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A B S T R A C T

This research seeks to understand the role of national innovation systems (NIS) in addressing countries’ envi-
ronmental performance, namely their environmental health, ecosystem vitality, and climate change. The role
played by NIS in these societal challenges was tested in 130 countries through cross-sectional models using the
updated data from 2022/2021. The major findings of this research revealed that NIS contribute insignificantly to
the attainment of meaningful environmental goals, such as enhancing ecosystem vitality or mitigating climate
change. Despite making a positive impact towards protecting the population from environmental risks, NIS
urgently need to make a paradigm shift towards environmental sustainability.

Introduction

In recent years, a number of studies have warned of the damage
caused to our planet, whether in environmental health (Stephen et al.,
2018), ecosystem vitality (Edrisi and Abhilash, 2021) or in climate
change (Chen and Gong, 2021). Technology and innovation are usually
seen as tools to address these challenges and some interesting literature
can be found with proposals for cities, regions or specific countries
and/or even for some specific economic sectors.

Regardless of these relevant advances, we should be asking if econ-
omies are using their national innovation systems (NIS) to address these
challenges and whether these systems are aligned to deal with the major
problems of protecting environmental health, enhancing ecosystem vi-
tality and mitigating climate change. A holistic approach should be
taken when addressing this issue as it remains an academic question. It is
therefore essential to broaden knowledge on as many economies as
possible so that and policies that consider the idiosyncrasies of each
country or region can then be defined.

Given the scant studies linking NIS and environmental domains (at
national level), this work aims to bridge this gap and further knowledge
in this field. Additionally, we build on the work of Fernandes et al.

(2022), which used the environmental performance index (EPI) to
examine the NIS role by including the principle factors of EPI (Envi-
ronmental Health [EH], Ecosystem Vitality [EV] and Climate Change
[CC]). In fact, CC was first used as a major factor in the 2022 edition of
the Environmental Performance Index Report (CC was a subfactor of EV
in the previous editions) and we did not find any previous studies using
CC in this way. The inclusion of CC as a major factor marks significant
progress in addressing the causes of CC for improved mitigation and
monitoring. However, it does not encompass all the environmental is-
sues, challenges, and impacts related to CC.

Innovation systems urgently need information to tackle today’s
environmental challenges but, due to the lack of national level studies in
this domain, the focus should be on making a specific diagnosis that
leads to the definition of some lines of action; this is the overriding aim
of this work. In addition, it also provides NIS with better guidance on
environmental challenges to consolidate the path towards the 2030
sustainability Agenda.

The paper proceeds as follows. We start by describing the main
theoretical background underlying the research hypotheses. Next, the
methodological section explains the research design, variable metrics,
research procedures, and econometric models, before presenting the
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results in the following section. The subsequent discussion analyses the
results in light of the theoretical background. Finally, the paper outlines
the main practical and theoretical implications and major findings of the
study and concludes by addressing limitations and future research.

Literature review and hypotheses

National Innovation Systems (NIS) are viewed as processes where
innovations and technological developments take place over time
(Johnson and Lundvall, 2013). NIS can make a major contribution when
addressing societal challenges (Ghazinoory et al., 2020), and Altenburg
and Pegels (2012) added that NIS should be guided by environmental
objectives. The bibliometric study provided by Vatananan-Thesenvitz
et al. (2019) linking innovation systems and sustainable development
reveals these two topics are an emergent trend. In addition, while some
authors propose new business models based on innovation for sustain-
able development (França et al., 2017), others put entrepreneurship and
innovation initiatives in the framework of sustainable development as a
condition for success (Brás and Moniz, 2021).

Before going further, it should be noted that the sustainability
concept comprises three correlated dimensions: environmental sus-
tainability, social sustainability, and economic sustainability (Purvis
et al., 2019). However, the bibliometric study conducted by Vatana-
nan-Thesenvitz et al. (2019) highlights the environmental dimension as
the basis of sustainable development, just as the study by Mebratu
(1998) concluded some years ago. Therefore, the tacit emphasis on
environmental usually occurs when the topic is sustainable
development.

Some years ago, Green (2005) argued that sustainable development
requires a paradigm shift in NIS, and Altenburg and Pegels (2012) called
for a desirable green transformation introducing the concept of
sustainability-oriented innovation systems. Perhaps as a consequence of
these urgent demands, Fernandes et al. (2022, p.1) have recently
showed that “NIS can play a decisive role towards an environmentally
sustainable future”. These authors test the role played by NIS in envi-
ronmental performance (EP) as a whole, which comprised factors such
as: ecosystem vitality, environmental health and, in the 2022 EPI edi-
tion, climate change (in previous editions this was a subdomain of
ecosystem vitality). In fact, these findings provided the empirical
framework to confirm whether (or not) ecosystem vitality, environ-
mental health and climate change of countries are positively influenced
by the NIS.

Ecosystem vitality depends on how ecosystems are preserved, pro-
tected, and enhanced through biodiversity and habitat, ecosystem ser-
vices, fisheries, acidification, agriculture or water resources domains
(Wolf et al., 2022). “Preserving large, intact areas of natural habitat is a
key means of preserving biodiversity” (Alvey, 2006, p.195); given that
urban environments put pressure on biodiversity (Kowarik et al., 2020),
a reliable framework should be developed for its promotion in the urban
ecosystem such that cities become more sustainable and residents’
wellbeing is improved (Li et al., 2019; Taylor and Hochuli, 2015). The
decline in the overall biodiversity of cities has already been reported
(Murphy, 1988) and we know that biodiversity plays a critical role in
enabling a long-term ecosystem (Groombridge et al., 2002); promoting
biodiversity within the urban ecosystem by engaging city stakeholders is
therefore a viable alternative to re-think and re-shape greenspaces for
more sustainable cities (Klaus and Kiehl, 2021). Ecological, economic
and institutional efforts to protect biodiversity in fact can be viewed as
ecosystem services able to exert an influence on the decision-making of
individuals, communities, firms, and states (Daily and Matson, 2008). In
this vein, putting an end to the ongoing global forest loss since 2001 due
to the use of land to produce commodities should be a goal in order to
preserve ecosystem vitality (Curtis et al., 2018). Preserving fish re-
sources also contributes to enhancing ecosystem vitality (Wolf et al.,
2022), either by assuring the fish stock status (Miqueleiz et al., 2022),
controlling the marine trophic index (Su et al., 2021), or avoiding trawl

fishing (i.e. catching some organisms unintentionally) (Kennelly and
Broadhurst, 2021). Just as the extent of waste water treatment can be
considered a response indicator to ecosystem vitality, nitrogen and
pesticide use in agriculture can be viewed as pressures to ecosystem
vitality (Morse, 2018); in addition, excessive sulphur dioxide (SO2) and
nitrous oxide emissions can have a negative impact on ecosystem vitality
(Jiang et al., 2020; Tian et al., 2015).

The literature includes some studies which show that NIS have a
positive influence on ecosystem vitality, for instance, by protecting
agroforestry systems (Borremans et al., 2018), or preserving biodiversity
and habitat at a regional level (van den Heiligenberg et al., 2017).
Reference is also made to innovative measures to enhance ecosystem
vitality in some domains such as creating an artificial reef to reduce
fishing pressure (Su et al., 2021).

Environmental health, namely protecting the population from envi-
ronmental health risks, can be evaluated by four dimensions: air quality,
sanitation and drinking water, lead exposure, and waste management
(Wolf et al., 2022). It is known that air quality can be measured by a
heterogeneous mix of gases and several studies have noted that low air
quality (also known as air pollution) negatively affects human health
and is linked to several diseases (Al-Kindi et al., 2020; Roberts et al.,
2019; Schraufnagel et al., 2019). People without sustainable access to
safe drinking water and basic sanitation are also more exposed to dis-
eases (and deaths) worldwide (Ferreira et al., 2021), notably in low-and
middle-income countries and among young children (Prüss-Ustün et al.,
2019). In addition, “disorders of various body systems and the role of
inflammation due to lead exposure has been proven by various studies”
(Boskabady et al., 2018), particularly in neurologic, cardiovascular, and
hepatic systems (Obeng-Gyasi, 2018). Finally, the waste management in
some domains (controlled solid waste, recycling, ocean plastics) by
municipalities, regions and countries impacts human health (Wolf et al.,
2022). Therefore, improving the management of solid waste can
improve environment and health outcomes, particularly in developing
countries (Ziraba et al., 2016), as can recycling waste (Cook et al., 2023;
Huysveld et al., 2019) or preventing ocean pollution (Landrigan et al.,
2020); the presence of microplastics whether on land or at sea indicates
potential particle, chemical and microbial hazards that can lead to
human health toxicity by inducing or aggravating an immune response
(Wright and Kelly, 2017).

In this vein, some literature shows that NIS contribute to improving
air quality (Hao et al., 2020), and water and sanitation (van Welie et al.,
2019), or minimising exposure to the health threats of heavy metals
(Zou et al., 2017) and reducing waste in several sectors (Baron et al.,
2017; Baggio et al., 2008).

Regarding the influence of climate change policy on environmental
sustainability, some authors claim that climate change is posing a range
of threats to environmental sustainability (Phour and Sindhu, 2022;
Arora et al., 2018; Arora, 2019). Climate change can be assessed through
a set of emission indicators (Wolf et al., 2022), namely: greenhouse
gases (GHG) (carbon dioxide, methane, nitrous oxide), fluorinated gases
(F-Gases), and black carbon. GHG emissions are known to be the major
cause of climate change; although carbon dioxide is the primary cause
(Zheng et al., 2019), F-Gases (Sovacool et al., 2021) and black carbon
(Ramanathan and Carmichael, 2008) also play a role.

Given that climate change is now unquestionable (Phour and Sindhu,
2022), NIS can contribute (positively) to tackling and stabilising climate
change in the long-term. NIS could have a positive impact on climate
change policy through the stakeholders’ engagement (Hao et al., 2020),
building sectorial networks (Boyer and Touzard, 2021), or by technol-
ogy transfer mechanisms (Ockwell and Byrne, 2016). Underlining this
key idea, Su and Moaniba (2017, p.49) argue that “technological inno-
vation is responding strongly to climate change”.

Based on the review of the literature and theorising about the rela-
tionship between environmental domains and NIS, we hypothesise the
following:
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H1: The environmental health of countries is positively influenced by
NIS
H2: The ecosystem vitality of countries is positively influenced by
NIS
H3: The climate change policy of countries is positively influenced by
NIS

Methods

Variables and sample
The dependent variables are in accordance with the main factors

identified in the EPI in 2022, namely: environmental health (EH),
ecosystem vitality (EV), and climate change (CC). These three factors
together formed the main indicator of EPI and are weighted 20%, 42%,
and 38%, respectively. Several studies used the reported factors as
proxies of the environmental domains, primarily the EPI (Morse, 2018;
Shittu et al., 2021; Folayan et al., 2020). The values for these three
factors were obtained from the 2022 edition of the Environmental Per-
formance Index Report (EPIR) (see Wolf et al., 2022). The composition
of each factor is detailed in Fig. 1.

In brief, EH captures the level of population protection from envi-
ronmental health risks and is made up of four subfactors: air quality,
sanitation and drinking water, heavy metals, and waste management.
EV is comprised of six subfactors, namely biodiversity and habitat,
ecosystem services, fisheries, acidification, agriculture, and water re-
sources; these capture the extent to which ecosystems are preserved,
protected, and the services they provide. CC captures the progress to-
wards climate change mitigation, which exacerbates all other environ-
mental threats and imperils human health and safety. CC is a
unidimensional factor formed by nine observable indicators: i) ‘adjusted
emissions growth rate for carbon dioxide’, ii) ‘adjusted emissions growth

rate for methane’, iii) ‘adjusted emissions growth rate for F-gases’, iv)
‘adjusted emissions growth rate for nitrous oxide’, v) ‘adjusted emissions
growth rate for black carbon’, vi) ‘projected GHG Emissions in 2050, vii)
‘growth rate in carbon dioxide emissions from land cover’, viii) ‘green-
house gas intensity growth rate’, and ix)‘greenhouse gas emissions per
capita’.

We chose the seven pillars of the Global Innovation Index (GII) from
2021 as our explanatory variables, namely: Institutions, Human Capital
and Research, Infrastructures, Market Sophistication, Business Sophis-
tication, Knowledge and Technology Outputs, and Creative Outputs. The
GII pillars are widely used as a benchmark in the innovation ecosystem
performance at national level and various studies have used them as
proxies of NIS performance (Fernandes et al., 2022; Gogodze, 2016;
Menna et al., 2019).

This cross-sectional study is focused on data from 130 countries
common to the two databases – Table 1

Procedures
As heteroscedasticity is common in cross-sectional data (Agunbiade

and Adeboye, 2012) and due to the heterogeneity of economies in our
sample, there is likely to be greater variance in the innovation expen-
ditures of high-income economies than that of lower-income economies
(Brás, 2023). The variance of the residuals would therefore be unequal
across the innovation variables within the economies studied, confirm-
ing the presence of heteroscedasticity through the White test. Hence we
estimate a heteroscedasticity-corrected least squares regression using
the weighted least squares (WLS) estimator, as suggested by Wooldridge
(2015).

Assuming the exogeneity of variables, the confirmation of the correct
specification of models by the RESET Test, and the absence of collin-
earity within explanatory variables (VIF<5), we run a WLS estimation

Fig. 1. The 2022 EPIR framework; weights show the percentage of the total EPI score
Source: Wolf et al. (2022, p.XI).
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(HSK command in GRETL Software, version 31) to address the problem
of heteroscedasticity, as this “typically provides the most accurate re-
sults” (Steel and Kammeyer-Mueller, 2002, p.96).

Dealing with nonconstant diagonal elements of the covariance ma-
trix,2 Long and Ervin (2000) suggested Heteroskedasticity-Consistent
Covariance Matrix Estimators (HCCME) in which various attempts to
estimate Ω = diag(ω1,…,ωn) result in several versions of HCCME, such
as HC0, HC1, HC2, HC3:

HC0 : ωi = μ̂2i (see White, 1980)
HC1 : ωi = n

n− kμ̂
2
i (see Hinkley, 1977; MacKinnon & White, 1985)

HC2 : ωi =
μ̂
2
i

1− hi (see Horn et al., 1975; MacKinnon & White, 1985)

HC3 : ωi =
μ̂
2
i

(1− hi)2
(see Davidsson & MacKinnon, 1993)

where μ̂ are the estimated residuals, n is equal to the number of inde-
pendent scores, k corresponds to the number of parameters estimated, hi
= Hii are the diagonal elements of the hat matrix H = x(xʹx)− 1x, and h is
their mean.

More recently, other versions of HCCME have appeared:

HC4 : ωi =
μ̂
2
i

(1− hi)δi (see Cribari-Neto, 2004)

HC5 : ωi =
μ̂
2
i

(1− hi)αi (see Cribari-Neto et al., 2007)

where δi = min
{

4,hi
h

}

, and αi = min
{
hi
h
,max

{

4, khmax
h

}}

with k as a pre-

defined constant, 0< k< 1.
The focus lies on weighted regressions as suggested by Cribari-Neto

and Zarkos (2001), although equations through HCCME are also pro-
vided to test the robustness of our results for HC1, HC2, and HC3, as
these variants outperform the others (Şimşek and Orhan, 2016).

Finally, in the knowledge that there is a delay between an innovation
and its effectiveness (Gerken et al., 2015), we assume that NIS in 2021
might impact environmental variables in 2022. Therefore, we use lagged
independent GII variables with a lag of one period (data from 2021) as
opposed to dependent environmental variables (data from 2022) as we
assume that the causal effect of NIS occurs gradually and manifests itself
in changes to the environmental domains at a later date.

Econometric models
Considering the dependent and explanatory variables, the three

models take the following lin-lin specification:

EHi = β0 + β1Ii− 1 + β2HC&Ri− 1 + β3Infi− 1 + β4MSi− 1 + β5BSi− 1
+ β6K&TOi− 1 + β7COi− 1 + μi− 1 (1)

EVi = β0 + β1Ii− 1 + β2HC&Ri− 1 + β3Infi− 1 + β4MSi− 1 + β5BSi− 1
+ β6K&TOi− 1 + β7COi− 1 + μi− 1 (2)

CCi = β0 + β1Ii− 1 + β2HC&Ri− 1 + β3Infi− 1 + β4MSi− 1 + β5BSi− 1
+ β6K&TOi− 1 + β7COi− 1 + μi− 1 (3)

where i represents the country, and µ corresponds to the error term;
dependent variables are environmental health (EH), ecosystem vitality
(EV), and climate change (CC), while explanatory variables are in-
stitutions (I), human capital and research (HC&R), infrastructures (Inf),
market sophistication (MS), business sophistication (BS), knowledge
and technology outputs (K&TO), and creative outputs (CO).

Descriptives

For the observable variables, the descriptive statistics aim to present
measures of central tendency (e.g. mean), measures of dispersion (e.g.

Table 1
Countries in the sample.

Countries

Angola Colombia India Mali Russian Federation
Albania Cape Verde Ireland Malta Rwanda
United Arab Emirates Costa Rica Iran (Islamic Republic of) Myanmar Saudi Arabia
Argentina Cyprus Iceland Montenegro Senegal
Armenia Czech Republic Israel Mongolia Singapore
Australia Germany Italy Mozambique El Salvador
Austria Denmark Jamaica Mauritius Serbia
Azerbaijan Dominican Rep. Jordan Malawi Slovakia
Belgium Algeria Japan Malaysia Slovenia
Benin Ecuador Kazakhstan Namibia Sweden
Burkina Faso Egypt Kenya Niger Togo
Bangladesh Spain Kyrgyzstan Nigeria Thailand
Bulgaria Estonia Cambodia Netherlands Tajikistan
Bahrain Ethiopia Republic of Korea (the) Norway Trinidad and Tobago
Bosnia and Herzegovina Finland Kuwait Nepal Tunisia
Belarus France Lao People’s Democratic Republic New Zealand Turkey
Bolivia (Plurinational State of) United Kingdom Lebanon Oman United Republic of Tanzania (the)
Brazil Georgia Sri Lanka Pakistan Uganda
Brunei Darussalam Ghana Lithuania Panama Ukraine
Botswana Guinea Luxembourg Peru Uruguay
Canada Greece Latvia Philippines United States of America
Switzerland Guatemala Morocco Poland Uzbekistan
Chile Honduras Republic of Moldova (the) Portugal Vietnam
China Croatia Madagascar Paraguay South Africa
Cote d’Ivoire Hungary Mexico Qatar Zambia
Cameroon Indonesia North Macedonia Romania Zimbabwe

1 The procedure involves OLS estimation followed by an auxiliary regression
to generate an estimate of the error variance (σ̂2i ), and finally weighted least
squares, using the reciprocal of the estimated variance ( 1

σ̂
2
i

) as weight. This is

based on the procedure described in Ramanathan (1992), Introductory econo-
metrics with applications, Dryden Press, California: USA, 1992., where the
weighted linear regression takes the following specification: Depvariablei /̂σ2i =

β0/̂σ
2
i + β1Indvariablei /̂σ

2
i + …+ βnIndvariablei/̂σ

2
i + μi/̂σ

2
i

2 Ψ = (xʹx)− 1xʹΩx(x́ x)− 1
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standard deviation), the minimum and maximum values recorded, and
indicators that can show some violations of the normal distribution
(skewness and kurtosis) – Table 2.

In short, regarding the reference values defined by George and
Mallery (2010) | Sk | > 2 (marked asymmetry) or | Ku | values > 2
(marked kurtosis), we note that none of the variables seriously violated
the univariate normal distribution.

Results

Table 3 and Table 4 provide the estimation results.
Briefly describing the results of WLS and HCCME regressions through

Table 3 and Table 4 we can say that there is no structural difference
between estimations. Multicollinearity is not a serious concern as all
explanatory variables showed a variance inflation factor (VIF) lower

than 5. WLS estimations presented lower standard errors of regressions
compared to HCCME and, therefore, the distances between the data
points and the fitted values are smaller, which means the predictions are
more precise. Moreover, as WLS regressions presented higher values for
R-squared, the regression models explain higher percentages of the
variance when compared to HCCME.

Accordingly. and in line with WLS estimations, Table 3 shows that
institutional framework (I), human capital (HC&R), infrastructural
conditions (Inf), business sophistication (BS) and creative outputs (CO)
have a positive impact on environmental health. Additionally, only
infrastructural conditions (Inf) and business sophistication (BS) show a
positive impact on ecosystem vitality, and only institutional framework
(I) has a positive impact on climate change policy. However, and unlike
in HCCME regressions, some (unexpected) results in theWLS regressions
should be noted, namely the negative effect of knowledge and

Table 3
WLS estimation results.

Model 1 Model 2 Model 3

EH
(coeff.)

t-ratio EV
(coeff.)

t-ratio CC
(coeff.)

t-
ratio

VIF

Constant − 12.38*** − 2.98 34.19*** 5.23 − 1.86 − 0.24
I 0.36*** 4.09 0.05 0.43 0.57*** 4.25 3.252
HC&R 0.47*** 4.49 - 0.26* − 1.81 − 0.12 − 0.71 4.254
Inf 0.57*** 5.33 0.30* 1.91 0.23 1.39 4.520
MS − 0.34*** − 3.55 - 0.22* − 1.88 − 0.18 − 1.14 2.511
BS 0.35*** 3.13 0.47*** 3.11 0.18 0.98 4.369
K&TO − 0.26** − 2.18 - 0.02 − 0.14 − 0.20 − 1.21 3.457
CO 0.36*** 3.87 0.07 0.54 0.24 1.49 3.831
F-Statistic F (7, 122)= 173.16*** F (7, 122)= 9.82*** F (7, 122)= 13.26***
R-squared 0.91 0.36 0.43
Std. error of the regression 1.85 2.09 1.97

Significance levels: *p< 0.1; **p< 0.05; ***p< 0.01.

Table 4
HCCME results (HC1, HC2, HC3).

Model 1 Model 2 Model 3

EH (coeff.) thc1 thc2 thc3 EV
(coeff.)

thc1 thc2 thc3 CC
(coeff.)

thc1 thc2 thc3

Constant − 16.87*** − 3.23 − 3.18 − 3.03 21.36*** 3.27 3.23 3.09 4.39 0.51 0.50 0.48
I 0.41*** 2.96 2.92 2.78 0.21 1.29 1.28 1.22 0.54*** 3.70 3.65 3.49
HC&R 0.51*** 4.75 4.70 4.51 − 0.09 − 0.61 − 0.61 − 0.58 − 0.01 − 0.06 − 0.06 − 0.05
Inf 0.54*** 3.93 3.90 3.76 0.31* 1.83 1.82 1.75 0.09 0.46 0.45 0.43
MS − 0.29** − 2.46 − 2.42 − 2.31 − 0.09 − 0.74 − 0.73 − 0.70 − 0.25 − 1.22 − 1.20 − 1.14
BS 0.30*(*) 2.03 2.00 1.91 0.35*(*) 2.07 2.05 1.97 0.10 0.46 0.45 0.43
K&TO − 0.29 − 1.59 − 1.56 − 1.49 − 0.16 − 0.94 − 0.92 − 0.88 − 0.10 − 0.55 − 0.54 − 0.51
CO 0.37*** 3.06 3.02 2.89 − 0.01 − 0.01 − 0.01 − 0.01 0.30 1.53 1.50 1.42
F-Statistic (7122) 128.55*** 127.03*** 117.74*** 8.59*** 8.44*** 7.78*** 11.30*** 11.12*** 10.27***
R-squared 0.86 0.32 0.41
Std. error of the
regression

8.90 10.70 12.29

Significance levels: *p< 0.1; **p< 0.05; ***p< 0.01.

Table 2
Summary statistics.

N Minimum Maximum Mean Std. Deviation Skewness Kurtosis

EH 130 11.4 94.7 46.833 22.8209 0.51 − 0.871
EV 130 19.3 73.9 47.138 12.5888 − 0.057 − 0.629
CC 130 10.1 92.4 39.271 15.5106 0.969 1.437
I 130 37.8 95.1 65.049 14.0771 0.251 − 0.84
HC&R 130 7 67.4 32.756 15.3081 0.353 − 0.794
Inf 130 17.6 64.8 41.51 12.2569 − 0.056 − 1.083
MS 130 23.7 84.7 47.504 11.3044 0.639 0.978
BS 130 8.7 68.1 29.737 14.1307 1.012 0.005
K&TO 130 2.5 63.9 24.213 14.4676 0.894 0.02
CO 130 4.5 60.2 26.328 12.984 0.559 − 0.546
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technology outputs on environmental health, as well as the negative
effect of human capital and research on ecosystem vitality; the negative
effect of market sophistication on both environmental variables was
partially documented in the literature.

Regardless of the typology of estimation (WLS or HCCME), the re-
sults partially support the first hypothesis (H1), i.e., the environmental
health of countries is positively influenced by the NIS.

However, there is no evidence to support H2 and H3 due to the lack
of statistical significance of most of the NIS variables to explain
ecosystem vitality and climate change. Overall, we can conclude that
NIS do not have a have a significant impact on either enhancing
ecosystem vitality or mitigating climate change.

Discussion

Given the results, it is pertinent to discuss some unexpected behav-
iours of the GII pillars in each environmental domain and take a broad
approach to shed light on the relationship between NIS and environ-
mental performance.

Regarding the negative impact of knowledge and technology outputs
(K&TO) on environmental health (EH), it is important to recognise that
inventions and/or innovations can be complex and can jeopardise the
population’s protection from environmental health risks. Despite being
unexpected, this inverse relationship between K&TO and EH is to some
extent supported by sporadic literature that emphasises specific fea-
tures, either by explicitly highlighting some innovation/invention
harmful for environmental health (Taormina et al., 2018; Lin and Zhu,
2019), by tacitly recognising the limitations of innovation/invention
processes for better environmental health (Sumrin et al., 2021; Ilyas
et al., 2018), or even by claiming new innovation/invention processes
with that aim (Wang et al., 2020).

Decoding the unexpected negative impact of human capital and
research (HC&R) on ecosystem vitality (EV) is aimed at understanding
how/why education/tertiary education and research and development
can undermine the preservation, protection and enhancement of eco-
systems. Piaggio et al. (2017, p.97) claimed “that there has been insuf-
ficient engagement by the conservation community [of biodiversity]with
practitioners of synthetic biology”. Also Roux et al. (2017) identified
failures in learning and research domains and proposed new forms of
group learning and the sharing of knowledge on advancing sustainability
themes, particularly on the topic of freshwater ecosystems for conser-
vation. Considering the current biodiversity crisis (Lees et al., 2020)
together with the recent attempts to teach sustainable development
through business simulation games (Gatti et al., 2019), we can conclude
that there is still a long path ahead if we are to avoid education and
research having a negative impact on ecosystem vitality. “Consumer
culture and neoliberalism have significantly influenced contemporary
globalised, Western(ised) and highly visual societies” and there is a
teaching challenge “to resist dominant discourses promoted by the
media” (Varea et al., 2018, p.949). A country may achieve high scores in
HC&R, but if environmental sustainability issues are absent from sec-
ondary and tertiary curricula and are not included in the research agenda,
this could negatively impact ecosystem vitality. Recently, Null and
Asirvatham (2023) advocated for the increased inclusionof sustainability
topics in university curricula to improve students’ behaviour towards
environmental issues. Unless education and research are up to date with
the issues of ecosystems vitality and biodiversity, education/tertiary
education/research will be unable to fulfil their task of knowledge
transfer and therefore of having a positive impact on these domains.

Moreover, market sophistication (MS) has a negative impact on both
environmental health and ecosystem vitality. Despite being negative,
MS had already been found to have this impact on countries’ environ-
mental performance (Fernandes et al., 2022). As MS reflects market
conditions and the total level of an economy’s transactions, this inverse
relationship with environmental domains may be due to the market’s
failure to deliver sound innovation outcomes focusing on sustainable

development (Schomberg, 2019; van den Hove et al., 2012). Never-
theless, this inverse relationship underpins the argument that innova-
tion/invention processes mediated and valued only by the market are
“an inducer of production and consumption real or virtual, but both
resource consumers” (Nunes et al., 2021) and are therefore potentially
harmful for both environmental health and ecosystem vitality. From a
micro perspective, desirable shifts towards sustainable consumption in
consumer and producer behaviours and their alignment with circular
economy principles (Durán-Romero et al., 2020) should help address
this inverse relationship.

To sum up, although the environmental health of countries is posi-
tively influenced by NIS, neither ecosystem vitality nor climate change
policy is benefiting significantly from NIS. As a number of authors argue
that NIS is a means of enhancing ecosystem vitality and mitigating
climate change, these results are quite alarming given that, according to
Wolf et al. (2022), both variables have a weight of 80% in the total
environmental performance.

Practical implications and recommendations

While some authors have sought to define measures to limit the
irreversible damage to the environment (Rapf and Kranert, 2021),
others openly argue that it is time to implement sustainable environ-
mental policies (Pe’er et al., 2020; Gills and Morgan, 2020) if we are to
avoid jeopardising the well-being of future generations. Even though
some claim we are close to tipping points in several environmental do-
mains (Liu et al., 2018; Albrich et al., 2020), we should not give up
building a meaningful society guided by the principles of environmental
sustainability. Therefore, we should ask whether the innovation systems
being built foster environmental sustainability and promote the 2030
and post-2030 Agendas for sustainable development? According to our
updated results, they are not. Academics have already claimed that
policy makers are aware of the critical role NIS play in this pursuit
(Altenburg and Pegels, 2012; Green, 2005), so it is time to press for the
urgent alignment of NIS with environmentally sustainable goals as
opposed to those driven purely by the market. Given the updated
diagnosis, “there is no time for complacency” (van den Hove et al., 2012,
p.79). There must be an environmental and sustainable transition in NIS
to strengthen the path towards the 2030 and post-2030 sustainability
Agenda. Specifically, special attention should be given to addressing the
negative impact of market sophistication on both environmental health
and ecosystem vitality. This finding is not totally new (see Fernandes
et al., 2022) and NIS should move away from a market-only orientation
towards environmentally sustainable objectives by fostering sustainable
consumption behaviour and ecological business practices. Accordingly,
public policy supporting innovation through funds for both public and
private institutions is valuable if it strives to benefit society as a whole
and not just business and commerce. The critical role played by public
policy could be underpinned by new voices from civil society collec-
tively engaged in the search for integrated solutions in innovation sys-
tems with the aim of achieving environmental sustainability. If
supranational institutions had more power to monitor environmental
sustainability, it would create synergy between national public policies
to promote innovation efficiently in our planet. Hence, “international
governance is needed not simply to help provide global public goods
that would otherwise be under-supplied, but to guard against
self-serving behaviour by states that, in providing a global public good,
given short shrift to the negative externalities that may result” (Bod-
ansky, 2012, p.668).

Theoretical implications

Institutions is the only NIS variable that shows a (positive) impact on
climate change mitigation. This theoretical contribution deserves an in-
depth analysis in an attempt to contribute to this relevant and urgent
issue; moreover, a theoretical framework should be built to explain the
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institutional domain’s unique and positive contribution to climate
change mitigation. Although alarming, it is important to understand
from a theoretical point of view which institutional variables have an
effective and positive impact on climate change policy: regulatory
environment, political environment, or business environment?

On the other hand, unlike other studies reflecting the positive role of
innovative initiatives in preserving, protecting, and enhancing ecosys-
tems (Borremans et al., 2018; van den Heiligenberg et al., 2017),
another theoretical contribution of our work reveals the insignificant
impact of NIS (as a whole) on enhancing ecosystem vitality.

Finally, a major contribution of this study is that it speculates on
market procedures within NIS that are harmful to environmental health
and ecosystem vitality. It discloses the negative externalities of educa-
tion and research embedded in NIS on enhancing ecosystem vitality and
exposes the negative impact from the outcomes of innovations/in-
ventions on environmental health. This theoretical evidence on NIS
should act as a starting point to further research developments in the
field of environmental sustainability.

Concluding remarks

NIS are viewed as a dynamic instrument, with systemic changes, that
can foster environmental sustainability and bring about environmental
sustainable outputs (Fernandes et al., 2022). However, the major find-
ings of this research show that NIS play an insignificant role in
contributing to meaningful environmental goals, such as enhancing
ecosystem vitality or mitigating climate change. Although their
extremely positive contribution to protecting the population from
environmental health risks cannot be neglected, some aspects of NIS
exert negative pressure on environmental sustainability. We note in
particular: their trade-market guidance combined with harmful behav-
iours by consumer and producer (consumerism), their unalignment of
education and research policies to preserve ecosystem vitality, and the
inadequacy of their innovations/inventions to prevent and mitigate
environmental health risks. In short, NIS urgently need to make a
paradigm shift towards environmental sustainability.

The limitations of the study include its cross-sectional nature and its
solely quantitative approach. Addressing these limitations can be the
starting point for fruitful avenues of further research such as: i) the in-
clusion of longitudinal data for panel data modelling and ii) an in-depth
understanding of the influence of NIS on environmental sustainability
by including sub-factors of NIS, and therefore using a quantitative and
qualitative approach.
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Shanmugam, H., Taghian, G., van de Water, J., Vezzulli, L., Weihe, P., Zeka, A.,
Raps, H., Rampal, P., 2020. Human health and ocean pollution. Ann. Glob. Health 86
(1), 1–64. https://doi.org/10.5334/aogh.2831.

Lees, A.C., Attwood, S., Barlow, J., Phalan, B., 2020. Biodiversity scientists must fight the
creeping rise of extinction denial. Nat. Ecol. Evol. 4 (11), 1440–1443. https://doi.
org/10.1038/s41559-020-01285-z.

Li, E., Parker, S.S., Pauly, G.B., Randall, J.M., Brown, B.V., Cohen, B.S., 2019. An urban
biodiversity assessment framework that combines an urban habitat classification
scheme and citizen science data. Front. Ecol. Evol. 7, 1–15. https://doi.org/
10.3389/fevo.2019.00277.

Lin, B., Zhu, J., 2019. Determinants of renewable energy technological innovation in
China under CO2 emissions constraint. J. Environ. Manage. 247, 662–671. https://
doi.org/10.1016/j.jenvman.2019.06.121.

Liu, J., Ma, Y., Zhu, D., Xia, T., Qi, Y., Yao, Y., Guo, X., Ji, R., Chen, W., 2018.
Polystyrene nanoplastics-enhanced contaminant transport: role of irreversible
adsorption in glassy polymeric domain. Environ. Sci. Technol. 52 (5), 2677–2685.
https://doi.org/10.1021/acs.est.7b05211.

Long, J.S., Ervin, L.H., 2000. Using heteroscedasticity consistent standard errors in the
linear regression model. Am. Stat. 54 (3), 217–224. https://doi.org/10.2307/
2685594.

MacKinnon, J.G., White, H., 1985. Some heteroskedasticity-consistent covariance matrix
estimators with improved finite sample properties. J. Econom. 29 (3), 305–325.
https://doi.org/10.1016/0304-4076(85)90158-7.

Mebratu, D., 1998. Sustainability and sustainable development: historical and
conceptual review. Environ. Impact. Assess. Rev. 18 (6), 493–520. https://doi.org/
10.1016/S0195-9255(98)00019-5.

Menna, A., Walsh, P.R., Ekhtari, H., 2019. Identifying enablers of innovation in
developed economies: a national innovation systems approach. J. Innov. Manage. 7
(1), 108–128. https://doi.org/10.24840/2183-0606_007.001_0007.

Miqueleiz, I., Miranda, R., Ariño, A.H., Ojea, E., 2022. Conservation-Status gaps for
marine top-fished commercial species. Fishes 7 (1), 1–11. https://doi.org/10.3390/
fishes7010002.

Morse, S., 2018. Relating environmental performance of nation states to income and
income inequality. Sustainable Develop 26 (1), 99–115. https://doi.org/10.1002/
sd.1693.

Murphy, D., 1988. Challenges to biological diversity in urban areas. In: Wilson, E.O.
(Ed.), Biodiversity. National Academies Press, Washington (DC), pp. 71–76.

Null, D.C., Asirvatham, J., 2023. College students are pro-environment but lack
sustainability knowledge: a study at a mid-size Midwestern US university. Int. J.
Sustainability Higher Educ. 24 (3), 660–677. https://doi.org/10.1108/IJSHE-02-
2022-0046.

Nunes, S., Cooke, P., Grilo, H., 2021. Green-Sphere circular experiences and well-being
along the road: Portugal from North to South. In: Ratten, V., Leitão, J., Braga, V.
(Eds.), Tourism Innovation in Spain and Portugal. Springer, Cham, pp. 89–111.

Obeng-Gyasi, E., 2018. Lead exposure and oxidative stress—a life course approach in U.
S. adults. Toxics 6 (3), 1–10. https://doi.org/10.3390/toxics6030042.

Ockwell, D., Byrne, R., 2016. Improving technology transfer through national systems of
innovation: climate relevant innovation-system builders (CRIBs). Clim. Policy 16 (7),
836–854. https://doi.org/10.1080/14693062.2015.1052958.

Pe’er, G., Bonn, A., Bruelheide, H., Dieker, P., Eisenhauer, N., Feindt, P.H., Hagedorn, G.,
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