sgd’ × × ×
Test 23 × × × × × ReLU ’adam’ − × ×
Test 24 × × × × × sigmoid ’sgd’ − × ×
Test 25 × × × × × sigmoid ’adam’ − × ×
Test 26 × × × × × ReLU ’sgd’ − × ×
Test 27 × × × × × ReLU ’adam’ × − ×
Test 28 × × × × × sigmoid ’sgd’ × − ×
Test 29 × × × × × sigmoid ’adam’ × − ×
Test 30 × × × × × ReLU ’sgd’ × − ×
Test 31 × × × × × ReLU ’adam’ × × −
Test 32 × × × × × sigmoid ’sgd’ × × −
Test 33 × × × × × sigmoid ’adam’ × × −
Test 34 × × × × × ReLU ’sgd’ × × −

9.2.1. Emotion Recognition Tests based on Raw Data - Test 1 and Test 2

In these tests of emotion recognition, no feature extractions and preprocessing were considered;

all raw data were directly applied on the ANN input layer. The ANN activation function was

the sigmoid and two different optimization algorithms: stochastic gradient descend (‘sgd’) and

‘adam’. Its inputs were based on HR (1 input channel), GSR (1 input channel) and EEG (8

inputs channels).

Each of the 13 flights was tested individually based on 13-fold cross-validation; it was also

considered a total of 6×103 training iterations (epochs), adaptive learning rate and momentum,

10 neurons applied in input layer (Ni = 10), 2 hidden layers having 10 neurons each one (Nh =

10 × 2), and 5 output neurons (No = 5) on the last ANN layer. This was one perspective of

ANN architecture which a regression model was produced for each output neuron, i.e. for each

output emotion.

Table 9.3, presents a emotion recognition results using a raw data approach and no feature

extraction. Its results show the importance of a feature extraction in a multimodal sensing

system in which on the other hand, the recognition will get undesirable results and high execution

time. The MARD, RMSE and MAE were used to compare the output regression models with

the emotions from the flight datasets.

9.2.2. Emotion Recognition Tests based on Feature Extraction - Test 3 to 34

All tests between 3 to 34, considered the feature extraction over the raw input data. In details,

between the tests 3 to 18, 90 features were extracted, in including good and bad quality features.

Between the tests 19 to 34, the SVD was applied to select the best features to be used.

The accuracy of the major match procedure, i.e. the correct match in each sample regarding

to the higher emotion amplitude (between 5 emotions), presented worst values on recognition

from flight dataset CLX, having no matches on the most recognition.
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Table 9.4 to Table 9.19 present the tests results, based on feature extraction and also feature

selection. The analysis of all these tests are presented on the next section, comparing each one

and describing the achievements after some improvements.

9.3. Emotion Recognition Analysis

Figure 9.3, presents the barplots correspondent to the errors results from tests 3 to 6, with

feature extraction but without feature selection and considering all three biosignals; these tests

were executed according to the Table 9.1, presented before. It is also important to inform, that

these tests were executed over all 13 datasets, as defined in Chapter 3.

Figure 9.3. Errors results (RMSE+MAE) from tests 3 to 6 (with feature extraction).

It is possible to see that in the tests 3 to 6, the emotion surprised, presented a better

recognition accuracy, having the smallest error level. The happy and scared were the emotions

which also presented low errors. Nevertheless, these errors levels can be improved if the train

datasets are more coherent. The emotions sad and angry, presented the worst error levels; it is

probably due the misclassifications from the face emotion detection software, which sometimes

confused situations of angry and disappointed rather than sadness.

If we compare all tests (from test 3 to 34), it is possible to note that again, the surprised

emotion kept with best recognition values (low errors), as shown in Figures 9.4 and 9.5, which

it presents all considered errors along the tests.
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Figure 9.4. Errors results (RMSE) comparison from tests 3 to 34 (with
feature extraction).

The worst recognition results were reached when the EEG datasets were omitted in different

tests (tests 15 to 18 and tests 31 to 34), showing that in these tests, the recognition results

were better when all biosignals were considered; when GSR datasets were omitted, the results

presented good recognition levels too (tests 11 to 14 and tests 27 to 30). The application of

feature selection based on SVD and the omission of GSR datasets, returned the less recognition

errors (tests 27 to 30). The sad emotion got the worst error levels when HR datasets were

omitted (tests 7 to 10), as like as the happy emotion got the worst error levels when the EEG

datasets were omitted.

In resume, all tests shown that the lowest recognition errors were reached when all biosignal

datasets were considered or when the GSR dataset were omitted of the model training. It also

shown that the emotion surprised was easier to recognize, having a mean value of RMSE of 0.13

and mean value of MAE of 0.01; the worst recognition levels were found to emotion sad, having

a mean value of RMSE of 0.82 and mean value of MAE of 0.08.
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Figure 9.5. Errors results (MAE) comparison from tests 3 to 34 (with
feature extraction).

9.3.1. Improvements Coming from the Feature Extraction

In prior discussion, was presented the need to use features extraction in a very dense or huge

datasets. One direct benefit of it is the execution time. Obviously, with the feature extraction,

the dataset is sampled to fractions of data which it must to continue to represent all raw data

with more or equal meaning. For this reason, a featured dataset is smaller if compared to its

raw dataset. Another benefit of feature extraction, is that it can bring hide information from

a dataset, in statistical or frequency context, e.g. data variances and other tiny patterns of

frequency domain.

Figure 9.6, shows the errors levels between the use of raw datasets (tests 1 and 2) and

featured datasets (tests 3 to 34). Analyzing the RMSE values (left barplot), it is possible to

see that the improvements were considerable over all emotions when feature extraction was

used. The emotion happy presented an improvement of 89.66% (prior 3.06/actual 0.31); sad of

84.58% (5.38/0.82); angry of 86.75% (3.84/0.50); surprised of 93.89% (2.19/0.13); and scared

of 88.67% (3.18/0.36). Analyzing the MAE values (right barplot), it is possible to see that the

improvements were good over 4 emotions of 5 (emotion sad wasn’t improved on MAE values),

when feature extraction was used. The emotion happy presented an improvement of 26.04%

(prior 0.06/actual 0.04); angry of 4.32% (0.065/0.062); surprised of 60.15% (0.04/0.01); and

scared of 18.75% (0.05/0.04).
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Figure 9.6. Errors results comparison between RMSE and MAE from
tests 1 to 34 (with feature extraction).

9.3.2. Considering the Higher Emotion Intensities

The higher intensities of facial emotions by time (between 5 emotion intensities), were also

computed and its number of matches were also analyzed, comparing the correct matches between

its higher emotion (from the face dataset) with the higher output from the 5 neurons (output

layer), as shown in Chapter 4 (Section 4.5).

The benefit to also consider these major values, is to understand if the regression models

from each output neuron, is following correctively the original emotions intensities related to

the other emotions. In case of some output major values present wrong label, it does not

mean that it is a critical error. The high fluctuations of emotions intensities are common to

happen presenting, in several times, very close intensities values between them which it is hard

to separate perfectly. On the other hand, if an outputted regression model of each neuron fits

perfectly with the neuron output, both error levels (RMSA and MAE) and major emotion values

will converge or improve together.

The corrected number of matches between these emotions and its relations, are shown in

Figure 9.7, presenting the case of tests 3 to 6. Some datasets presented a very low number of

matches during all tests as for instance, GC1, LS1, VC1, CLX and CL3. These low accuracies

are probably due the high misclassification of emotions from the pilots’ faces as also presented

on prior errors values based o RMSE and MAE. However, if considers the possibility to improve

these results, the next tests can omit these datasets with low accuracies, to get better general

results.
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Figure 9.7. Major emotion accuracies from the tests 3 to 6 (with feature extraction).

When comparing all the matches (from test 3 to 34) regarding to the major emotion values, it

is possible to see that the accuracy of the dataset CLX continues to present the worst accuracies

and the dataset GC3 the best accuracies values.

Figure 9.8, shows a comparison of all accuracies, regarding to the major emotions from the

tests 3 to 34 (top plots) and from tests 1 to 34 (bottom plot). Note that on the top plot, shows

that six datasets kept the major emotion accuracies less than 50%.

The top-left plot, presents the relation between the mean of the raw dataset accuracies (tests

1 and 2) over the featured datasets accuracies (tests 3 to 34), which the raw data tests seems

to have better accuracies over the featured dataset. It not necessarily means that the emotion

recognition based on raw datasets was the best solution in this proposed work; going back to

Section 9.3.1 and observe the error levels during the tests based on raw datasets, it is possible

to see that it was extremely bad compared to the others tests based on featured dataset; this

way, it can easily note that actually, a good regression models, must be based on a combination

of low error levels and good major emotions accuracies.

Analyzing the bottom plot, it is possible to note that when the activation function was the

sigmoid together with the gradient descend optimization, the general accuracies presented a

constant behaviour along the executed tests. The activation function rectified unit, presented

the worst major emotion accuracies in this work.
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Figure 9.8. All major emotion accuracies from the tests 1 to 34. All
accuracies (left); mean of all accuracies (right).

9.3.3. Results Improvements

To improve these results, these work shows that is strongly recommended, to first, to optimize the

emotions detection from the face. It were undoubtedly, the main reason for several undesirable

recognition error levels. Another way to improve it, is to omit some datasets which presented not

good recognition levels; it surely will improve the general predicstions or emotion recognition.

However, some results were already improved during this work. For instance, when looking

to the learning tasks, absolute improvements, were applied, changing the traditional learning

techniques by the deep learning techniques. These last improvements optimized the recognition

results in accuracies of recognition and in execution time.

Figure 9.9, shows the improvement due the use of deep learning techniques, regarding to the

number of correct matches of the major emotions values, between all emotions considered in this

work. It is possible to see, that the dataset CLX kept with worst accuracy also on traditional

learning.

132



Figure 9.9. Traditional learning versus deep learning (DP). Improvement
applied in this work, regarding to the major value emotions when applying
the traditional learning and deep learning (no feature extraction).

Regarding the the accuracies of the major value emotions based on 100 training itera-

tion of the traditional learning, the improvement happened in 11 flight datasets from 13:

RC1 was improved in 69.52% (prior 15.39/actual 50.50); RC2 72.71% (22.41/82.13); RC3

of 68.97% (18.25/58.83); GC1 of 80.97% (4.48/23.55); GC3 of 89.88% (10.08/99.65); LS1 of

73.63% (5.93/22.49); LS2 of 70.96% (20.16/69.43); VC2 of 37.08% (18.95/30.12); CR1 of 91.40%

(7.95/92.47); CR3 of 89.39% (7.87/74.18); and CL3 of 12.13% (13.68/15.57). The higher and

lower improvements happened for dataset CR1 and CL3 respectively.

Considering the traditional learning using 1,000 training iteration, the improvement hap-

pened in 11 flight datasets from 13, as in prior situation: RC1 was improved in 70.77% (14.76/50.50);

RC2 of 54.25% (37.57/82.13); RC3 of 45.31% (32.17/58.83); GC1 of 47.77% (12.30/23.55); GC3

of 82.00% (17.93/99.65); LS1 of 68.25% (7.14/22.49); LS2 of 81.17% (12.69/69.43); VC2 of

92.19% (2.35/30.12); CR1 of 73.36% (24.63/92.47); CR3 of 98.53% (1.09/74.18); and CL3 of

5.20% (14.76/15.57). The higher and lower improvements happened for dataset CR3 and CL3

respectively.

The improvement of accuracies over the major emotion values at 100 training iterations

were higher, because the execution with 1,000 training iterations presented better accuracies

(i.e. less difference from deep learning); however, due the very high exponential execution time

of the tradition learning, it discouraged the execution of it traditional manner, using the same

training iteration used with the deep learning (6,000 training iterations), which it can takes days

or weeks.

Considering the improvements over the execution time, the use of deep learning instead the

traditional methods, it produced an optimization of 92.17%, having 4,406.32 seconds (mean of

the deep learning applied on tests 1 and 2) instead of 56,321.40 seconds (traditional learning),

even when the number of training iteration was 60 times less, i.e. 100 over 6,000 from deep

learning. When the training interaction of the traditional learning was increased to 1,000, the
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improvement with the use of deep learning was 99.09%, having 4,406.32 seconds (deep learning)

instead of 484,586.47 seconds from traditional learning, even using 6 times less training iterations.

Another way to improve the final results, is to execute more flight tests, increasing the

amount of data in the dataset. Also, applying personal dataset concept, which the emotion

recognition should also be based on personal characteristics of each pilot.
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Table 9.3. Emotion recognition results tests 1 and 2. ANN with 6× 103 train epochs and raw data (no features).

Test 1 - Emotion Recognition + RTOR - ϕj(vj(n)) = sigmoid, opt=’sgd’, Nh = 10× 2, No = 5 - [ Exec. Time: 4325.28s ]

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 3.64 0.06 * 4.14 0.06 * 3.83 0.05 * 3.43 0.06 * 5.08 0.08 50.50 (1854/3671)
DS:RC2 * 4.34 0.06 49.35% 5.72 0.07 * 3.59 0.05 * 3.84 0.06 * 5.88 0.09 82.13 (3488/4247)
DS:RC3 * 3.88 0.05 * 9.58 0.11 * 3.78 0.06 * 3.62 0.06 * 5.57 0.09 58.83 (2342/3981)
DS:GC1 * 5.68 0.09 * 8.46 0.13 * 7.34 0.11 * 4.58 0.07 * 5.79 0.09 23.55 (961/4081)
DS:GC3 * 5.63 0.09 * 7.45 0.11 * 7.41 0.11 * 5.42 0.08 * 5.84 0.09 99.65 (4240/4255)
DS:LS1 * 5.70 0.08 * 6.22 0.08 52.55% 3.46 0.04 * 5.18 0.07 * 6.20 0.08 22.49 (1250/5558)
DS:LS2 * 5.52 0.09 84.69% 3.68 0.05 85.52% 2.93 0.04 * 5.04 0.08 * 5.42 0.08 69.43 (2844/4096)
DS:VC1 * 3.98 0.08 * 3.38 0.06 * 4.40 0.08 * 3.43 0.07 70.25% 4.79 0.08 15.63 (408/2611)
DS:VC2 * 3.76 0.08 * 3.89 0.08 * 4.27 0.09 * 2.78 0.06 * 2.53 0.05 30.12 (615/2042)
DS:CR1 * 4.46 0.07 76.31% 17.54 0.24 68.30% 5.00 0.06 * 3.58 0.06 41.14% 1.64 0.02 92.47 (3697/3998)
DS:CR3 * 1.69 0.08 53.28% 3.66 0.15 * 1.16 0.04 * 1.39 0.07 47.65% 1.28 0.05 74.18 (339/457)
DS:CLX 58.25% 4.45 0.16 48.35% 1.00 0.04 49.14% 1.73 0.07 * 1.47 0.06 33.47% 0.54 0.02 0.00 (0/518)
DS:CL3 * 3.27 0.04 40.49% 3.07 0.04 37.38% 5.58 0.07 * 5.39 0.08 * 3.76 0.05 15.57 (735/4722)
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Test 2 - Emotion Recognition + RTOR - ϕj(vj(n)) = sigmoid, opt=’adam’, Nh = 10× 2, No = 5 - [ Exec. Time: 4487.36s ]

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 1.19 0.02 * 5.44 0.08 * 3.63 0.05 34.50% 0.79 0.01 * 1.76 0.03 50.50 (1854/3671)
DS:RC2 * 1.26 0.02 47.39% 5.77 0.07 94.12% 2.41 0.03 45.23% 1.02 0.01 * 1.73 0.03 82.13 (3488/4247)
DS:RC3 * 4.96 0.06 * 9.14 0.12 * 4.81 0.07 38.65% 0.73 0.01 * 3.44 0.05 58.83 (2342/3981)
DS:GC1 * 0.64 0.01 * 3.97 0.06 * 2.96 0.05 46.72% 0.64 0.01 * 0.74 0.01 23.55 (961/4081)
DS:GC3 * 0.63 0.01 * 3.69 0.06 * 3.34 0.05 * 0.34 0.01 * 0.84 0.01 99.65 (4240/4255)
DS:LS1 * 0.69 0.01 56.03% 1.71 0.02 37.75% 3.47 0.04 60.65% 0.97 0.01 79.73% 0.35 0.00 22.49 (1250/5558)
DS:LS2 * 0.49 0.01 44.02% 3.63 0.04 52.61% 2.99 0.04 * 0.44 0.01 * 0.27 0.00 69.43 (2844/4096)
DS:VC1 * 0.81 0.01 80.20% 2.20 0.04 * 2.39 0.04 25.78% 0.39 0.01 84.33% 7.67 0.13 15.63 (408/2611)
DS:VC2 * 0.28 0.01 * 1.76 0.03 * 1.07 0.02 77.69% 0.96 0.02 84.13% 4.68 0.09 30.12 (615/2042)
DS:CR1 * 2.48 0.04 76.79% 16.56 0.23 68.04% 5.05 0.07 41.52% 0.67 0.01 34.39% 1.93 0.03 92.47 (3697/3998)
DS:CR3 * 1.03 0.05 55.34% 2.83 0.12 * 1.34 0.05 * 0.48 0.02 46.39% 1.75 0.06 74.18 (339/457)
DS:CLX 85.26% 5.66 0.22 44.11% 0.92 0.04 59.82% 2.27 0.09 * 0.32 0.01 62.98% 1.08 0.05 0.00 (0/518)
DS:CL3 80.35% 3.49 0.04 39.31% 4.57 0.05 77.21% 9.82 0.13 23.79% 0.20 0.00 71.54% 2.24 0.03 15.57 (735/4722)
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Table 9.4. Emotion recognition results tests 3 and 4. ANN with 6× 103 train epochs and input data with feature extraction.

Test 3 - Emotion Recognition + RTOR - ϕj(vj(n)) = ReLU , opt=’adam’, Nh = 90× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.23 0.02 * 0.98 0.10 * 0.63 0.06 37.63% 0.11 0.01 * 0.82 0.09 38.80 (26/67)
DS:RC2 * 0.36 0.03 76.88% 0.97 0.09 * 0.50 0.05 45.63% 0.14 0.01 * 0.31 0.02 46.15 (36/78)
DS:RC3 37.72% 0.79 0.07 * 1.66 0.14 72.50% 0.42 0.04 3.55% 0.10 0.01 * 0.56 0.05 41.09 (30/73)
DS:GC1 * 0.73 0.07 * 1.71 0.18 * 0.88 0.10 * 0.11 0.01 * 0.35 0.03 18.66 (14/75)
DS:GC3 * 0.29 0.02 * 1.05 0.10 * 0.36 0.03 * 0.19 0.02 * 0.48 0.04 84.61 (66/78)
DS:LS1 * 0.16 0.01 * 1.21 0.10 * 0.46 0.03 76.55% 0.10 0.01 * 0.30 0.02 25.49 (26/102)
DS:LS2 * 0.36 0.04 47.68% 0.45 0.04 56.47% 0.36 0.03 * 0.14 0.02 * 0.19 0.02 34.66 (26/75)
DS:VC1 * 0.13 0.01 69.21% 0.33 0.03 * 0.39 0.05 46.04% 0.06 0.01 97.80% 1.11 0.14 18.75 (9/48)
DS:VC2 * 0.26 0.04 * 0.68 0.08 * 0.57 0.08 33.75% 0.06 0.01 79.71% 0.60 0.08 7.89 (3/38)
DS:CR1 * 0.16 0.01 74.01% 2.45 0.25 62.22% 0.80 0.07 38.10% 0.12 0.01 94.20% 0.57 0.06 64.38 (47/73)
DS:CR3 * 0.07 0.02 75.32% 0.64 0.18 * 0.26 0.07 29.12% 0.02 0.01 60.91% 0.30 0.08 44.44 (4/9)
DS:CLX 84.30% 0.73 0.20 57.03% 0.18 0.05 81.75% 0.47 0.14 * 0.04 0.01 73.93% 0.19 0.05 20.00 (2/10)
DS:CL3 68.59% 0.40 0.03 88.37% 1.06 0.08 43.26% 0.87 0.08 * 0.17 0.02 66.09% 0.28 0.02 16.27 (14/86)
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Test 4 - Emotion Recognition + RTOR - ϕj(vj(n)) = sigmoid, opt=’sgd’, Nh = 90× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.17 0.02 * 0.42 0.04 79.81% 0.50 0.04 49.75% 0.10 0.01 * 0.30 0.04 53.73 (36/67)
DS:RC2 * 0.22 0.02 81.50% 0.82 0.07 71.64% 0.29 0.03 63.83% 0.12 0.01 * 0.38 0.04 82.05 (64/78)
DS:RC3 * 0.67 0.06 91.27% 1.37 0.11 63.93% 0.29 0.03 47.90% 0.11 0.01 * 0.35 0.04 57.53 (42/73)
DS:GC1 * 0.35 0.04 * 0.96 0.11 * 0.69 0.08 * 0.20 0.02 * 0.37 0.04 22.66 (17/75)
DS:GC3 * 0.35 0.04 * 0.82 0.09 * 0.70 0.08 * 0.31 0.04 * 0.38 0.04 100.00 (78/78)
DS:LS1 * 0.30 0.03 * 0.64 0.06 * 0.30 0.02 * 0.22 0.02 * 0.36 0.04 22.54 (23/102)
DS:LS2 * 0.33 0.04 59.57% 0.38 0.04 40.52% 0.22 0.02 * 0.26 0.03 * 0.32 0.04 68.00 (51/75)
DS:VC1 * 0.21 0.03 81.08% 0.31 0.04 * 0.35 0.05 * 0.13 0.02 68.24% 0.90 0.11 16.66 (8/48)
DS:VC2 * 0.22 0.04 * 0.42 0.06 * 0.36 0.06 80.59% 0.10 0.01 63.14% 0.48 0.06 28.94 (11/38)
DS:CR1 * 0.22 0.02 75.30% 2.58 0.26 66.07% 0.90 0.09 44.30% 0.10 0.01 38.14% 0.28 0.03 93.15 (68/73)
DS:CR3 * 0.09 0.03 52.57% 0.55 0.15 * 0.17 0.05 86.42% 0.05 0.02 51.41% 0.26 0.07 77.77 (7/9)
DS:CLX 76.07% 0.72 0.20 19.94% 0.06 0.02 55.09% 0.36 0.10 * 0.06 0.02 39.71% 0.10 0.03 0.00 (0/10)
DS:CL3 95.58% 0.29 0.03 28.61% 0.39 0.03 58.28% 1.07 0.10 * 0.28 0.03 45.08% 0.16 0.01 15.11 (13/86)
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Table 9.5. Emotion recognition results tests 5 and 6. ANN with 6× 103 train epochs and input data with feature extraction.

Test 5 - Emotion Recognition + RTOR - ϕj(vj(n)) = sigmoid, opt=’sgd’, Nh = 90× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.17 0.02 * 0.91 0.08 * 0.61 0.07 34.72% 0.11 0.01 * 0.23 0.03 43.28 (29/67)
DS:RC2 * 0.20 0.02 83.83% 0.88 0.08 * 0.42 0.04 42.18% 0.12 0.01 * 0.23 0.02 58.97 (46/78)
DS:RC3 * 0.84 0.08 87.21% 1.52 0.13 54.73% 0.32 0.03 2.95% 0.15 0.02 * 0.14 0.02 57.53 (42/73)
DS:GC1 * 0.19 0.02 * 2.25 0.23 * 0.71 0.08 85.11% 0.09 0.01 * 0.29 0.03 22.66 (17/75)
DS:GC3 * 0.14 0.02 * 0.30 0.03 * 0.28 0.03 * 0.12 0.01 * 0.23 0.03 100.00 (78/78)
DS:LS1 * 0.22 0.02 * 1.41 0.12 * 0.41 0.03 76.14% 0.10 0.01 * 0.20 0.02 23.53 (24/102)
DS:LS2 * 0.33 0.04 53.61% 0.42 0.04 76.71% 0.41 0.04 * 0.13 0.01 * 0.23 0.02 42.66 (32/75)
DS:VC1 * 0.12 0.01 51.96% 0.28 0.03 * 0.21 0.03 25.42% 0.05 0.01 84.89% 1.04 0.13 16.66 (8/48)
DS:VC2 * 0.17 0.03 * 0.77 0.09 * 0.48 0.07 27.10% 0.06 0.01 65.38% 0.54 0.07 23.68 (9/38)
DS:CR1 * 0.23 0.02 74.46% 2.48 0.25 62.64% 0.84 0.08 39.67% 0.13 0.01 75.12% 0.47 0.05 72.60 (53/73)
DS:CR3 * 0.05 0.02 75.77% 0.65 0.19 * 0.21 0.06 17.65% 0.01 0.00 61.55% 0.26 0.07 77.77 (7/9)
DS:CLX 89.24% 0.77 0.22 48.67% 0.17 0.05 76.34% 0.48 0.14 * 0.05 0.01 54.28% 0.14 0.04 0.00 (0/10)
DS:CL3 82.20% 0.33 0.03 43.10% 0.61 0.05 49.66% 0.96 0.09 * 0.15 0.02 34.29% 0.18 0.01 24.41 (21/86)
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Test 6 - Emotion Recognition + RTOR - ϕj(vj(n)) = sigmoid, opt=’sgd’, Nh = 90× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.16 0.02 * 0.42 0.04 78.23% 0.50 0.04 41.28% 0.13 0.01 * 0.19 0.02 53.73 (36/67)
DS:RC2 * 0.17 0.02 81.48% 0.82 0.07 69.36% 0.29 0.03 39.53% 0.12 0.01 * 0.26 0.03 82.05 (64/78)
DS:RC3 * 0.78 0.07 91.16% 1.37 0.11 62.17% 0.28 0.03 7.70% 0.12 0.01 * 0.24 0.03 57.53 (42/73)
DS:GC1 * 0.24 0.03 * 0.96 0.11 * 0.68 0.08 56.74% 0.06 0.01 * 0.26 0.03 22.66 (17/75)
DS:GC3 * 0.22 0.03 * 0.82 0.09 * 0.69 0.08 * 0.15 0.02 * 0.27 0.03 100.00 (78/78)
DS:LS1 * 0.17 0.02 * 0.65 0.06 * 0.30 0.02 50.40% 0.07 0.01 * 0.24 0.02 22.54 (23/102)
DS:LS2 * 0.23 0.03 60.13% 0.38 0.04 40.01% 0.21 0.02 * 0.11 0.01 * 0.21 0.02 68.00 (51/75)
DS:VC1 * 0.13 0.02 81.00% 0.31 0.04 * 0.35 0.05 23.69% 0.04 0.00 79.10% 1.01 0.13 16.66 (8/48)
DS:VC2 * 0.13 0.02 * 0.42 0.06 * 0.36 0.06 28.17% 0.07 0.01 66.67% 0.55 0.07 28.94 (11/38)
DS:CR1 * 0.12 0.01 75.42% 2.58 0.26 66.39% 0.92 0.09 37.37% 0.12 0.01 63.46% 0.40 0.04 93.15 (68/73
DS:CR3 * 0.05 0.02 52.77% 0.55 0.15 * 0.17 0.05 12.71% 0.01 0.00 67.57% 0.30 0.08 77.77 (7/9)
DS:CLX 85.19% 0.76 0.21 20.16% 0.06 0.02 56.26% 0.36 0.11 * 0.04 0.01 60.20% 0.14 0.04 0.00 (0/10)
DS:CL3 73.83% 0.36 0.03 29.04% 0.39 0.03 60.25% 1.10 0.11 * 0.12 0.01 29.13% 0.18 0.01 24.41 (13/86)
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Table 9.6. Emotion recognition results tests 7 and 8. ANN with 6× 103 train epochs and input data with feature extraction.

Test 7 - Emotion Recognition + RTOR [GSR+EEG] - ϕj(vj(n)) = ReLU , opt=’adam’, Nh = 79× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.18 0.02 * 0.76 0.08 * 0.56 0.05 34.16% 0.10 0.01 * 0.60 0.06 37.31 (25/67)
DS:RC2 * 0.29 0.03 77.74% 0.91 0.08 * 0.73 0.07 35.38% 0.11 0.01 * 0.21 0.02 33.33 (26/78)
DS:RC3 * 0.82 0.08 * 1.71 0.15 87.95% 0.48 0.05 16.05% 0.12 0.01 * 0.29 0.02 36.98 (27/73)
DS:GC1 * 0.85 0.08 * 3.25 0.33 * 0.81 0.09 * 0.11 0.01 * 0.13 0.00 20.00 (15/75)
DS:GC3 * 0.13 0.01 * 0.58 0.05 * 0.32 0.03 * 0.15 0.02 * 0.23 0.02 87.17 (68/78)
DS:LS1 * 0.14 0.01 * 1.29 0.11 * 0.41 0.03 63.89% 0.09 0.01 * 0.25 0.02 29.41 (30/102)
DS:LS2 * 0.33 0.03 63.41% 0.46 0.04 88.44% 0.53 0.05 * 0.13 0.01 * 0.20 0.02 44.00 (33/75)
DS:VC1 * 0.11 0.01 72.93% 0.38 0.05 * 0.22 0.02 42.45% 0.06 0.01 91.94% 1.04 0.13 18.75 (9/48)
DS:VC2 * 0.20 0.03 * 0.66 0.08 * 0.75 0.12 44.57% 0.09 0.01 66.76% 0.49 0.06 10.52 (4/38)
DS:CR1 * 0.16 0.01 71.86% 2.54 0.26 67.40% 0.88 0.08 45.50% 0.14 0.01 97.09% 0.58 0.07 64.38 (47/73)
DS:CR3 * 0.06 0.02 53.37% 0.60 0.16 * 0.26 0.08 24.87% 0.02 0.00 59.82% 0.28 0.07 44.44 (4/9)
DS:CLX 90.21% 0.78 0.22 90.16% 0.35 0.08 61.72% 0.41 0.11 * 0.04 0.01 69.64% 0.18 0.05 0.00 (0/10)
DS:CL3 72.18% 0.38 0.03 * 1.35 0.12 40.10% 0.81 0.07 * 0.19 0.02 98.84% 0.31 0.03 19.76 (17/86)
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Test 8 - Emotion Recognition + RTOR [GSR+EEG] - ϕj(vj(n)) = sigmoid, opt=’sgd’, Nh = 79× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.18 0.02 * 0.42 0.04 80.56% 0.50 0.04 55.39% 0.11 0.01 * 0.31 0.04 53.73 (36/67)
DS:RC2 * 0.23 0.02 81.53% 0.81 0.07 72.44% 0.29 0.03 70.48% 0.13 0.01 * 0.39 0.04 82.05 (64/78)
DS:RC3 * 0.67 0.06 91.31% 1.37 0.11 64.92% 0.29 0.03 46.61% 0.12 0.01 * 0.36 0.04 57.53 (42/73)
DS:GC1 * 0.37 0.04 * 0.96 0.11 * 0.69 0.08 * 0.21 0.02 * 0.38 0.04 22.66 (17/75)
DS:GC3 * 0.36 0.04 * 0.82 0.09 * 0.71 0.08 * 0.33 0.04 * 0.40 0.05 100.00 (78/78)
DS:LS1 * 0.31 0.03 * 0.64 0.06 * 0.30 0.02 * 0.24 0.02 * 0.38 0.04 22.54 (23/102)
DS:LS2 * 0.35 0.04 59.58% 0.38 0.04 40.88% 0.22 0.02 * 0.27 0.03 * 0.34 0.04 68.00 (51/75)
DS:VC1 * 0.23 0.03 81.10% 0.31 0.04 * 0.36 0.05 * 0.15 0.02 67.70% 0.89 0.11 16.66 (8/48)
DS:VC2 * 0.23 0.04 * 0.42 0.06 * 0.37 0.06 88.83% 0.11 0.02 63.39% 0.47 0.06 28.94 (11/38)
DS:CR1 * 0.23 0.02 75.27% 2.58 0.26 65.93% 0.90 0.09 50.40% 0.11 0.01 35.43% 0.27 0.03 93.15 (68/73)
DS:CR3 * 0.10 0.03 52.57% 0.55 0.15 * 0.17 0.05 96.66% 0.06 0.02 50.22% 0.26 0.07 77.77 (7/9)
DS:CLX 74.99% 0.71 0.20 19.96% 0.06 0.02 54.65% 0.36 0.10 * 0.06 0.02 37.13% 0.10 0.03 0.00 (0/10)
DS:CL3 98.45% 0.28 0.02 28.62% 0.39 0.03 57.69% 1.07 0.10 * 0.30 0.03 48.72% 0.16 0.01 15.11 (13/86)
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Table 9.7. Emotion recognition results tests 9 and 10. ANN with 6× 103 train epochs and input data with feature extraction.

Test 9 - Emotion Recognition + RTOR [GSR+EEG] - ϕj(vj(n)) = sigmoid, opt=’adam’, Nh = 79× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.16 0.02 * 1.31 0.13 * 0.60 0.06 31.39% 0.10 0.01 * 0.26 0.03 52.23 (35/67)
DS:RC2 * 0.20 0.02 88.69% 0.87 0.08 * 0.49 0.04 35.23% 0.10 0.01 * 0.27 0.03 62.82 (49/78)
DS:RC3 * 0.84 0.08 93.30% 1.69 0.14 62.05% 0.42 0.04 12.18% 0.17 0.02 * 0.16 0.02 57.53 (42/73)
DS:GC1 * 0.24 0.03 * 3.01 0.32 * 0.88 0.10 * 0.11 0.01 * 0.33 0.04 22.66 (17/75)
DS:GC3 * 0.14 0.02 * 0.32 0.03 * 0.28 0.03 * 0.10 0.01 * 0.21 0.02 100.00 (78/78)
DS:LS1 * 0.23 0.02 * 1.47 0.13 * 0.33 0.02 79.83% 0.11 0.01 * 0.21 0.02 22.54 (23/102)
DS:LS2 * 0.36 0.04 84.79% 0.58 0.05 99.04% 0.49 0.05 * 0.14 0.02 * 0.21 0.02 36.00 (27/75)
DS:VC1 * 0.12 0.01 42.80% 0.18 0.02 * 0.24 0.03 24.38% 0.05 0.01 84.03% 1.04 0.13 16.66 (8/48)
DS:VC2 * 0.21 0.03 * 0.85 0.11 * 0.61 0.09 32.68% 0.06 0.01 62.24% 0.53 0.07 18.42 (7/38)
DS:CR1 * 0.20 0.02 74.10% 2.54 0.26 69.06% 0.92 0.09 44.69% 0.14 0.01 62.81% 0.41 0.04 79.45 (58/73)
DS:CR3 * 0.05 0.02 67.86% 0.64 0.18 * 0.20 0.06 16.17% 0.01 0.00 59.43% 0.27 0.07 77.77 (7/9)
DS:CLX 87.93% 0.78 0.22 34.85% 0.12 0.03 75.06% 0.47 0.14 * 0.05 0.01 56.94% 0.15 0.04 0.00 (0/10)
DS:CL3 85.57% 0.32 0.03 55.74% 0.73 0.06 49.75% 0.96 0.09 * 0.16 0.02 31.13% 0.17 0.01 15.11 (13/86)
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Test 10 - Emotion Recognition + RTOR [GSR+EEG] - ϕj(vj(n)) = ReLU , opt=’sgd’, Nh = 79× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.16 0.02 * 0.42 0.04 78.20% 0.50 0.04 41.10% 0.13 0.01 * 0.19 0.02 53.73 (36/67)
DS:RC2 * 0.17 0.02 81.69% 0.81 0.07 70.00% 0.29 0.03 38.88% 0.12 0.01 * 0.26 0.03 82.05 (64/78)
DS:RC3 * 0.78 0.07 91.04% 1.38 0.11 61.69% 0.28 0.03 7.16% 0.13 0.01 * 0.24 0.03 57.53 (42/73)
DS:GC1 * 0.24 0.03 * 0.96 0.11 * 0.68 0.08 54.86% 0.06 0.01 * 0.26 0.03 22.66 (17/75)
DS:GC3 * 0.22 0.03 * 0.82 0.09 * 0.69 0.08 * 0.15 0.02 * 0.26 0.03 100 (78/78)
DS:LS1 * 0.17 0.02 * 0.65 0.06 * 0.30 0.02 48.01% 0.07 0.01 * 0.23 0.02 22.54 (23/102)
DS:LS2 * 0.22 0.03 59.91% 0.38 0.04 40.08% 0.22 0.02 * 0.11 0.01 * 0.21 0.02 68.00 (51/75)
DS:VC1 * 0.13 0.02 81.57% 0.32 0.04 * 0.35 0.05 23.35% 0.04 0.00 79.08% 1.01 0.13 16.66 (8/48)
DS:VC2 * 0.14 0.02 * 0.42 0.06 * 0.36 0.06 28.57% 0.07 0.01 66.92% 0.55 0.07 28.94 (11/38)
DS:CR1 * 0.12 0.01 75.32% 2.58 0.26 66.51% 0.92 0.09 36.94% 0.12 0.01 62.86% 0.40 0.04 93.15 (68/73)
DS:CR3 * 0.05 0.02 52.55% 0.55 0.15 * 0.17 0.05 10.35% 0.01 0.00 99.99% 0.36 0.11 77.77 (7/9)
DS:CLX 85.40% 0.76 0.21 20.48% 0.06 0.02 56.19% 0.36 0.11 * 0.04 0.01 60.31% 0.14 0.04 0.00 (0/10)
DS:CL3 73.77% 0.36 0.03 28.75% 0.39 0.03 60.22% 1.10 0.11 * 0.11 0.01 29.13% 0.18 0.01 15.11 (13/86)
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Table 9.8. Emotion recognition results tests 11 and 12. ANN with 6× 103 train epochs and input data with feature extraction.

Test 11 - Emotion Recognition + RTOR [HR+EEG] - ϕj(vj(n)) = ReLU , opt=’adam’, Nh = 83× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.25 0.02 90.11% 0.46 0.04 * 0.60 0.06 37.45% 0.12 0.01 * 0.82 0.09 22.38 (15/67)
DS:RC2 * 0.34 0.03 85.34% 0.90 0.08 * 0.81 0.08 53.12% 0.14 0.01 * 0.30 0.03 34.61 (27/78)
DS:RC3 91.62% 0.83 0.08 * 1.67 0.14 69.43% 0.43 0.04 4.61% 0.12 0.01 * 0.51 0.04 38.35 (28/73)
DS:GC1 * 0.71 0.07 * 1.28 0.13 * 0.74 0.08 * 0.14 0.01 * 0.22 0.02 21.33 (16/75)
DS:GC3 * 0.29 0.03 * 0.64 0.05 * 0.42 0.04 * 0.18 0.02 * 0.04 0.00 65.38 (51/78)
DS:LS1 * 0.19 0.01 * 1.26 0.11 * 0.43 0.03 84.13% 0.11 0.01 * 0.16 0.01 25.54 (26/102)
DS:LS2 * 0.32 0.03 46.34% 0.43 0.04 54.16% 0.35 0.03 * 0.16 0.02 * 0.23 0.02 42.66 (32/75)
DS:VC1 * 0.09 0.01 70.92% 0.35 0.04 * 0.42 0.05 32.74% 0.05 0.01 92.36% 1.09 0.14 16.66 (8/48)
DS:VC2 * 0.20 0.03 * 0.61 0.08 * 0.65 0.10 33.18% 0.08 0.01 76.57% 0.57 0.08 21.05 (8/38)
DS:CR1 * 0.15 0.01 74.95% 2.53 0.26 56.14% 0.76 0.07 37.97% 0.12 0.01 83.27% 0.51 0.06 47.94 (35/73)
DS:CR3 * 0.10 0.02 97.93% 0.65 0.20 * 0.40 0.12 38.89% 0.03 0.01 62.29% 0.27 0.07 44.44 (4/9)
DS:CLX 86.23% 0.76 0.21 91.45% 0.31 0.08 66.50% 0.43 0.12 * 0.05 0.01 67.72% 0.18 0.05 0.00 (0/10)
DS:CL3 83.46% 0.40 0.04 85.33% 1.10 0.09 48.68% 0.96 0.09 * 0.19 0.02 73.32% 0.26 0.02 19.76 (17/86)
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Test 12 - Emotion Recognition + RTOR [HR+EEG] - ϕj(vj(n)) = sigmoid, opt=’sgd’, Nh = 83× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.17 0.02 * 0.42 0.04 80.26% 0.50 0.04 53.17% 0.11 0.01 * 0.31 0.04 53.73 (36/67)
DS:RC2 * 0.23 0.02 81.51% 0.82 0.07 72.14% 0.29 0.03 68.08% 0.13 0.01 * 0.39 0.04 82.05 (64/78
DS:RC3 * 0.67 0.06 91.29% 1.37 0.11 64.47% 0.29 0.03 47.20% 0.11 0.01 * 0.35 0.04 57.53 (42/73)
DS:GC1 * 0.36 0.04 * 0.96 0.11 * 0.69 0.08 * 0.21 0.02 * 0.38 0.04 22.66 (17/75)
DS:GC3 * 0.35 0.04 * 0.82 0.09 * 0.70 0.08 * 0.32 0.04 * 0.39 0.04 100.00 (78/78)
DS:LS1 * 0.31 0.03 * 0.64 0.06 * 0.30 0.02 * 0.23 0.02 * 0.37 0.04 22.54 (23/102)
DS:LS2 * 0.34 0.04 59.57% 0.38 0.04 40.72% 0.22 0.02 * 0.27 0.03 * 0.33 0.04 68.00 (51/75)
DS:VC1 * 0.22 0.03 81.09% 0.31 0.04 * 0.35 0.05 * 0.14 0.02 67.95% 0.90 0.11 16.66 (8/48)
DS:VC2 * 0.23 0.04 * 0.42 0.06 * 0.37 0.06 85.55% 0.10 0.02 63.29% 0.47 0.06 28.94 (11/38)
DS:CR1 * 0.22 0.02 75.29% 2.58 0.26 65.98% 0.90 0.09 47.93% 0.10 0.01 36.52% 0.27 0.03 93.15 (68/73)
DS:CR3 * 0.10 0.03 52.57% 0.55 0.15 * 0.17 0.05 92.57% 0.05 0.02 50.69% 0.26 0.07 77.77 (7/9)
DS:CLX 75.40% 0.71 0.20 19.93% 0.06 0.02 54.83% 0.36 0.10 * 0.06 0.02 38.10% 0.10 0.03 0.00 (0/10)
DS:CL3 97.44% 0.28 0.02 28.61% 0.39 0.03 57.90% 1.07 0.10 * 0.29 0.03 47.40% 0.16 0.01 15.11 (13/86)
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Table 9.9. Emotion recognition results tests 13 and 14. ANN with 6× 103 train epochs and input data with feature extraction.

Test 13 - Emotion Recognition + RTOR [HR+EEG] - ϕj(vj(n)) = sigmoid, opt=’adam’, Nh = 83× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.16 0.02 * 0.81 0.08 * 0.56 0.06 35.43% 0.11 0.01 * 0.20 0.02 47.76 (32/67)
DS:RC2 * 0.20 0.02 81.09% 0.87 0.08 * 0.46 0.04 38.61% 0.12 0.01 * 0.22 0.02 57.69 (45/78)
DS:RC3 * 0.84 0.08 77.38% 1.58 0.13 51.85% 0.34 0.03 1.65% 0.14 0.01 * 0.21 0.02 53.42 (39/73)
DS:GC1 * 0.20 0.02 * 1.82 0.18 * 0.65 0.07 67.62% 0.07 0.01 * 0.23 0.03 22.66 (17/75)
DS:GC3 * 0.11 0.01 96.73% 0.24 0.02 * 0.23 0.02 * 0.10 0.01 * 0.21 0.02 100.00 (78/78)
DS:LS1 * 0.22 0.02 * 1.14 0.10 * 0.40 0.03 66.70% 0.09 0.01 * 0.15 0.01 22.54 (23/102)
DS:LS2 * 0.34 0.04 63.24% 0.45 0.04 80.18% 0.41 0.04 * 0.14 0.01 * 0.23 0.02 53.33 (40/75)
DS:VC1 * 0.13 0.02 41.49% 0.21 0.03 * 0.26 0.03 23.76% 0.05 0.01 84.91% 1.04 0.13 12.50 (6/48)
DS:VC2 * 0.19 0.03 * 0.76 0.09 * 0.50 0.08 27.03% 0.06 0.01 63.35% 0.53 0.07 23.68 (9/38)
DS:CR1 * 0.23 0.02 72.54% 2.47 0.25 55.38% 0.76 0.07 38.66% 0.12 0.01 60.34% 0.40 0.04 54.79 (40/73)
DS:CR3 * 0.05 0.02 84.43% 0.65 0.20 * 0.18 0.05 16.66% 0.01 0.00 61.17% 0.27 0.08 77.77 (7/9)
DS:CLX 89.97% 0.77 0.22 70.03% 0.22 0.06 74.87% 0.48 0.14 * 0.05 0.01 65.55% 0.16 0.05 0.00 (0/10)
DS:CL3 81.74% 0.33 0.03 86.35% 1.08 0.09 44.15% 0.87 0.08 * 0.16 0.02 34.68% 0.16 0.01 15.11 (13/86)
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Test 14 - Emotion Recognition + RTOR [HR+EEG] - ϕj(vj(n)) = ReLU , opt=’sgd’, Nh = 83× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.16 0.02 * 0.42 0.04 77.85% 0.50 0.04 40.86% 0.13 0.01 * 0.19 0.02 53.73 (36/67)
DS:RC2 * 0.17 0.02 81.44% 0.82 0.07 69.82% 0.29 0.03 40.09% 0.12 0.01 * 0.26 0.03 82.05 (64/78)
DS:RC3 * 0.78 0.07 91.25% 1.37 0.11 61.95% 0.28 0.03 6.42% 0.12 0.01 * 0.24 0.03 57.53 (42/73)
DS:GC1 * 0.24 0.03 * 0.96 0.11 * 0.68 0.08 56.91% 0.06 0.01 * 0.25 0.03 22.66 (17/75)
DS:GC3 * 0.22 0.03 * 0.82 0.09 * 0.69 0.08 * 0.15 0.02 * 0.27 0.03 100.00 (78/78)
DS:LS1 * 0.17 0.02 * 0.65 0.06 * 0.30 0.02 53.04% 0.07 0.01 * 0.23 0.02 22.54 (23/102)
DS:LS2 * 0.22 0.03 59.94% 0.38 0.04 39.85% 0.21 0.02 * 0.11 0.01 99.66% 0.06 0.01 68.00 (51/75)
DS:VC1 * 0.13 0.02 82.02% 0.32 0.04 * 0.35 0.05 23.70% 0.04 0.00 78.94% 1.01 0.13 16.66 (8/48)
DS:VC2 * 0.14 0.02 * 0.42 0.06 * 0.36 0.06 28.62% 0.07 0.01 66.87% 0.55 0.07 28.94 (11/38)
DS:CR1 * 0.12 0.01 75.35% 2.58 0.26 66.63% 0.92 0.09 38.25% 0.12 0.01 62.94% 0.40 0.04 93.15 (68/73)
DS:CR3 * 0.05 0.02 52.41% 0.55 0.15 * 0.17 0.05 12.21% 0.01 0.00 67.04% 0.29 0.08 77.77 (7/9)
DS:CLX 85.36% 0.76 0.21 20.67% 0.06 0.02 56.01% 0.36 0.11 * 0.04 0.01 60.48% 0.14 0.04 0.00 (0/10)
DS:CL3 73.83% 0.36 0.03 28.76% 0.39 0.03 60.11% 1.10 0.11 * 0.11 0.01 28.65% 0.18 0.01 15.11 (13/86)
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Table 9.10. Emotion recognition results tests 15 and 16. ANN with 6× 103 train epochs and input data with feature extraction.

Test 15 - Emotion Recognition + RTOR [HR+GSR] - ϕj(vj(n)) = ReLU , opt=’adam’, Nh = 18× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.25 0.02 * 1.54 0.15 * 0.67 0.07 38.40% 0.09 0.01 * 0.31 0.04 50.75 (34/67)
DS:RC2 * 0.21 0.02 65.65% 1.07 0.09 55.46% 0.39 0.04 45.73% 0.14 0.01 * 0.23 0.03 82.05 (64/78)
DS:RC3 * 0.82 0.08 75.87% 1.57 0.13 30.77% 0.28 0.02 1.20% 0.13 0.01 * 0.19 0.02 54.79 (40/73)
DS:GC1 * 0.22 0.02 * 0.73 0.08 * 0.51 0.06 59.59% 0.06 0.01 * 0.23 0.03 22.67 (17/75)
DS:GC3 * 0.50 0.06 * 0.85 0.09 * 1.13 0.12 * 0.13 0.01 * 0.29 0.03 32.05 (25/78)
DS:LS1 * 0.13 0.01 43.02% 0.31 0.02 45.99% 0.56 0.05 38.62% 0.07 0.01 * 0.18 0.02 26.47 (27/102)
DS:LS2 * 0.10 0.01 48.43% 0.51 0.05 60.50% 0.46 0.05 * 0.08 0.01 * 0.22 0.03 66.67 (50/75)
DS:VC1 * 0.19 0.02 * 0.88 0.08 * 0.54 0.06 42.03% 0.06 0.01 81.53% 0.99 0.13 18.75 (9/48)
DS:VC2 * 0.20 0.03 * 0.59 0.07 * 0.32 0.05 27.24% 0.06 0.01 99.98% 0.67 0.09 28.95 (11/38)
DS:CR1 * 0.25 0.03 74.29% 2.45 0.25 84.93% 0.67 0.07 38.20% 0.12 0.01 62.07% 0.41 0.04 41.10 (30/73)
DS:CR3 51.71% 0.02 0.00 67.73% 0.65 0.19 * 0.21 0.06 20.81% 0.01 0.00 77.24% 0.32 0.09 77.78 (7/9)
DS:CLX 87.40% 0.76 0.21 70.18% 0.33 0.06 61.44% 0.38 0.11 * 0.05 0.01 59.79% 0.16 0.04 10.00 (1/10)
DS:CL3 * 0.58 0.05 42.02% 0.62 0.05 58.21% 1.07 0.10 * 0.10 0.01 53.55% 0.22 0.02 30.23 (26/86)
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Test 16 - Emotion Recognition + RTOR [HR+GSR] - ϕj(vj(n)) = sigmoid, opt=’sgd’, Nh = 18× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.36 0.04 * 0.47 0.05 * 0.48 0.05 * 0.32 0.04 * 0.55 0.07 53.73 (36/67)
DS:RC2 * 0.45 0.05 89.10% 0.78 0.07 * 0.38 0.04 * 0.37 0.04 * 0.65 0.07 82.05 (64/78)
DS:RC3 * 0.54 0.05 99.06% 1.33 0.11 * 0.40 0.04 11.28% 0.35 0.04 * 0.60 0.07 57.53 (42/73)
DS:GC1 * 0.63 0.07 * 1.04 0.12 * 0.86 0.10 * 0.47 0.05 * 0.64 0.07 22.67 (17/75)
DS:GC3 * 0.62 0.07 * 0.90 0.10 * 0.87 0.10 * 0.59 0.07 * 0.65 0.07 100.00 (78/78)
DS:LS1 * 0.60 0.06 * 0.73 0.07 * 0.37 0.03 * 0.53 0.05 * 0.66 0.07 22.55 (23/102)
DS:LS2 * 0.59 0.07 70.43% 0.42 0.04 60.37% 0.28 0.03 * 0.52 0.06 * 0.59 0.07 68.00 (51/75)
DS:VC1 * 0.42 0.06 97.66% 0.38 0.05 * 0.49 0.07 * 0.35 0.05 63.25% 0.73 0.09 16.67 (8/48)
DS:VC2 * 0.41 0.07 * 0.47 0.07 * 0.49 0.08 * 0.28 0.04 81.42% 0.37 0.05 28.95 (11/38)
DS:CR1 * 0.46 0.05 73.98% 2.46 0.25 63.97% 0.76 0.07 * 0.34 0.04 22.85% 0.15 0.01 93.15 (68/73)
DS:CR3 * 0.19 0.06 52.27% 0.52 0.15 * 0.16 0.05 * 0.15 0.05 43.72% 0.20 0.05 77.78 (7/9)
DS:CLX 63.30% 0.63 0.17 31.81% 0.09 0.03 43.29% 0.30 0.08 * 0.15 0.05 18.07% 0.04 0.01 0.00 (0/10)
DS:CL3 * 0.33 0.03 32.52% 0.38 0.03 43.68% 0.87 0.08 * 0.57 0.06 * 0.35 0.04 15.12 (13/86)
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Table 9.11. Emotion recognition results tests 17 and 18. ANN with 6× 103 train epochs and input data with feature extraction.

Test 17 - Emotion Recognition + RTOR [HR+GSR] - ϕj(vj(n)) = sigmoid, opt=’adam’, Nh = 18× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 89.18% 0.16 0.02 95.43% 0.41 0.04 72.83% 0.52 0.05 44.25% 0.14 0.01 * 0.19 0.02 53.73 (36/67)
DS:RC2 * 0.19 0.02 83.59% 0.85 0.08 70.13% 0.30 0.03 47.99% 0.13 0.01 * 0.24 0.03 82.05 (64/78)
DS:RC3 * 0.80 0.08 90.09% 1.41 0.12 49.78% 0.26 0.02 17.21% 0.15 0.02 * 0.21 0.02 57.53 (42/73)
DS:GC1 * 0.23 0.03 * 0.95 0.11 * 0.67 0.08 65.26% 0.08 0.01 * 0.26 0.03 22.67 (17/75)
DS:GC3 * 0.18 0.02 * 0.72 0.08 * 0.61 0.07 * 0.12 0.01 * 0.23 0.03 100.00 (78/78)
DS:LS1 * 0.14 0.01 * 0.57 0.05 * 0.35 0.03 32.60% 0.08 0.01 * 0.18 0.02 22.55 (23/102)
DS:LS2 * 0.19 0.02 50.82% 0.34 0.03 36.44% 0.23 0.02 * 0.09 0.01 * 0.19 0.02 68.00 (51/75)
DS:VC1 * 0.16 0.02 89.02% 0.36 0.05 * 0.40 0.05 43.75% 0.06 0.01 77.37% 0.98 0.12 16.67 (8/48)
DS:VC2 * 0.10 0.02 * 0.36 0.05 * 0.30 0.05 34.69% 0.08 0.01 69.00% 0.57 0.08 28.95 (11/38)
DS:CR1 * 0.12 0.01 75.34% 2.58 0.26 66.53% 0.92 0.09 38.42% 0.12 0.01 63.33% 0.40 0.04 93.15 (68/73)
DS:CR3 * 0.05 0.02 49.08% 0.54 0.15 * 0.16 0.05 8.85% 0.01 0.00 67.53% 0.29 0.08 77.78 (7/9)
DS:CLX 86.01% 0.74 0.21 34.87% 0.12 0.03 52.43% 0.37 0.10 * 0.04 0.01 53.00% 0.14 0.04 0.00 (0/10)
DS:CL3 74.84% 0.36 0.03 32.35% 0.41 0.04 58.97% 1.09 0.11 * 0.13 0.01 32.20% 0.17 0.01 15.12 (13/86)
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Test 18 - Emotion Recognition + RTOR [HR+GSR] - ϕj(vj(n)) = ReLU , opt=’sgd’, Nh = 18× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.16 0.02 * 0.42 0.04 78.23% 0.50 0.04 41.33% 0.13 0.01 * 0.19 0.02 53.73 (36/67)
DS:RC2 * 0.17 0.02 81.63% 0.81 0.07 70.02% 0.29 0.03 39.41% 0.12 0.01 * 0.26 0.03 82.05 (64/78)
DS:RC3 * 0.78 0.07 91.36% 1.37 0.11 61.92% 0.28 0.03 7.02% 0.12 0.01 * 0.24 0.03 57.53 (42/73)
DS:GC1 * 0.24 0.03 * 0.96 0.11 * 0.68 0.08 56.94% 0.06 0.01 * 0.26 0.03 22.67 (17/75)
DS:GC3 * 0.22 0.03 * 0.82 0.09 * 0.69 0.08 754.16% 0.15 0.02 * 0.27 0.03 100.00 (78/78)
DS:LS1 * 0.17 0.02 * 0.64 0.06 * 0.30 0.02 49.92% 0.07 0.01 * 0.23 0.02 22.55 (23/102)
DS:LS2 * 0.22 0.03 59.79% 0.38 0.04 39.79% 0.22 0.02 * 0.11 0.01 * 0.21 0.02 68.00 (51/75)
DS:VC1 * 0.13 0.02 81.48% 0.31 0.04 * 0.34 0.05 24.00% 0.04 0.00 78.96% 1.01 0.13 16.67 (8/48)
DS:VC2 * 0.14 0.02 * 0.42 0.06 * 0.36 0.06 28.36% 0.07 0.01 99.98% 0.67 0.09 28.95 (11/38)
DS:CR1 * 0.12 0.01 75.31% 2.58 0.26 66.51% 0.92 0.09 37.92% 0.12 0.01 62.94% 0.40 0.04 93.15 (68/73)
DS:CR3 * 0.05 0.02 52.57% 0.55 0.15 * 0.17 0.05 11.58% 0.01 0.00 67.73% 0.30 0.08 77.78 (7/9)
DS:CLX 85.49% 0.76 0.21 20.21% 0.06 0.02 56.07% 0.36 0.11 * 0.04 0.01 60.50% 0.14 0.04 0.00 (0/10)
DS:CL3 73.78% 0.36 0.03 28.68% 0.39 0.03 60.20% 1.10 0.11 * 0.12 0.01 28.93% 0.18 0.01 15.12 (13/86)
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Table 9.12. Emotion recognition results tests 19 and 20. ANN with 6× 103 train epochs and input data with feature extraction.

Test 19 - Emotion Recognition + RTOR - ϕj(vj(n)) = ReLU , opt=’adam’, Nh = 50× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.23 0.02 * 1.41 0.13 111.92% 0.60 0.06 34.33% 0.10 0.01 * 0.30 0.03 46.27 (31/67)
DS:RC2 * 0.23 0.02 76.07% 1.04 0.09 62.81% 0.43 0.04 39.64% 0.12 0.01 * 0.12 0.01 79.49 (62/78)
DS:RC3 78.92% 0.79 0.07 * 1.87 0.17 * 0.75 0.07 9.39% 0.10 0.01 * 0.45 0.04 52.05 (38/73)
DS:GC1 * 0.18 0.02 * 0.63 0.07 * 0.70 0.07 47.64% 0.06 0.01 * 0.08 0.01 16.00 (12/75)
DS:GC3 * 0.36 0.03 * 0.53 0.06 * 0.76 0.08 * 0.17 0.02 * 0.33 0.02 55.13 (43/78)
DS:LS1 * 0.16 0.01 * 0.83 0.06 * 0.60 0.05 56.62% 0.09 0.01 * 0.20 0.01 31.37 (32/102)
DS:LS2 * 0.16 0.02 46.08% 0.45 0.04 51.09% 0.37 0.04 * 0.12 0.01 * 0.43 0.03 52.00 (39/75)
DS:VC1 * 0.27 0.03 * 0.62 0.07 * 0.56 0.07 41.08% 0.06 0.01 76.99% 1.00 0.12 20.83 (10/48)
DS:VC2 * 0.22 0.03 * 0.95 0.10 * 0.32 0.05 34.99% 0.06 0.01 75.78% 0.59 0.08 21.05 (8/38)
DS:CR1 * 0.19 0.02 67.72% 2.43 0.24 57.93% 0.89 0.08 34.98% 0.10 0.01 89.92% 0.55 0.06 63.01 (46/73)
DS:CR3 * 0.07 0.02 51.63% 0.39 0.11 * 0.20 0.05 26.57% 0.02 0.01 61.88% 0.29 0.08 77.78 (7/9)
DS:CLX 81.52% 0.72 0.20 94.39% 0.41 0.08 66.44% 0.41 0.12 * 0.06 0.01 72.31% 0.19 0.05 10.00 (1/10)
DS:CL3 81.79% 0.36 0.03 76.16% 0.99 0.08 56.92% 1.08 0.10 * 0.15 0.01 * 0.38 0.03 18.60 (16/86)
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Test 20 - Emotion Recognition + RTOR - ϕj(vj(n)) = sigmoid, opt=’sgd’, Nh = 50× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.21 0.02 * 0.42 0.04 84.78% 0.49 0.04 79.91% 0.15 0.02 * 0.37 0.04 53.73 (36/67)
DS:RC2 * 0.28 0.03 82.12% 0.81 0.07 77.49% 0.30 0.03 * 0.19 0.02 * 0.45 0.05 82.05 (64/78)
DS:RC3 * 0.63 0.06 91.97% 1.37 0.11 71.00% 0.30 0.03 39.93% 0.17 0.02 * 0.42 0.05 57.53 (42/73)
DS:GC1 * 0.43 0.05 * 0.96 0.11 * 0.72 0.08 * 0.28 0.03 * 0.45 0.05 22.67 (17/75)
DS:GC3 * 0.42 0.05 * 0.82 0.09 * 0.73 0.08 * 0.39 0.04 * 0.46 0.05 100.00 (78/78)
DS:LS1 * 0.38 0.04 * 0.64 0.06 * 0.30 0.02 * 0.31 0.03 * 0.45 0.04 22.55 (23/102)
DS:LS2 * 0.41 0.05 60.17% 0.38 0.04 43.47% 0.22 0.02 * 0.33 0.04 * 0.40 0.05 68.00 (51/75)
DS:VC1 * 0.27 0.04 82.11% 0.32 0.04 * 0.38 0.05 * 0.20 0.03 66.16% 0.85 0.10 16.67 (8/48)
DS:VC2 * 0.27 0.04 * 0.42 0.06 * 0.39 0.06 * 0.15 0.02 65.65% 0.44 0.06 28.95 (11/38)
DS:CR1 * 0.29 0.03 75.05% 2.56 0.26 65.40% 0.87 0.09 76.95% 0.16 0.02 26.21% 0.22 0.02 93.15 (68/73)
DS:CR3 * 0.12 0.04 52.55% 0.55 0.15 * 0.16 0.05 * 0.08 0.03 45.65% 0.24 0.06 77.78 (7/9)
DS:CLX 70.67% 0.69 0.19 20.69% 0.06 0.02 52.26% 0.35 0.10 * 0.08 0.02 27.11% 0.08 0.02 0.00 (0/10)
DS:CL3 * 0.27 0.02 28.84% 0.39 0.03 54.35% 1.02 0.10 * 0.37 0.04 67.15% 0.19 0.02 15.12 (13/86)
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Table 9.13. Emotion recognition results tests 21 and 22. ANN with 6× 103 train epochs and input data with feature extraction.

Test 21 - Emotion Recognition + RTOR - ϕj(vj(n)) = sigmoid, opt=’adam’, Nh = 50× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.16 0.02 * 0.79 0.08 85.96% 0.50 0.05 42.72% 0.12 0.01 * 0.24 0.03 53.73 (36/67)
DS:RC2 * 0.18 0.02 78.38% 1.00 0.09 71.81% 0.31 0.03 44.98% 0.14 0.01 * 0.26 0.03 82.05 (64/78)
DS:RC3 * 0.79 0.08 * 1.56 0.14 78.75% 0.40 0.03 19.89% 0.15 0.02 * 0.29 0.03 57.53 (42/73)
DS:GC1 * 0.18 0.02 * 0.61 0.07 * 0.56 0.06 43.09% 0.05 0.01 * 0.21 0.02 22.67 (17/75)
DS:GC3 * 0.22 0.02 * 0.76 0.07 * 0.67 0.07 * 0.14 0.01 * 0.25 0.03 100.00 (78/78)
DS:LS1 * 0.17 0.01 56.53% 0.31 0.02 * 0.36 0.03 41.72% 0.08 0.01 * 0.22 0.02 22.55 (23/102)
DS:LS2 * 0.21 0.02 41.88% 0.42 0.04 37.51% 0.24 0.02 * 0.10 0.01 * 0.20 0.02 68.00 (51/75)
DS:VC1 * 0.13 0.02 64.26% 0.33 0.04 * 0.34 0.04 34.90% 0.06 0.01 83.66% 1.02 0.13 16.67 (8/48)
DS:VC2 * 0.12 0.02 * 0.30 0.04 * 0.30 0.05 33.94% 0.08 0.01 68.82% 0.57 0.08 28.95 (11/38)
DS:CR1 * 0.16 0.02 72.85% 2.53 0.26 61.33% 0.88 0.09 39.49% 0.12 0.01 60.34% 0.40 0.04 93.15 (68/73)
DS:CR3 * 0.08 0.02 33.57% 0.39 0.09 * 0.12 0.03 45.90% 0.03 0.01 62.16% 0.29 0.08 77.78 (7/9)
DS:CLX 87.78% 0.76 0.21 55.36% 0.20 0.05 57.29% 0.39 0.11 96.88% 0.05 0.01 62.19% 0.16 0.05 0.00 (0/10)
DS:CL3 79.33% 0.38 0.03 37.55% 0.56 0.05 63.14% 1.15 0.11 * 0.11 0.01 35.10% 0.19 0.01 15.12 (13/86)
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Test 22 - Emotion Recognition + RTOR - ϕj(vj(n)) = ReLU , opt=’sgd’, Nh = 50× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.16 0.02 * 0.42 0.04 78.30% 0.50 0.04 41.39% 0.13 0.01 * 0.19 0.02 53.73 (36/67)
DS:RC2 * 0.17 0.02 81.59% 0.81 0.07 69.99% 0.29 0.03 39.55% 0.12 0.01 * 0.26 0.03 82.05 (64/78)
DS:RC3 * 0.78 0.07 91.40% 1.37 0.11 61.98% 0.28 0.03 7.21% 0.12 0.01 * 0.24 0.03 57.53 (42/73)
DS:GC1 * 0.24 0.03 * 0.96 0.11 * 0.68 0.08 56.91% 0.06 0.01 * 0.26 0.03 22.67 (17/75)
DS:GC3 * 0.23 0.03 * 0.82 0.09 * 0.69 0.08 * 0.15 0.02 * 0.27 0.03 100.00 (78/78)
DS:LS1 * 0.17 0.02 * 0.64 0.06 * 0.30 0.02 50.14% 0.07 0.01 * 0.23 0.02 22.55 (23/102)
DS:LS2 * 0.22 0.03 59.83% 0.38 0.04 39.81% 0.22 0.02 * 0.11 0.01 * 0.21 0.02 68.00 (51/75)
DS:VC1 * 0.13 0.02 81.52% 0.31 0.04 * 0.34 0.05 23.83% 0.04 0.00 79.01% 1.01 0.13 16.67 (8/48)
DS:VC2 * 0.14 0.02 * 0.42 0.06 * 0.36 0.06 28.44% 0.07 0.01 66.77% 0.55 0.07 28.95 (11/38)
DS:CR1 * 0.12 0.01 75.33% 2.58 0.26 66.48% 0.92 0.09 37.57% 0.12 0.01 63.12% 0.40 0.04 93.15 (68/73)
DS:CR3 * 0.05 0.02 52.58% 0.55 0.15 * 0.17 0.05 12.02% 0.01 0.00 67.68% 0.30 0.08 77.78 (7/9)
DS:CLX 85.55% 0.76 0.21 20.33% 0.06 0.02 56.02% 0.36 0.11 * 0.04 0.01 60.56% 0.14 0.04 0.00 (0/10)
DS:CL3 73.73% 0.36 0.03 28.65% 0.39 0.03 60.20% 1.10 0.11 * 0.12 0.01 28.81% 0.18 0.01 15.12 (13/86)
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Table 9.14. Emotion recognition results tests 23 and 24. ANN with 6× 103 train epochs and input data with feature extraction.

Test 23 - Emotion Recognition + RTOR [GSR+EEG] - ϕj(vj(n)) = ReLU , opt=’adam’, Nh = 44× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 95.54% 0.22 0.02 * 1.25 0.11 * 0.61 0.06 37.79% 0.11 0.01 * 0.26 0.02 43.28 (29/67)
DS:RC2 * 0.33 0.03 72.65% 0.99 0.09 61.52% 0.35 0.03 38.64% 0.11 0.01 * 0.08 0.01 70.51 (55/78)
DS:RC3 * 0.78 0.08 * 1.80 0.16 * 0.75 0.07 39.27% 0.11 0.01 * 0.38 0.03 50.68 (37/73)
DS:GC1 * 0.19 0.02 * 0.59 0.06 * 0.75 0.07 49.65% 0.06 0.01 * 0.07 0.01 9.33 (7/75)
DS:GC3 * 0.27 0.02 * 0.92 0.08 * 0.82 0.08 * 0.16 0.02 * 0.25 0.02 52.56 (41/78)
DS:LS1 * 0.42 0.02 * 0.74 0.06 * 0.66 0.06 56.57% 0.08 0.01 * 0.30 0.02 39.22 (40/102)
DS:LS2 * 0.16 0.01 54.67% 0.57 0.05 74.21% 0.54 0.05 * 0.10 0.01 * 0.07 0.01 54.67 (41/75)
DS:VC1 * 0.19 0.02 * 0.64 0.06 * 0.49 0.06 49.41% 0.07 0.01 86.96% 1.02 0.13 14.58 (7/48)
DS:VC2 * 0.19 0.03 * 0.94 0.10 * 0.49 0.06 30.19% 0.06 0.01 81.65% 0.54 0.07 28.95 (11/38)
DS:CR1 * 0.19 0.02 85.30% 2.59 0.27 59.73% 0.86 0.08 36.10% 0.11 0.01 79.43% 0.50 0.05 42.47 (31/73)
DS:CR3 * 0.05 0.01 57.15% 0.36 0.09 * 0.12 0.03 26.85% 0.02 0.01 57.71% 0.29 0.07 66.67 (6/9)
DS:CLX 92.12% 0.78 0.22 60.90% 0.21 0.05 76.76% 0.45 0.13 * 0.05 0.01 60.97% 0.17 0.04 10.00 (1/10)
DS:CL3 90.09% 0.42 0.04 40.79% 0.59 0.05 58.72% 1.12 0.10 * 0.15 0.01 * 0.47 0.04 18.60 (16/86)
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Test 24 - Emotion Recognition + RTOR [GSR+EEG] - ϕj(vj(n)) = sigmoid, opt=’sgd’, Nh = 44× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.22 0.02 * 0.42 0.04 86.46% 0.49 0.04 87.95% 0.17 0.02 * 0.39 0.05 53.73 (36/67)
DS:RC2 * 0.30 0.03 82.50% 0.81 0.07 79.64% 0.31 0.03 * 0.21 0.02 * 0.47 0.05 82.05 (64/78)
DS:RC3 * 0.62 0.06 92.38% 1.37 0.11 73.33% 0.31 0.03 37.28% 0.19 0.02 * 0.44 0.05 57.53 (42/73)
DS:GC1 * 0.45 0.05 * 0.96 0.11 * 0.73 0.08 * 0.30 0.03 * 0.46 0.05 22.67 (17/75)
DS:GC3 * 0.44 0.05 * 0.82 0.09 * 0.75 0.08 * 0.41 0.05 * 0.48 0.05 100.00 (78/78)
DS:LS1 * 0.40 0.04 * 0.65 0.06 * 0.31 0.02 * 0.33 0.03 * 0.47 0.05 22.55 (23/102)
DS:LS2 * 0.43 0.05 60.64% 0.38 0.04 44.59% 0.22 0.02 * 0.35 0.04 * 0.42 0.05 68.00 (51/75)
DS:VC1 * 0.29 0.04 82.84% 0.32 0.04 * 0.39 0.05 * 0.21 0.03 65.74% 0.84 0.10 16.67 (8/48)
DS:VC2 * 0.29 0.05 * 0.42 0.06 * 0.40 0.06 * 0.16 0.02 66.99% 0.43 0.06 28.95 (11/38)
DS:CR1 * 0.31 0.03 74.95% 2.55 0.26 65.22% 0.86 0.09 86.30% 0.18 0.02 24.24% 0.20 0.02 93.15 (68/73)
DS:CR3 * 0.13 0.04 52.54% 0.55 0.15 * 0.16 0.05 * 0.09 0.03 44.83% 0.24 0.06 77.78 (7/9)
DS:CLX 69.27% 0.69 0.19 21.23% 0.07 0.02 51.35% 0.34 0.10 366.15% 0.09 0.02 24.71% 0.07 0.02 0.00 (0/10)
DS:CL3 * 0.27 0.02 28.98% 0.38 0.03 53.37% 1.01 0.10 * 0.39 0.04 72.59% 0.21 0.02 15.12 (13/86)
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Table 9.15. Emotion recognition results tests 25 and 26. ANN with 6× 103 train epochs and input data with feature extraction.

Test 25 - Emotion Recognition + RTOR [GSR+EEG] - ϕj(vj(n)) = sigmoid, opt=’adam’, Nh = 44× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 98.41% 0.16 0.02 * 0.61 0.06 93.84% 0.53 0.05 45.62% 0.14 0.01 * 0.21 0.02 53.73 (36/67)
DS:RC2 * 0.17 0.02 79.98% 0.94 0.08 66.82% 0.29 0.03 49.97% 0.15 0.01 * 0.24 0.03 82.05 (64/78)
DS:RC3 * 0.79 0.08 * 1.42 0.13 84.15% 0.40 0.04 28.38% 0.15 0.02 * 0.28 0.03 57.53 (42/73)
DS:GC1 * 0.17 0.02 * 0.68 0.08 * 0.57 0.07 40.48% 0.06 0.01 * 0.21 0.02 22.67 (17/75)
DS:GC3 * 0.21 0.02 * 0.74 0.08 * 0.68 0.08 * 0.13 0.01 * 0.25 0.03 100.00 (78/78)
DS:LS1 * 0.14 0.01 83.83% 0.43 0.04 * 0.34 0.03 37.43% 0.08 0.01 * 0.18 0.02 22.55 (23/102)
DS:LS2 * 0.18 0.02 38.04% 0.37 0.03 38.28% 0.24 0.02 * 0.07 0.01 * 0.17 0.02 68.00 (51/75)
DS:VC1 * 0.12 0.01 67.57% 0.34 0.04 256.68% 0.33 0.04 41.18% 0.07 0.01 85.41% 1.03 0.13 16.67 (8/48)
DS:VC2 * 0.12 0.02 * 0.41 0.06 * 0.33 0.05 41.52% 0.09 0.01 70.05% 0.58 0.08 28.95 (11/38)
DS:CR1 * 0.13 0.01 75.01% 2.58 0.26 65.95% 0.92 0.09 37.43% 0.12 0.01 62.48% 0.40 0.04 93.15 (68/73)
DS:CR3 * 0.09 0.02 43.56% 0.42 0.12 * 0.13 0.03 50.69% 0.03 0.01 63.11% 0.29 0.08 77.78 (7/9)
DS:CLX 88.78% 0.77 0.22 42.48% 0.19 0.04 60.72% 0.39 0.11 88.54% 0.05 0.01 66.68% 0.16 0.05 0.00 (0/10)
DS:CL3 71.68% 0.40 0.04 35.00% 0.55 0.05 66.75% 1.19 0.12 * 0.07 0.01 40.19% 0.22 0.02 15.12 (13/86)

0
.2
7
±
0
.2
3

0
.0
4
±
0
.0
5

0
.7
4
±
0
.0
5

0
.0
8
±
0
.0
5

0
.4
9
±
0
.2
8

0
.0
6
±
0
.0
3

0
.0
9
±
0
.0
3

0
.0
1
±
0
.0
0

0
.3
2
±
0
.2
3

0
.0
4
±
0
.0
3

4
9
.0
9
±
3
2
.0
0

Test 26 - Emotion Recognition + RTOR [GSR+EEG] - ϕj(vj(n)) = ReLU , opt=’sgd’, Nh = 44× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.16 0.02 * 0.42 0.04 78.20% 0.50 0.04 41.41% 0.13 0.01 * 0.19 0.02 53.73 (36/67)
DS:RC2 * 0.17 0.02 81.68% 0.81 0.07 70.03% 0.29 0.03 39.32% 0.12 0.01 * 0.26 0.03 82.05 (64/78)
DS:RC3 * 0.78 0.07 91.37% 1.37 0.11 61.98% 0.28 0.03 6.68% 0.12 0.01 * 0.24 0.03 57.53 (42/73)
DS:GC1 * 0.24 0.03 * 0.96 0.11 * 0.68 0.08 56.95% 0.06 0.01 * 0.26 0.03 22.67 (17/75)
DS:GC3 * 0.23 0.03 * 0.82 0.09 * 0.69 0.08 * 0.15 0.02 * 0.27 0.03 100.00 (78/78)
DS:LS1 * 0.17 0.02 * 0.64 0.06 * 0.30 0.02 49.67% 0.07 0.01 * 0.23 0.02 22.55 (23/102)
DS:LS2 * 0.22 0.03 59.82% 0.38 0.04 39.84% 0.22 0.02 * 0.11 0.01 * 0.21 0.02 68.00 (51/75)
DS:VC1 * 0.13 0.02 81.50% 0.31 0.04 * 0.34 0.05 23.76% 0.04 0.00 78.98% 1.01 0.13 16.67 (8/48)
DS:VC2 * 0.14 0.02 * 0.42 0.06 * 0.36 0.06 28.43% 0.07 0.01 66.84% 0.55 0.07 28.95 (11/38)
DS:CR1 * 0.12 0.01 75.32% 2.58 0.26 66.50% 0.92 0.09 37.87% 0.12 0.01 63.05% 0.40 0.04 93.15 (68/73)
DS:CR3 * 0.05 0.02 52.50% 0.55 0.15 * 0.17 0.05 12.21% 0.01 0.00 67.63% 0.30 0.08 77.78 (7/9)
DS:CLX 85.52% 0.76 0.21 20.24% 0.06 0.02 56.04% 0.36 0.11 123.90% 0.04 0.01 60.63% 0.15 0.04 0.00 (0/10)
DS:CL3 73.83% 0.36 0.03 28.70% 0.39 0.03 60.14% 1.10 0.11 202.72% 0.12 0.01 28.91% 0.18 0.01 15.12 (13/86)
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Table 9.16. Emotion recognition results tests 27 and 28. ANN with 6× 103 train epochs and input data with feature extraction.

Test 27 - Emotion Recognition + RTOR [HR+EEG] - ϕj(vj(n)) = ReLU , opt=’adam’, Nh = 46× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.24 0.02 * 1.23 0.12 87.90% 0.50 0.05 40.78% 0.12 0.01 * 0.42 0.04 41.79 (28/67)
DS:RC2 * 0.22 0.02 76.24% 0.94 0.08 * 0.52 0.05 37.74% 0.12 0.01 * 0.15 0.01 51.28 (40/78)
DS:RC3 * 0.79 0.07 * 1.74 0.15 * 0.54 0.05 13.44% 0.10 0.01 * 0.45 0.04 42.47 (31/73)
DS:GC1 * 0.23 0.02 * 0.63 0.06 * 0.58 0.06 66.90% 0.07 0.01 * 0.07 0.00 17.33 (13/75)
DS:GC3 * 0.29 0.02 * 0.37 0.03 * 0.57 0.05 * 0.15 0.02 * 0.31 0.02 39.74 (31/78)
DS:LS1 * 0.24 0.02 * 1.46 0.11 * 0.54 0.04 67.00% 0.10 0.01 * 0.15 0.01 24.51 (25/102)
DS:LS2 * 0.28 0.03 69.12% 0.61 0.05 83.28% 0.50 0.05 * 0.12 0.01 * 0.42 0.04 48.00 (36/75)
DS:VC1 * 0.25 0.03 78.97% 0.36 0.04 * 0.67 0.08 36.61% 0.05 0.01 78.34% 0.96 0.12 16.67 (8/48)
DS:VC2 * 0.50 0.06 * 0.30 0.04 * 0.62 0.08 39.09% 0.06 0.01 79.43% 0.58 0.08 15.79 (6/38)
DS:CR1 * 0.20 0.02 76.89% 2.53 0.26 73.04% 0.89 0.09 32.84% 0.10 0.01 92.75% 0.56 0.06 47.95 (35/73)
DS:CR3 * 0.08 0.02 36.77% 0.37 0.09 91.51% 0.15 0.04 37.64% 0.03 0.01 72.44% 0.28 0.08 55.56 (5/9)
DS:CLX * 0.78 0.22 64.09% 0.22 0.06 76.70% 0.48 0.14 * 0.05 0.01 95.76% 0.24 0.07 10.00 (1/10)
DS:CL3 * 0.41 0.04 43.03% 0.63 0.05 56.57% 1.07 0.10 * 0.15 0.01 * 0.44 0.03 30.23 (26/86)
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Test 28 - Emotion Recognition + RTOR [HR+EEG] - ϕj(vj(n)) = sigmoid, opt=’sgd’, Nh = 46× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.22 0.02 * 0.42 0.04 85.85% 0.49 0.04 85.06% 0.16 0.02 * 0.38 0.05 53.73 (36/67)
DS:RC2 * 0.29 0.03 82.33% 0.81 0.07 78.82% 0.31 0.03 * 0.20 0.02 * 0.46 0.05 82.05 (64/78)
DS:RC3 * 0.62 0.06 92.22% 1.37 0.11 72.42% 0.31 0.03 38.35% 0.18 0.02 * 0.43 0.05 57.53 (42/73)
DS:GC1 * 0.44 0.05 * 0.96 0.11 * 0.72 0.08 * 0.29 0.03 * 0.46 0.05 22.67 (17/75)
DS:GC3 * 0.44 0.05 * 0.82 0.09 * 0.74 0.08 * 0.41 0.05 * 0.47 0.05 100.00 (78/78)
DS:LS1 * 0.40 0.04 * 0.65 0.06 * 0.30 0.02 * 0.32 0.03 * 0.46 0.05 22.55 (23/102)
DS:LS2 * 0.42 0.05 60.48% 0.38 0.04 44.22% 0.22 0.02 * 0.35 0.04 * 0.41 0.05 68.00 (51/75)
DS:VC1 * 0.28 0.04 82.52% 0.32 0.04 * 0.38 0.05 * 0.21 0.03 65.91% 0.84 0.10 16.67 (8/48)
DS:VC2 * 0.28 0.05 * 0.42 0.06 * 0.39 0.06 * 0.16 0.02 66.50% 0.44 0.06 28.95 (11/38)
DS:CR1 * 0.30 0.03 74.98% 2.55 0.26 65.28% 0.86 0.09 83.16% 0.17 0.02 24.83% 0.21 0.02 93.15 (68/73)
DS:CR3 * 0.13 0.04 52.54% 0.55 0.15 * 0.16 0.05 * 0.08 0.03 45.02% 0.24 0.06 77.78 (7/9)
DS:CLX 69.77% 0.69 0.19 21.01% 0.06 0.02 51.68% 0.34 0.10 * 0.09 0.02 25.58% 0.07 0.02 0.00 (0/10)
DS:CL3 * 0.27 0.02 28.92% 0.39 0.03 53.74% 1.02 0.10 * 0.38 0.04 70.50% 0.20 0.02 15.12 (13/86)
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Table 9.17. Emotion recognition results tests 29 and 30. ANN with 6× 103 train epochs and input data with feature extraction.

Test 29 - Emotion Recognition + RTOR [HR+EEG] - ϕj(vj(n)) = sigmoid, opt=’adam’, Nh = 46× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 97.63% 0.16 0.02 * 0.58 0.06 74.59% 0.50 0.05 45.69% 0.14 0.01 * 0.21 0.02 53.73 (36/67)
DS:RC2 * 0.19 0.02 * 1.02 0.09 82.16% 0.34 0.03 45.10% 0.13 0.01 * 0.28 0.03 82.05 (64/78)
DS:RC3 * 0.80 0.08 * 1.47 0.13 79.64% 0.41 0.04 30.39% 0.16 0.02 * 0.28 0.03 57.53 (42/73)
DS:GC1 * 0.17 0.02 * 0.63 0.07 * 0.54 0.06 39.86% 0.06 0.01 * 0.20 0.02 22.67 (17/75)
DS:GC3 * 0.21 0.02 * 0.69 0.07 * 0.66 0.07 628.24% 0.13 0.01 * 0.25 0.03 100.00 (78/78)
DS:LS1 * 0.13 0.01 60.50% 0.34 0.03 * 0.37 0.03 36.71% 0.08 0.01 * 0.18 0.02 22.55 (23/102)
DS:LS2 * 0.21 0.02 43.36% 0.40 0.03 38.57% 0.25 0.02 * 0.09 0.01 * 0.20 0.02 68.00 (51/75)
DS:VC1 * 0.12 0.01 70.11% 0.35 0.04 * 0.34 0.04 36.74% 0.06 0.01 84.05% 1.02 0.13 16.67 (8/48)
DS:VC2 * 0.12 0.02 * 0.46 0.06 * 0.35 0.05 41.74% 0.08 0.01 71.57% 0.57 0.08 28.95 (11/38)
DS:CR1 * 0.13 0.01 74.47% 2.57 0.26 64.81% 0.91 0.09 36.97% 0.12 0.01 61.72% 0.40 0.04 93.15 (68/73)
DS:CR3 0.09 0.02 38.12% 0.41 0.10 * 0.14 0.04 45.03% 0.03 0.01 62.83% 0.28 0.08 77.78 (7/9)
DS:CLX 88.77% 0.77 0.22 48.73% 0.20 0.04 60.12% 0.39 0.11 93.84% 0.05 0.01 65.16% 0.16 0.05 0.00 (0/10)
DS:CL3 80.86% 0.37 0.03 50.39% 0.67 0.06 57.89% 1.09 0.10 * 0.14 0.01 41.89% 0.20 0.02 15.12 (13/86)
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Test 30 - Emotion Recognition + RTOR [HR+EEG] - ϕj(vj(n)) = ReLU , opt=’sgd’, Nh = 46× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.16 0.02 * 0.42 0.04 78.23% 0.50 0.04 41.37% 0.13 0.01 * 0.19 0.02 53.73 (36/67)
DS:RC2 * 0.17 0.02 81.63% 0.81 0.07 69.96% 0.29 0.03 39.24% 0.12 0.01 * 0.26 0.03 82.05 (64/78)
DS:RC3 * 0.78 0.07 91.43% 1.37 0.11 61.86% 0.28 0.03 6.92% 0.12 0.01 * 0.24 0.03 57.53 (42/73)
DS:GC1 * 0.24 0.03 * 0.96 0.11 * 0.68 0.08 56.80% 0.06 0.01 * 0.26 0.03 22.67 (17/75)
DS:GC3 * 0.23 0.03 * 0.82 0.09 * 0.69 0.08 * 0.15 0.02 * 0.27 0.03 100.00 (78/78)
DS:LS1 * 0.17 0.02 * 0.64 0.06 * 0.30 0.02 49.69% 0.07 0.01 * 0.23 0.02 22.55 (23/102)
DS:LS2 * 0.22 0.03 59.85% 0.38 0.04 39.78% 0.21 0.02 * 0.11 0.01 * 0.21 0.02 68.00 (51/75)
DS:VC1 * 0.13 0.02 81.66% 0.32 0.04 * 0.34 0.05 23.64% 0.04 0.00 78.86% 1.01 0.13 16.67 (8/48)
DS:VC2 * 0.14 0.02 * 0.42 0.06 * 0.36 0.06 28.42% 0.07 0.01 66.83% 0.55 0.07 28.95 (11/38)
DS:CR1 * 0.12 0.01 75.32% 2.58 0.26 66.46% 0.92 0.09 37.85% 0.12 0.01 63.04% 0.40 0.04 93.15 (68/73)
DS:CR3 * 0.05 0.02 52.57% 0.55 0.15 * 0.17 0.05 12.08% 0.01 0.00 67.65% 0.30 0.08 77.78 (7/9)
DS:CLX 85.57% 0.76 0.21 20.34% 0.06 0.02 56.07% 0.36 0.11 * 0.04 0.01 60.58% 0.15 0.04 0.00 (0/10)
DS:CL3 73.84% 0.36 0.03 28.69% 0.39 0.03 60.20% 1.10 0.11 * 0.12 0.01 28.87% 0.18 0.01 15.12 (13/86)
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Table 9.18. Emotion recognition results tests 31 and 32. ANN with 6× 103 train epochs and input data with feature extraction.

Test 31 - Emotion Recognition + RTOR [HR+GSR] - ϕj(vj(n)) = ReLU , opt=’adam’, Nh = 10× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.17 0.02 * 0.97 0.09 71.83% 0.44 0.04 43.44% 0.12 0.01 * 0.28 0.03 56.72 (38/67)
DS:RC2 * 0.20 0.02 84.17% 1.07 0.10 65.80% 0.39 0.04 42.08% 0.13 0.01 * 0.22 0.02 84.62 (66/78)
DS:RC3 * 0.78 0.07 * 1.57 0.14 * 0.66 0.07 7.33% 0.11 0.01 * 0.31 0.03 57.53 (42/73)
DS:GC1 * 0.21 0.02 * 0.99 0.10 * 0.67 0.07 60.19% 0.07 0.01 * 0.20 0.02 22.67 (17/75)
DS:GC3 * 0.21 0.02 * 0.71 0.07 * 0.64 0.07 * 0.14 0.02 * 0.26 0.03 98.72 (77/78)
DS:LS1 * 0.11 0.01 75.08% 0.56 0.03 93.22% 0.48 0.04 35.46% 0.07 0.01 * 0.18 0.02 22.55 (23/102)
DS:LS2 * 0.18 0.02 46.21% 0.44 0.04 99.98% 0.67 0.07 * 0.09 0.01 * 0.17 0.02 68.00 (51/75)
DS:VC1 * 0.12 0.02 74.40% 0.36 0.04 * 0.33 0.04 28.15% 0.04 0.00 81.74% 1.01 0.13 16.67 (8/48)
DS:VC2 * 0.09 0.01 * 0.36 0.04 * 0.29 0.04 28.21% 0.07 0.01 67.86% 0.58 0.08 28.95 (11/38)
DS:CR1 * 0.20 0.02 73.21% 2.53 0.25 66.33% 0.98 0.10 35.28% 0.12 0.01 67.98% 0.44 0.05 89.04 (65/73)
DS:CR3 * 0.07 0.02 53.17% 0.51 0.14 * 0.13 0.03 18.44% 0.01 0.00 66.41% 0.31 0.08 66.67 (6/9)
DS:CLX 89.29% 0.78 0.22 19.56% 0.07 0.02 67.79% 0.42 0.12 * 0.04 0.01 58.11% 0.15 0.04 0.00 (0/10)
DS:CL3 70.88% 0.35 0.03 48.22% 0.65 0.05 58.59% 1.09 0.10 * 0.12 0.01 48.23% 0.23 0.02 15.12 (13/86)
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Test 32 - Emotion Recognition + RTOR [HR+GSR] - ϕj(vj(n)) = sigmoid, opt=’sgd’, Nh = 10× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.49 0.06 * 0.55 0.06 * 0.51 0.05 * 0.46 0.06 * 0.69 0.08 53.73 (36/67)
DS:RC2 * 0.59 0.06 98.61% 0.76 0.07 * 0.49 0.05 * 0.52 0.06 * 0.80 0.09 82.05 (64/78)
DS:RC3 * 0.52 0.05 * 1.28 0.11 * 0.51 0.06 11.46% 0.50 0.06 * 0.75 0.09 57.53 (42/73)
DS:GC1 * 0.77 0.09 * 1.14 0.13 * 0.99 0.11 * 0.62 0.07 * 0.79 0.09 22.67 (17/75)
DS:GC3 * 0.76 0.09 * 1.00 0.11 * 1.01 0.11 * 0.74 0.08 * 0.80 0.09 100.00 (78/78)
DS:LS1 * 0.77 0.08 * 0.85 0.08 * 0.48 0.04 * 0.70 0.07 * 0.83 0.08 22.55 (23/102)
DS:LS2 * 0.74 0.09 85.15% 0.50 0.05 81.89% 0.38 0.04 * 0.67 0.08 * 0.73 0.08 68.00 (51/75)
DS:VC1 * 0.54 0.08 * 0.46 0.06 * 0.59 0.08 * 0.46 0.07 64.98% 0.65 0.08 16.67 (8/48)
DS:VC2 * 0.51 0.08 * 0.54 0.08 * 0.58 0.09 * 0.38 0.06 96.56% 0.34 0.05 28.95 (11/38)
DS:CR1 * 0.60 0.07 73.29% 2.36 0.24 65.32% 0.67 0.06 * 0.48 0.06 39.30% 0.22 0.02 93.15 (68/73)
DS:CR3 * 0.24 0.08 52.05% 0.50 0.14 * 0.18 0.05 * 0.20 0.07 49.44% 0.17 0.05 77.78 (7/9)
DS:CLX 59.30% 0.59 0.16 46.41% 0.13 0.04 37.11% 0.25 0.07 * 0.20 0.06 30.36% 0.07 0.02 0.00 (0/10)
DS:CL3 * 0.44 0.04 39.56% 0.41 0.04 35.96% 0.75 0.07 * 0.73 0.08 * 0.50 0.05 15.12 (13/86)
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Table 9.19. Emotion recognition results tests 33 and 34. ANN with 6× 103 train epochs and input data with feature extraction.

Test 33 - Emotion Recognition + RTOR [HR+GSR] - ϕj(vj(n)) = sigmoid, opt=’adam’, Nh = 10× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.16 0.02 * 0.42 0.04 77.53% 0.50 0.04 42.25% 0.13 0.01 * 0.19 0.02 53.73 (36/67)
DS:RC2 * 0.17 0.02 81.11% 0.82 0.07 69.26% 0.29 0.03 40.21% 0.12 0.01 * 0.26 0.03 82.05 (64/78)
DS:RC3 * 0.78 0.07 90.95% 1.38 0.11 60.86% 0.28 0.03 5.41% 0.13 0.01 * 0.23 0.03 57.53 (42/73)
DS:GC1 * 0.23 0.03 * 0.95 0.11 * 0.67 0.08 54.81% 0.06 0.01 * 0.25 0.03 22.67 (17/75)
DS:GC3 * 0.22 0.02 * 0.81 0.09 * 0.69 0.08 * 0.15 0.02 * 0.26 0.03 100.00 (78/78)
DS:LS1 * 0.17 0.01 * 0.64 0.06 * 0.30 0.02 48.14% 0.07 0.01 * 0.23 0.02 22.55 (23/102)
DS:LS2 * 0.22 0.02 58.96% 0.37 0.04 39.43% 0.22 0.02 * 0.10 0.01 * 0.21 0.02 68.00 (51/75)
DS:VC1 * 0.13 0.02 80.27% 0.31 0.04 * 0.34 0.05 23.41% 0.04 0.00 79.31% 1.01 0.13 16.67 (8/48)
DS:VC2 * 0.13 0.02 * 0.41 0.06 * 0.35 0.06 28.61% 0.07 0.01 67.06% 0.55 0.07 28.95 (11/38)
DS:CR1 * 0.12 0.01 75.39% 2.59 0.26 66.63% 0.92 0.09 38.77% 0.12 0.01 63.67% 0.41 0.04 93.15 (68/73)
DS:CR3 * 0.05 0.02 52.59% 0.55 0.15 * 0.17 0.05 12.88% 0.01 0.00 68.26% 0.30 0.08 77.78 (7/9)
DS:CLX 85.75% 0.76 0.21 19.38% 0.06 0.02 56.48% 0.37 0.11 * 0.04 0.01 61.16% 0.15 0.04 0.00 (0/10)
DS:CL3 73.24% 0.36 0.03 28.45% 0.39 0.03 60.65% 1.10 0.11 * 0.11 0.01 29.36% 0.18 0.01 15.12 (13/86)
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Test 34 - Emotion Recognition + RTOR [HR+GSR] - ϕj(vj(n)) = ReLU , opt=’sgd’, Nh = 10× 2, No = 5

Flight Happy Sad Angry Surprised Scared Match
Dataset MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE MARD RMSE MAE Accuracy (%)

DS:RC1 * 0.16 0.02 * 0.42 0.04 78.20% 0.50 0.04 41.37% 0.13 0.01 * 0.19 0.02 53.73 (36/67)
DS:RC2 * 0.17 0.02 81.62% 0.81 0.07 70.03% 0.29 0.03 39.42% 0.12 0.01 * 0.26 0.03 82.05 (64/78)
DS:RC3 * 0.78 0.07 91.38% 1.37 0.11 61.93% 0.28 0.03 6.98% 0.12 0.01 * 0.24 0.03 57.53 (42/73)
DS:GC1 * 0.24 0.03 * 0.96 0.11 * 0.68 0.08 56.95% 0.06 0.01 * 0.26 0.03 22.67 (17/75)
DS:GC3 * 0.22 0.03 * 0.82 0.09 * 0.69 0.08 * 0.15 0.02 * 0.27 0.03 100.00 (78/78)
DS:LS1 * 0.17 0.02 * 0.64 0.06 * 0.30 0.02 49.93% 0.07 0.01 * 0.23 0.02 22.55 (23/102)
DS:LS2 * 0.22 0.03 59.79% 0.38 0.04 99.98% 0.67 0.07 * 0.11 0.01 * 0.21 0.02 68.00 (51/75)
DS:VC1 * 0.13 0.02 81.47% 0.31 0.04 * 0.34 0.05 23.94% 0.04 0.00 78.96% 1.01 0.13 16.67 (8/48)
DS:VC2 * 0.14 0.02 * 0.42 0.06 * 0.36 0.06 28.42% 0.07 0.01 99.98% 0.67 0.09 28.95 (11/38)
DS:CR1 * 0.12 0.01 99.99% 3.24 0.34 66.50% 0.92 0.09 37.91% 0.12 0.01 62.94% 0.40 0.04 0.00 (0/73)
DS:CR3 * 0.05 0.02 52.57% 0.55 0.15 * 0.17 0.05 11.56% 0.01 0.00 67.74% 0.30 0.08 77.78 (7/9)
DS:CLX 85.50% 0.76 0.21 20.20% 0.06 0.02 56.06% 0.36 0.11 * 0.04 0.01 60.50% 0.14 0.04 0.00 (0/10)
DS:CL3 73.78% 0.36 0.03 28.68% 0.39 0.03 60.21% 1.10 0.11 * 0.12 0.01 28.93% 0.18 0.01 15.12 (13/86)
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CHAPTER 10

Findings, Limitations and Conclusions

This work presents a multimodal solution to give support in the avoidance of aviation accidents

caused by human failures. In this context, the aviation was applied through the use of simulated

flights and several tasks executed by volunteers having different expertise.

The experiment’s scope was based on physiologic sensing approach to recognize emotions

and to analyze β-band signals of several volunteers that acted like pilots in flight. All simulated

flights were executed using the Microsoft Flight Simulator-Steam Edition (FSX-SE) and the

aircraft Cessna 172SP. Cameras, execution checklists, questionnaires, and devices to acquire

data based on GSR, HR and EEG were also used. The simulated flight plan, departed from

Lisbon to Alverca, Portugal and it was executed by 8 volunteers which 13 datasets were obtained

on the present analysis, having data of both genders.

The present experiment was executed looking for the volunteers side, which they acted like

aircraft pilots. A total of 3 different biosignals of the volunteers’ body were acquired: HR,

GSR, EEG and also an additional data was considered based on face recordings, to identify

emotions to give support on the offline analysis. Several sensors were used: Enobio-NE8, Shim-

mer3+GSR/HR, MedLab Pearl 100 and Arduino Uno. In addition, some emotional question-

naires were also applied before, during and after each flight experiment.

10.1. Findings

Regarding to the β-band analysis, several results were obtained on this experiment. In the β-

band spectrogram analysis were possible to visualize the brain’s behaviour during the quietest

moments of the flight (reported by the volunteers through the use of questionnaires) which the

spectrograms shown to have less amplitude and signal oscillation along the time, compared to

the most stressful or critical flight moments. The opposite situations were also identified i.e., in

flight moments which it require more attention (takeoff, approach and landing), the brain signal

presented higher amplitude and oscillation. It mainly, due the level of attention and alertness

that these tasks required.

Spectrograms of the EEG data were acquired from the frontal and temporal lobes, and it

shown to reflect better the flight phases, according to the feelings reported by each volunteer.

When the volunteers’ expertise and confidence on the proposed flight simulation were consid-

ered, it showed that the highest brain magnitudes and oscillations observed of more experienced

and confident volunteers, were on average close to 68.44% less compared to less experienced and

unsure volunteers. Moreover, more experienced and confident volunteers in general presented

different patterns of brain activities compared to volunteers having less expertise or less famil-

iarity with fight simulations and/or electronic games. In addition, the mean of the volunteer’s

brain activity presented the highest amplitudes during the the takeoff, approach, final approach

and landing, having values close to 37.06–67.33% higher compared to other flight moments. Ad-

ditional plots of normalized mean values of brain activities for each lobe position also confirmed

153



that the less experienced and unsure volunteers presented higher amplitudes of β-band mainly

during critical flight tasks, which it demand more attention and self-control.

Regarding to the developed emotion recognition system, the results reached different levels

of accuracy. In this recognition, several features were extracted together with datamining and

ANN techniques. The tests of the produced output models, showed that the lowest recognition

errors were reached when all biosignal datasets were considered or when the GSR dataset were

omitted of the model training. It also showed that the emotion surprised was the easiest to

recognize, having a mean value of RMSE of 0.13 and mean value of MAE of 0.01; the emotion

sad, presented the worst recognition levels, having a mean value of RMSE of 0.82 and mean value

of MAE of 0.08. It can be partially explained by the number of emotion instances detected by the

Face Reader software, which the emotions happy, surprised and scared presented more instances

along the experiments. When only the major emotion values along the time were considered,

the mean of the best classification accuracies was close of 76.42%.

10.2. Limitations

Few limitations were faced along the present work, however, the present work has managed to

get round that quite well.

Some limitations were detected on the recognition of facial emotions by the Face Reader

software in real time, which it presented some undetected emotions, resulting sometimes in such

decrease of facial dataset and outputted model quality. Most part of these mismatches were

minimized along the preprocessing and processing, but some of them continued to affect the

regression models and accuracies of the emotion recognition. Other practical limitation faced

during the development of this work, was the lack of support from aviation schools and pilots

from Portugal, to bring the present work to a more realistic context.

10.3. Final Remarks and Future Works

To better understand the achievements of the proposed work, further studies should be per-

formed to show the potential and applicability of emotion recognition and β-band analysis

on aviation context. Thus, more emotion recognition tests need to be executed, omitting the

datasets which it presented the lowest accuracies, to optimize the total mean accuracies; also,

improvements to optimize the quality of the face emotion dataset, processed by the Face Reader

software, to obtain better accuracies and lower error levels; to improve the facial emotions, the

use of Tensorflow, YOLO+Darknet, can be used to replace the Face Reader software in real

time. Also, the number of volunteers and flight experiments must to be increased to improve

the models.

Further researches intend to apply these proposed experiments on real context, storing biosig-

nals of real pilots in real time, also processing acquired data after each flight, to produce diagno-

sis of pilot emotions and brain activities along the real flights; execute experiments also within

corporative environments and other places; apply and compare our ANN and deep learning ar-

chitectures, over another methods of automatic emotion recognition; and develop other methods

to optimize noisy dataset.

Therefore, the presented experiments and results, succeeded and shown that proposed the-

oretical and practical experiment architecture are scalable and feasible enough to apply in real
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life context, whatever the emotional context and work environment, such as aviation, industry,

corporative institution and so on.
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APPENDIX A

Publications

Along this work, several researches were developed as shown in Table A.1. The first publi-

cations tried to get more background on work needs e.g. biosignals, signal processing, feature

extractions and data mining.

Table A.1. Publications developed during the studies of the present PhD.

PhD Context - Emotions, Biosignals, Signal Processing and Data Mining
Reference Title Published

1 Roza and Postolache, 2016 � Citizen emotion analysis in Smart City. IISA
2 Roza, Almeida, and Posto-

lache, 2017
� Design of an Artificial Neural Network and
Feature Extraction to Identify Arrhythmias from
ECG.

MeMeA

3 Roza and Postolache, 2017 � Design of a Multimodal Interface based on Psy-
chophysiological Sensing to Identify Emotion.

IMEKO

4 Roza et al., 2018 � Performance Analysis of ANN and SVM in ECG
based on Arrhythmia Identification.

IMEKO

5 Roza and Postolache, 2018 � Emotion Analysis Architecture based on Face
and Physiological Sensing Applied with Flight
Simulator.

EPE

6 Roza et al., 2019 � Emotions Assessment on Simulated Flights. MeMeA
7 Roza and Postolache, 2019 � Multimodal Approach for Emotion Recognition

based on Simulated Flight Experiments. (Jour-
nal)

Sensors

8 Roza and Postolache, 2021 � β-Band Analysis from Simulated Flight Exper-
iments. (Journal)

Aerospace

Out of PhD Context - Robotics, Path Modeling and Sensing Platform
Reference Title Event

9 Roza et al., 2017 � Development of a Kinematic Model based on
Bezier Curves for Improvement of Safe Trajecto-
ries in Active Orthosis Walking Tasks.

BAILAR

10 Roza, Souza, and Posto-
lache, 2017

� A Multi-Sensing Physical Therapy Assessment
for Children with Cerebral Palsy.

ICST

11 L. Bruno P. Nascimento et
al., 2018

� Goal-Biased Probabilistic Foam Method for Ro-
bot Path Planning.

ICARSC

Not Published - Writing
Reference Title Event

12 Roza and Postolache, 2017 � Emotion Recognition based on Speech and ANN
(main context).

-

13 Roza et al., 2018 � A State of the Art based on Emotion (main
context).

-

In 2017, was developed the first publication on the main scope of this work i.e., multimodal

sensing and emotions. Between 2018 and 2019, other publications were also developed, regarding

to multimodal sensing to identify emotions and its relation with flight simulated.
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A.1. Experiment with Pictures and Emotions

In 2017, the present work executed the first experiment using pictures to trigger different

emotion in the user.

The IAPS dataset was applied considering 7 emotions such as: anger, boredom, disgust,

anxiety/fear, happiness, sadness and normal. The emotion identification was based on ANN

and Support Vector Machine (SVM).

The interface was executed with 20 healthy volunteers (N = 20) of both genders with age

from 23-50 years old. All participants signed a consent term. For each experiment were used 14

different pictures, 2 pictures by each emotion. Each picture is presented during 15s (t = 15s)

resulting on 280 emotions, selected by all volunteers. All sensing acquisition and questionnaires

were executed in laboratory with the same conditions of light and temperature (Figure A.1).

Figure A.1. Flow diagram of the pictures selection process from the IAPS dataset.

Considering the small ”local” database used to predicts emotions (i.e. 140 emotions for

training and 140 for test), the SVM prediction reached a total accuracy of 77.14%, and the best

predicted emotion was happiness with 84% of accuracy.

The ANN-MLP prediction reached a total accuracy of 85.71% and the best predicted emotion

was boredom with 88.20% of accuracy. Thus, the experiment shown that the prediction of

emotions from psychophysiological signals reached better results when using ANN-MLP.

The electrodes used in these tasks are shown in Figure A.2, including ECG, GSR and SpO2

acquisition techniques.

Figure A.2. Electrode positions for EEG (up); main and auxiliary elec-
trodes for emotion detection (up-right); ECG, GSR and SpO2 (bottom).
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A.2. Speech Emotion Recognition

Experiments including speech analysis and emotion identification were also executed in 2017

inside the context of the present work.

There, the OpenSMILE software was used to extract 88 features based on, jitters, pitches,

means, standard deviations and MFCCs. To this experiment the emotion classifier was based

on a light artificial neural networks using the backpropagation algorithm (Figure A.3), with 88

inputs features, 7 outputs neurons and softmax algorithm at output function. Were considered

7 different emotions in German idiom such as: anger, boredom, disgust, anxiety, happiness,

sadness and normal. Each speech presented a duration time of 3 to 5 seconds.

Figure A.3. ANN result comparison and ANN squared errors during the training.

Preliminary results shown accuracies between 47.00% to 84.40% for training, 54.43% to

93.67% for validation, giving the worst result at test (25.32% to 54.43%) phase due short dataset

used in the training (Figure A.4).

Figure A.4. ANN outputs during the training.
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A.3. Emotion in Smart City

The initial contribution of the present work to smart city within the context of emotion

identification, was initially executed in 2016.

Was proposed a design of an Android application, database and emotion identification algo-

rithm to map specific emotions according to pictures of a city (Figure A.5), using a questionnaire

to select the felt emotion when a picture was presented on screen.

The method to classify the acquired biosignals were cross-correlation (Equation ??). The

Flowsense application (Reis, Arriaga, and Postolache, 2015) was used as an initial experimental

parameter, considering the biosignals such as, ECG, GSR, HR and SpO2.

Figure A.5. Smart phone application screens: questionnaire and the main screen.

The initial results shown that, in 20 analyzed emotions of 18 cases, the classifier correctly

match the emotion (i.e. 90% accuracy).
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A.4. Main Publications

Figure A.6. Publication regarding to the emotional relation between city
places and citizens’ emotions (Roza and Postolache, 2016).
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Figure A.7. Publication regarding to the design of a multimodal interface
based on emotion (Roza and Postolache, 2017).
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Figure A.8. Publication regarding to the design of an ANN to detect
arrhythmias from ECG data (Roza, Almeida, and Postolache, 2017).
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Figure A.9. Publication regarding to the design of a multimodal archi-
tecture based on emotion and flight simulator (Roza and Postolache, 2018).
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Figure A.10. Publication regarding to the performance analysis of ANN
and SVM on arrhythmia identification (Roza et al., 2018).
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Figure A.11. Publication regarding to the emotional assessment on sim-
ulated flight experiments (Roza et al., 2019).
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Figure A.12. Publication regarding to the multisensing approach to iden-
tify emotions based on simulated flight experiments (Roza and Postolache,
2019).
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Figure A.13. Publication regarding to the β-band analysis (Roza and
Postolache, 2021).
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A.5. Publications out of Main Work Context (Parallel Publications)

At the same period, several parallel publications i.e., out of PhD context, were also developed,

which most of it were published inside the context of robotics, path planning and multisensing

platforms (Figures A.14 to A.16).

Figure A.14. Publication regarding to the inverse kinematic applied to
orthosis walking tests (Roza et al., 2017).
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Figure A.15. Publication regarding to the development of a multisensing
platform to give support to children with cerebral palsy (Roza, Souza, and
Postolache, 2017).
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Figure A.16. Publication regarding to the improvement of a probabilistic
method over path planning tasks (L. Bruno P. Nascimento et al., 2018).
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APPENDIX B

Additional Plots of each Volunteer

Figures B.1-B.7, show the brain magnitudes of several lobes along each proposed flight

tasks and volunteers’ expertise. Figures B.6 and B.7, show smoother signals, having less abrupt

variation along short window of time, comparing to the signal variation and shape of the beginner

and mid-level volunteers.

However, even when the volunteers are mid-level e.g., it doesn’t ensure that they will feel

insecure (not confident) sometimes and consequently, reflecting similar pattern of a beginner

level; it is simple to understand that, the massive training for each different flight and aircraft

are the point and for this reason, different expertise of volunteers may reflect similar brain

patterns if they are not confident in some situation. The training is the key of a successful flight

and this work tries to bring clearly the need to train more the pilots to avoid several problems

in the flight procedures.

These low amplitudes and signal variations along the time, may mean that the volunteer

is more relaxed during the flight, presenting less brain oscillations over short times. It makes

sense, since the volunteer of the flights VC1 and VC2 reported to be confident with the proposed

flight tasks and aircraft commands, but sometimes he said to push himself to execute the tasks

as well as possible.
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Figure B.1. Mean of magnitudes by tasks and lobes, of the flight dataset
CL3 (beginner level volunteer).
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Figure B.2. Mean of magnitudes by tasks and lobes, of the flight dataset
CR1 (beginner level volunteer).
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Figure B.3. Mean of magnitudes by tasks and lobes, of the flight dataset
CR3 (beginner level volunteer).
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Figure B.4. Mean of magnitudes by tasks and lobes, of the flight dataset
GC3 (mid-level volunteer).
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Figure B.5. Mean of magnitudes by tasks and lobes, of the flight dataset
LS1 (mid-level volunteer).
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Figure B.6. Mean of magnitudes by tasks and lobes, of the flight dataset
VC1 (experienced level volunteer).
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Figure B.7. Mean of magnitudes by tasks and lobes, of the flight dataset
VC2 (experienced level volunteer).
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APPENDIX C

Emosense Software - User Manual

The present work developed two software to give support to the data acquisition, processing

and emotion recognition, those are: Emosense RT (real time/online version), and Emosense

Processing (offline version).

C.1. Emosense Realtime/Online

Figure C.1, shows the configuration panel of the Emosense RT, which it have all parameters

to be configured before the acquisition process, e.g., sensors to connect, experiment and test

time, log file, real time markers, and so on.

Figure C.1. Configuration panel.

Figure C.2, shows three main panels: RT acquisition panel, aviation experiment setup and

electrodes setup for ExG (ECG, EMG, EEG and EOG), GSR and HR. In the RT acquisition

panel, 7 different signals can be acquired; serial data, bluetooth data, TCP data and accelerom-

eters data. In the aviation experiment panel, the experiments based on aviation can be adapted,

producing a final report having specific information on aviation context.

The electrodes panel, presents several electrodes selections, according to experiment in case.

In addition of several signal acquisition, the face of the user in experiment, is also recorded to

be analyzed in the post processing phase.
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Figure C.2. Three main panel: RT acquisition panel, aviation experiment
panel and electrodes setup panel.

C.1.1. Log File Nomenclature

The Emosense RT software, produces files of its own. A total of two data files are produced:

readable data file (.emo), having a data table that permits to be processed further; and a plot

file (.pdf), having images of plots of the data acquired in real time. In addition, a additional

file are produced when a RT marker is used, taking a photo of the user at the same moment of

the markers.

After stop the experiment, the Emosense RT, record a pair of files, data.emo and plot.pdf,

following by the date and time of recording, being the ID of the finished experiment (Figure

C.3). Other log files are produced also, but based on the configuration system, experiment steps

and errors warnings along the acquisition.

202



Figure C.3. Log storage and nomenclature.

C.2. Emosense Offline

Figure C.4, shows the Emosense Offline software that uses the recorded data by the Emosense

RT, to execute processing and to find patterns to aim the regression/classification process.

Several resources are provided by it: Filtering, FFT, wavelets, auto markers, signal cutting,

spectrograms, features extractions, cross correlation, Pearson’s coefficient, print plots, and so

on.

Figure C.4. Emosense Offline software.
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